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Today’s lecture

• Networking basics
• OS networking abstractions
• Receive livelock



Logistics

• Due this Thursday:
• Mmap lab assignment
• Project status reports (if you’re registered for 6.828)

• Networking lab (next assignment) is posted today



Networks

• What is a network?
• A system of channels that interconnect nodes
• E.g. railroads, highways, plumbing, telephones

• What about computer networks?
• A communication network that moves information
• The nodes are computers!

• Computer networks are powerful networks
• Interaction between nodes and network is 

programmable
• Today’s networks can move incredible amounts of 

information very quickly



Bandwidth-delay product

• Can view network as a pipe
• For full utilization:
• # bytes in flight ≥ bandwidth * delay
• But too much in flight can cause collapse

• What if protocol doesn’t bulk transfer? (e.g. RPC)
• Concurrency needed for higher utilization

Bandwidth

Delay



Layering

• Networks are built on a series of layered standards
• Each layer has a header, a metadata preamble
• Each layer encapsulates the next layer
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Example layer: Ethernet

• Used by just the local network (not across the Internet)
• Vendors give each device a unique 48-bit MAC address

• Specifies which node should receive a packet
• OS can tells NIC which MAC address to accept
• FF:FF:FF:FF:FF:FF broadcasts to entire network fabric

• Extra fields on wire (in grey) but stripped by NIC hardware
• Preamble helps device recognize packets
• CRC detects corrupted packets

• Type aids in encapsulation (IPv4, IPv6, ARP, etc.)
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Example layer: Internet protocol

• Used to connect different networks together (i.e. 
the internet)

• IP addresses (e.g. 8.8.8.8)
• Like street addresses, describe a location in network
• Routers use address to determine path through network
• 127.0.0.1 is special, loopback to the local machine

• Header is much more complex than Ethernet
• But still has source, destination, and type
• Usually encapsulates UDP and TCP



Address resolution protocol (ARP)

• Goal: Want to send to an IP address.

• Problem: Which MAC address to use?

• If destination is in same link network, use its MAC 
address, otherwise use MAC of gateway

• ARP:
• Broadcast request for MAC address of IP address
• Everybody learns requester’s MAC and IP
• Target machine responds with its MAC address

• OS maintains cache of ARP mappings



Endianness

• The order of bytes within a short or int
• RISC-V is little endian, but network is big endian
• To convert, use ntohs/ntohl (network order -> host order) 

and htons/htonl (host order -> network order)
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Mbufs

• Can’t store packets in contiguous memory
• Moving data to make room for new headers is slow

• Need an abstraction to support layering efficiently
• E.g. add UDP header to data, add IP header to UDP, etc.
• E.g. Remove ethernet header so IP code doesn’t see it

• Solution mbufs! (original idea from BSD)
• Linux uses sk_buffs, similar idea
• Simple mbuf provided in lab assignment
• Mbufs can also store metadata about packets (e.g. 

checksum, arrival time, etc.)



Mbuf layout

Buffer

UDPIPEth
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• Buffer is larger than largest possible packet
• Headroom and tailroom leave extra space for headers



Networking lab code 
walkthrough



Sockets

• Abstraction for communicating between machines
• Datagram sockets: Unreliable message delivery
• E.g. UDP
• Messages may be reordered or lost
• Reads return the full message (if req len is large enough)

• Stream sockets: Bi-directional pipes
• E.g. TCP
• Bytes written on one end, are read on the other
• Reads may not return the full amount requested



Socket implementation

• Both TCP and UDP name connection endpoints
• 32-bit IP address specifies machine
• 16-bit Port number demultiplexes within host

• Thus, a connection is named by 5 components
• Protocol (UDP), local IP, local Port, remote IP, remote 

Port (called a 5-tuple)
• OS keeps connection state in PCB structures
• Keep all PCBs in a hash table
• When packet arrives, use 5-tuple to find PCB and use 

PCB to determine what to do with packet



How to transfer pkts to/from NIC?
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Idea: Have CPU copy to RAM
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Better: Have NIC copy to RAM
Called direct memory access (DMA)
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OS programs DMA engine

• Circular array of descriptors (fetched from memory by NIC)
• Each descriptor describes location to put packet in memory
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NIC descriptors
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Memory locations



DMA details

• OS provides NIC with locations to copy packet data
• NIC provides OS with notifications of finishing
• Mechanism #1: Writes done flag to descriptor
• Mechanism #2: Sends interrupts

• OS recycles descriptors
• Gives previous buffer to networking stack (or frees it)
• Then allocates and programs new buffer into descriptor

• Descriptors often contain flags and metadata about 
how to receive or transmit a packet
• Separate descriptor rings for receive and transmit



Don’t starve the DMA engine

• Need to keep descriptor rings full!
• What if receive ring goes empty?
• NIC drops packets!

• What if transmit ring goes empty?
• NIC wastes bandwidth! (doesn’t send)

• OS has to constantly monitor descriptors!
• Can poll, by checking them periodically
• Or can program NIC to send interrupts



What’s better… 
Interrupts or polling?



Polling vs. interrupts

• When is polling good?
• When tasks are predictable, polling works better
• Task can cooperatively decide when to poll
• E.g. software routers are great at polling

• When are interrupts good?
• When tasks are unpredictable or uncooperative
• E.g. what if the service time of requests is variable
• E.g. what if one task doesn’t care about performance of 

other tasks on same machine



Both polling and interrupts can 
waste the CPU
• Polling wasteful when it is used to wait for new 

packets
• Could do other work instead!

• Interrupts are wasteful when they’re frequent
• Each interrupt has much higher overhead than a poll
• Can easily dominate the CPU

• Solution: Use both to minimize waste



Receive livelock

• Let’s assume an interrupt is delivered for each 
received packet
• OS refills descriptor ring and processes each packet
• Maintains low latency even if app isn’t cooperating

• Now assume the packet arrival rate is much higher 
than the rate the OS can handle packets
• OS will spend nearly all time processing interrupts
• Lower priority functions like transmitting and running 

application logic will fail to make progress
• Result: System performs no useful work! (livelock)



How to fix livelock?

• Idea 1: Drop requests as early as possible when 
overloaded
• Minimizes wasted work if they’re going to be dropped 

anyway
• Idea 2: Process requests to completion
• Don’t start a new request until old requests finish
• Guarantees progress



Solution details

• Using interrupts only to initiate polling.
• Using round-robin polling to fairly allocate 

resources among event sources. 
• Temporarily disabling input when feedback from a 

full queue, or a limit on CPU usage, indicates that 
other important tasks are pending. 
• Dropping packets early, rather than late, to avoid 

wasted work. Once decided to receive a packet, try 
to process it to completion. 



Livelock results



Conclusion

• Computer networks require well-behaved OSes
• OS decides how and when to process packets
• Every detail matters for good performance

• Drop requests as early as possible if you can’t 
handle them
• In most cases, both interrupts and polling are 

needed
• Mbufs and sockets are powerful abstractions for OS 

networking


