Department of Electrical Engineering and Computer Science

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

6.5081/6.828 Fall 2019

Quiz I1

All problems are open-ended questions. In order to receive credit you must answer the question
as precisely as possible. You have 120 minutes to finish this quiz.

Write your name on this cover sheet AND at the bottom of each page of this booklet.

Some questions may be harder than others. Read them all through first and attack them in the
order that allows you to make the most progress. If you find a question ambiguous, be sure to
write down any assumptions you make. Be neat. If we can’t understand your answer, we can’t
give you credit!

THIS EXAM IS OPEN BOOK AND OPEN LAPTOP, but CLOSED NETWORK.

Please do not write in the boxes below.

I (xx/15) | II (xx/15) | III (xx/5) | IV (xx/10) | V (xx/4) | VI (xx/15) | VII (xx/5) | VIII (xx/5) | IX (xx/2)

(xx/76)

Kerberos ID:

I Xvo6 file system

Alyssa adds the statement:
printf ("bwrite %d\n", b->blockno);

toxv6’sbwriteinbio. c. She then makes a fresh £s. img, boots xv6, and runs the following command:

$ cat README > z

bwrite
bwrite
bwrite
bwrite
bwrite
bwrite
bwrite
bwrite
bwrite
bwrite
bwrite
bwrite
bwrite
bwrite
bwrite
bwrite
bwrite
bwrite
bwrite
bwrite
bwrite
bwrite
bwrite
bwrite
bwrite
bwrite
bwrite
bwrite
bwrite
bwrite
bwrite
bwrite
bwrite
bwrite
bwrite
bwrite

$

Name:

3
4
5
2
33
46

801

802

2 // XXX

Alyssa is surprised by the large number of blocks written. She looks at the source code of cat.c and
observes that cat writes 512 bytes at the time. 1s reports that README is 1982 bytes large. So, cat
README > z results in 4 write system calls. The block size of the xv6 file system is 1024 bytes, so the
content of z fits in 2 file system blocks.

1. [5 points]: Explain what block 801 contains.

2. [5 points]: Explain briefly what block 33 contains.

3. [5 points]: Explain briefly the purpose of the write to block 2 at the line marked XXX.

Name: 3

01NN kW=

I e e e e e
OO0 WPk WD —= OO

II Lab Lock

Ben is working on parallelizing xv6’s memory allocator for 6.828’s lock lab. He modifies the kernel’s page
allocator to use per-CPU free lists, using the cpuid () function to determine which CPU the code is running
on. Following the hint in the lab text, Ben sees that cpuid () ’s documentation (in proc. c) says “Must
be called with interrupts disabled, to prevent a race with the process being moved to a different CPU.” He
writes his kalloc () implementation as follows:

void «
kalloc (void)
{

struct run *r;

push_off();
int me = cpuid();
pop_off ();
acquire (&kmem[me].lock) ;
r = kmem[me] .freelist;
if(r)
kmem[me] .freelist = r->next;
release (&kmem[me] .lock) ;

// if r == NULL, search other CPUs’ free 1lists
/).

// clear page and return it

VA

4. [5 points]: Ben expects line 10, r = kmem[me] .freelist;, to access the free list of the
CPU that the code is currently executing on. It turns out that this is not always the case. Describe a
concrete sequence of events that violate Ben’s expectation.

Name: 4

5. [5 points]: How could Ben change his code so that his expectation holds, i.e. r = kmem[me] .freelist;
is guaranteed to access the free list of the CPU that the code is executing on?

6. [5 points]: Alyssa points out that Ben can remove the calls to push_off () (line 6) and
pop_off () (line 8), even though that violates the cpuid () function’s specification. Ben modifies
xv6 and it passes all the usertests, despite the missing push_off () and pop_off (). Explain why
deleting these two lines doesn’t break xvo6.

Name: 5

III Lab Syscall

The two parts of the 6.828 user-level threads and alarm lab both involve saving and restoring contexts. For
user-level threading, this happens in uthread_switch, and for the alarm system call, saving the context
happens in usertrap () and restoring the context happens in sys_sigreturn (). While all registers
are saved/restored for the alarm system call, this is not necessary for ut hread_switch, which only needs
to save sp, s0 through s11, and ra.

7. [5 points]: Explain why uthread_switch can get away with not saving and restoring certain
general-purpose registers.

Name: 6

IV xv6 i-node counts

Alyssa is implementing symbolic links in xv6, as part of the 6.828 file system lab. She observes that each
in-memory inode (struct inode in file.h) contains two similar fields: n1ink and ref.

