
x86 segmentation, page 
tables, and interrupts 

3/17/08 
Frans Kaashoek 

MIT 
kaashoek@mit.edu 



Outline 

•  Enforcing modularity with virtualization 
– Virtualize processor and memory 

•  x86 mechanism for virtualization 
– Segmentation 
– User and kernel mode 
– Page tables 
– System calls 



Last lecture’s computer 

•  Memory holds instructions and data 
•  CPU interprets instructions 

for (;;) { 
   next instruction 
} 

instruction 

instruction 

instruction 

data 
data 

data 

CPU 
Main memory 



Better view 

•  For modularity reasons: many programs 
•  OS switches processor(s) between programs 

Program 1: 
for (;;) { 
   next instruction 
} 

Program1 

Program 2 

Program 3 

Data for P2 

Data for P1 

Data for P3 

CPU 
Main memory 



Problem: no boundaries 

•  A program can modify other programs data 
•  A program jumps into other program’s code 
•  A program may get into an infinite loop 

0 

232-1 Program1 

Program 2 

Program 3 

Data for P2 
Data for P1 

Data for P3 

Main memory 



Goal: enforcing modularity 

•  Give each program its private memory 
for code, stack, and data 

•  Prevent one program from getting out of 
its memory 

•  Allowing sharing between programs 
when needed 

•  Force programs to share processor 



Solution approach: virtualization 

•  Virtualize memory: virtual addresses  
•  Virtualize processor: preemptive scheduling 

0 

232-1 Program1 

Program 2 

Program 3 

Data for P2 

Data for P1 

Data for P3 

Virtual  
address 

Physical  
address 

0 

232-1 

232-1 

0 

232-1 

0 

MMU 

Physical address 

Virtual address 



Page map guides translation 

•  Each program has its own page map 
–  Physical memory doesn’t have to be contiguous 

•  When switching program, switch page map 
•  Page maps stored in main memory 

MMU 

Page-map 
register 0 0xBF 

P1’s PT 



Protecting page maps:  
kernel and user mode 

•  Kernel mode: can change page-map register, U/K 
•  In user mode: cannot 
•  Processor starts in kernel mode 
•  On interrupts, processor switches to kernel mode 

mov $val, %cr3 

Page-map register 

U/K 



What is a kernel? 

•  The code running in kernel mode 
–  Trusted program: e.g., sets page-map, U/K register 
–  Enforces modularity 

Kernel 

LibOS w. Unix API 

sh 

LibOS w. Unix API 

ls 

K 

U 



Entering the kernel: system calls 

•  Special instructions 
–  Switches U/K bit 

•  Enter kernel at kernel-specified addresses 

Kernel 

LibOS w. Unix API 

sh 

LibOS w. Unix API 

ls int # 

iret 



x86 virtual addresses 

•  x86 starts in real mode (no protection) 
–  segment registers (cs, ss, ds, es) 
–  segment * 16 + offset ➯physical address 

•  OS can switch to protected mode 
–  Segmentation and paging 



Translation with segments 

•  LDGT loads CPU’s GDT 
•  PE bit in CR0 register enables protected mode 
•  Segments registers contain index 



Segment descriptor 

•  Linear address = logical address + base 
–  assert: logical address < limit 

•  Segment restricts what memory an application 
can reference 



JOS code  

•  Why does EIP contain the address of “ljmp” 
instruction after “movl %eax, %cr0”? 



Enforcing modularity in x86 

•  CPL: current privilege level 
– 0: privileged (kernel mode) 
– 3: user mode 

•  User programs can set segment selector 
•  Kernel can load value in CPL and GDT, but 

user programs cannot 



x86 two-level page table 

•  Page size is 4,096 bytes 
–  1,048,576 pages in 232 
–  Two-level structure to translate 



x86 page table entry 

•  W: writable? 
–  Page fault when W = 0 and writing 

•  U: user mode references allowed? 
–  Page fault when U = 0 and user references address 

•  P: present? 
–  Page fault when P = 0 



what does the x86 do exactly? 



When does page table  take effect?  

•  PG enables page-based translation 
•  CR3 contains address of page table 

–  Where does the next instruction come from? 
•  When changing PDE or PTE, you must flush TLB 

–  Reload CR3 



User mode to kernel mode 

•  Instruction: INT n, or interrupt 
•  n indexes into interrupt descriptor table (IDT) 
•  IDTR contains physical address of IDT 



IDT descriptor 

•  Three ways to get into kernel: 
–  User asks (trap) 
–  Page fault (trap) 
–  Interrupts 



What happens on trap/interrupt? 
1.  CPU uses vector n to index into IDT 
2.  Checks that CPL ≤ DPL 
3.  Saves ESP and SS in internal register 
4.  Loads ESP and SS from TSS 
5.  Push user SS 
6.  Push user ESP 
7.  Push user EFLAGS 
8.  Push user CS 
9.  Push user EIP 
10. Clear some EFLAGS bits 
11. Set CS and EIP from IDT descriptor 



From kernel to user 

•  IRET instruction 
– Reverse of INT 



Labs 

•  Lab 1: start kernel 
–  setup and use segmentation 

•  Lab 2: kernel 
–  Set up kernel address space 

•  Lab 3: user/kernel 
–  Set up user address space 
–  Set up IDT 
‒   System calls and page faults 

•  Lab 4: many user programs 
‒   Preemptive scheduling 



JOS  



Recall x86 page table 

•  To find P for V OS can walk PT manually 



VPT: Mapping the page table 

•  Z|Z maps to the page directory 
•  Z|V maps to V’s page table entry 

Z 



Summary 

•  Kernel enforcing modularity 
–  By switching processor between programs 
–  By giving each program its own virtual memory 

•  x86 support for enforcing modularity 
–  Segments 
–  User and kernel mode 
–  Page tables 
–  Interrupts and traps 

•  JOS 


