
6.828:	Virtual	Memory
Adam	Belay

abelay@mit.edu



Outline

• Address	spaces
• x86	Paging	hardware
• xv6	VM	code
• System	call	homework	solutions



Today’s	problem

SH VI

Kernel

Protection	View:

CPL3

CPL0



Today’s	problem

SH VI

Kernel

Protection	View:

CPL3

CPL0

Physical	Memory	View:

0

2^32



Goal:	Isolation

• Each	process	has	its	own	
memory
• Can	read	and	write	its	own	
memory
• But	cannot	read	or	write	the	
kernel’s	memory	or	another	
process’	memory

Physical	Memory	View:

0

2^32 VI



Solution:	Introduce	a	level	of	
indirection

• Plan:	Software	can	only	read	and	write	to	virtual	
memory
• Only	kernel	can	program	MMU
• MMU	has	a	page	table	that	maps	virtual	addresses	
to	physical
• Some	virtual	addresses	restricted	to	kernel-only

CPU MMU RAM

PAVA



Virtual	memory	in	x86

Virtual	addresses	are	divided	into	4-KB	“pages”

Virtual	Address:

012				1131

12-bit	offset20-bit	page	number



Page	table	entries	(PTE)

Physical	Page	Number AVL G
P
A
T
D A C

D
W
T UWP

Some	important	bits:
• Physical	page	number:	Identifies	20-bit	physical	page	
location;	MMU	replaces	virtual	bits	with	these	physical	bits
• U:	If	set,	userspace (CPL3)	can	access	this	virtual	address
• W:	If	set,	the	CPU	can	write	to	this	virtual	address
• P:	If	set,	an	entry	for	this	virtual	address	exists
• AVL:	Ignored	by	MMU

31 0



Strawman:	Store	PTEs	in	an	array

How	large	is	the	array?
PPN
…
…
…
…
…
…
…
…

GET_PTE(va)	=	&ptes[va >>	12]

…



Strawman:	Store	PTEs	in	an	array

How	large	is	the	array?
2^20	*	32	bits
2^20	*	4	bytes
4	Megabytes!

PPN
…
…
…
…
…
…
…
…

GET_PTE(va)	=	&ptes[va >>	12]

…



x86	solution:	Use	two	levels	to	
save	space

12-bit	offset10-bit	DIR
(1st level)

10-bit	TBL
(2nd level)

012				1131 22				21



x86	solution:	Use	two	levels	to	
save	space

Page	Num FLG
Page	Num FLG

10-bit	DIR
(1st level) 10-bit	TBL

(2nd level)

Basically	a	tree!

012				1131 22				21



What	about	a	recursive	mapping?

Page	Num FLG

10-bit	DIR
(1st level)

10-bit	TBL
(2nd level)



What	about	a	recursive	mapping?

Page	Num FLG

10-bit	DIR
(1st level)

10-bit	TBL
(2nd level)

PPN
…
…
…
…
…

02				131 22				21

20-bit	page	table	index

…



How	do	we	program	the	MMU?

Page	Num FLG
Page	Num FLG

10-bit	DIR
(1st level) 10-bit	TBL

(2nd level)

CPU

%CR3

MMU

TLB

• %CR3	register	is	a	pointer	
to	current	page	table
• Hardware	walks	page	
table	tree	to	find	PTEs
• Recently	used	PTEs	
cached	in	TLB



Let’s	talk	more	about	flags
Read	Not	
Allowed

Read	Allowed

Write	Not	
Allowed

No	Flags PTE_P

Write	Allowed Not	Possible PTE_P |	PTE_W

• If	PTE_U is	cleared,	only	the	kernel	can	access
• Why	is	this	needed?

• What	happens	if	flag	permission	is	violated?
• We	get	a	page	fault!
• Then	what	happens?