8. [5 points]: Suppose a bug accidentally changed a file’s n1ink field from 2 to 1. What bad
thing(s) would happen as a result?

9. [5 points]: Suppose a bug accidentally changed a file’s re f field from 2 to 1. What bad thing(s)
would happen as a result?

Name: 7

V EXT3

Recall the Linux EXT3 journaling file system from Journaling the Linux ext2fs Filesystem and Lecture 14.
The paper’s “ext2fs” is the same as EXT3.

Suppose you run the following program on Linux with EXT3:

int
main ()
{

int fd;

fd = open("a", O_CREAT|O_WRONLY, 0666); // create a
1f(fd < 0) exit(1l);
close (fd);

fd = open("b", O_CREAT|O_WRONLY, 0666); // create b
if (fd < 0) exit (1);
close (fd) ;

printf ("done\n") ;

The two open () system calls create files. Before you run the program, the two files did not exist.

The program prints done, so you know the file creations succeeded. Moments after the program finishes,
there’s a power failure and your computer (which has no battery) stops executing. After a while the power
comes back on, and your computer reboots and runs EXT3’s recovery code. You look for files a and b.

10. [4 points]: Which of the following situations could exist at this point?
(Circle True or False for each choice.)

True / False Neither a nor b exists.

True / False File a exists, but not b.

True / False File b exists, but not a.

True / False Both a and b exist.

Name: 8

VI RCU

Consider RCU Usage In the Linux Kernel: One Decade Later, by McKenney et al.

Suppose Figure 6’s set sockopt () were modified to copy the new options into the socket structure, rather
than changing a pointer, like this:

if (opt == IP_OPTIONS) {
memmove (sock->opts, arg, ...the correct size...);
return;

This modification would require that sock->opts be a buffer of the appropriate size. udp_sendmsg ()
remains the same.

11. [5 points]: Explain why this modification would break RCU. What kinds of problems would
it cause to udp_sendmsg () ?

Name: 9

Ben Bitdiddle is thinking about adding RCU to his xv6 kernel, which he runs on real RISC-V hardware. His
RISC-V hardware has a timer that ticks every 10 milliseconds, and Ben sees that xv6’s kerneltrap ()
causes a context switch if a timer interrupt arrives while a kernel thread is running. He reasons that
since the point of synchronize_rcu () is to wait for a context switch on each CPU, he could change
synchronize_rcu () to simply wait 10 milliseconds rather than schedule itself on each CPU in turn (as
in Figure 2).

12. [S points]: Explain why Ben’s idea of waiting 10 milliseconds would break RCU.

Alyssa is excited about Biscuit as described in The benefits and costs of writing a POSIX kernel in a high-
level language by Cutler et al. She notices that Biscuit uses RCU for its directory cache. In studying the
Biscuit code, she notices that there are no calls to synchronize_rcu () (or to any similar function).

13. [5 points]: Explain why Biscuit has no need for synchronize_rcu ().

Name: 10

VII Networking lecture/reading

Consider Eliminating Receive Livelock in an Interrupt-driven Kernel, by Mogul et al, as well as Lecture 17.

Ben notices that a networking stack is failing to make much progress sending packets when it is receiving
packets at a high rate. To solve this problem, he configures the network interface card (NIC) to not generate
receive interrupts, and instead polls the receive descriptor ring during each timer tick (every millisecond).
More progress is now made in sending packets, but a new problem has appeared where some incoming
packets are dropped even at load below saturation.

14. [5 points]: Explain why packets are dropped because of this change.

Name: 11

VIII Virtualization

Consider A Comparison of Software and Hardware Techniques for x86 Virtualization, by Adams et al.

The designers of a new RISC-V processor want to more easily debug the state of the running CPU, so
they allow reads to the sstatus (supervisor status) register to be performed from user mode without
trapping. Normally making sstatus readable doesn’t create any problems, but suppose a trap-and-emulate
hypervisor (in supervisor mode) is running xv6 as a guest (in user mode). After running for a short time the
guest xv6 kernel panics and prints “kerneltrap: not from supervisor mode”.

Note: sret does not modify SSTATUS . SPP.

15. [5 points]: Explain why allowing sstatus to be read in user mode without trapping results
in this specific panic in the xv6 guest kernel.

Name: 12

IX 6.828

16. [1 points]: Please indicate which of the labs you found to be the most helpful, and which the
least.

Alarm / uthreads

Locking

File system

mmap

Networking (if you did this lab)

17. [1 points]: Which paper is the best candidate for deletion in future years?

End of Quiz II — Happy holidays!

Name: 13

