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Plan for today

• Last lecture: Virtualization basics
• A VMM is an operating system that maintains a 

machine-like interface instead of a process interface
• Many compelling reasons to use virtualization
• Originally, virtualization wasn’t believed to be possible 

on x86
• VMware introduced binary translation solution

• Today: Recent developments
• More detailed discussion of HW support for 

virtualization
• Safe user-level access to privileged CPU features



Intel VT-x

• Makes x86 hardware “virtualizable” under Popek
and Goldberg definition
• Goal: Direct execution of most privileged 

instructions
• Introduces two CPU modes, kind of like ring 

protection
• VMX Root Mode: For running VMM (host)
• VMX Non-root Mode: For running VMs (guest)
• But each mode has its own rings (CPL0 – CPL3)

• In-memory structure called VMCS stores privileged 
register state and control flags



Intel VT-x
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Intel VT-x: VM Enter
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Intel VT-x: VM Exit
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VM Enter and VM Exit

• Transi'ons between VMX Root Mode and VMX 
Non-root Mode
• VM Exit
• VMCALL instruc'on, EPT Page Faults, some trap and 

emulate (configured in VMCS)
• VM Enter
• VMLAUNCH instruc'on: Enter VMX Non-root Mode for a 

new VMCS
• VMRESUME instruc'on: Enter VMX Non-root Mode for 

the last VMCS (faster)
• Typical VM Exit/Enter is ~200 cycles on modern HW



Intel EPT (nested paging)

• Goal: Direct execution of guest page table 
interactions
• Reads and write to page table in memory
• mov %eax, %cr3, INVLPG, etc.

• Idea: Maintain two layers of paging translation
• Normal page table: Guest-virtual to guest-physical
• EPT: guest-physical to host-physical
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Intel EPT
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Q: What’s the worst case page 
walk time with EPT enabled?



Q: What’s the worst case page 
walk time with EPT enabled?
• O(N^2): Each page table level could require an EPT 

page walk
• But in practice CPU hardware caches the first 

couple levels of page table and EPT, so usually O(N)



Q: What’s faster EPT or Shadow 
Page Tables?



SR-IOV + IOMMU

• Goal: Allows direction execution of I/O device 
access
• Challenge #1: How to partition a single device into 

multiple instances
• SR-IOV: Allows a PCIe device to expose multiple, 

seperate memory-mapped I/O regions

• Challenge #2: How to prevent DMA from 
overwriting memory belonging to VMM or another 
guest
• IOMMU: Provides paging translation across PCIe bus
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Big picture

• Direct execution reduces overhead
• Avoids VM exits, trap-and-emulate, binary translation

• Enabled by three microarchitectural changes:
• Intel VT-x: direct execution of most privileged 

instructions (e.g. IDT, GDT, ring protection, EFLAG, etc.)
• Intel EPT: direct execution of page table manipulation
• IOMMU + SRIOV: direct execution of I/O interactions 

(e.g. disk, network, etc.)



Opera&ng systems today
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What if you could give a process 
access to raw hardware?
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Could build new OS on top of 
Linux
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Key idea: Using Linux means access through system calls



But s&ll have to maintain process 
isola&on
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Dune

• Key Idea: Use VT-x, EPT, etc. to support Linux 
processes instead of virtual machines
• Dune is loadable kernel module, makes it possible 

for an ordinary Linux process to switch to “Dune 
mode”
• Dune mode processes can run along side ordinary 

processes. Within a process, some threads can be 
in Dune mode even if others aren’t.
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A dune process

• Is still a process
• has memory, can make Linux system calls, is fully 

isolated, etc.

• But isolated with VT-x Non-root mode
• Rather than with CPL=3 and page table protections

• memory protection via EPT
• Dune configures EPT so process can only access the 

same physical pages it would normally have access to



Why isolate a process with VT-x?

• Process can access all of Linux environment while 
also directly executing most privileged instructions
• User code now runs at CPL 0
• Process can manage its own page table via %CR3
• Fast exceptions (e.g. page faults) via shadow IDT
• Kernel crossings eliminated

• Can run sandboxed code at CPL 3
• So process can act like a kernel!



How to perform a Linux system 
call in a Dune process?
• INT $80 just traps inside process at handler 

specified in shadow IDT



How to perform a Linux system 
call in a Dune process?
• INT $80 just traps inside process at handler 

specified in shadow IDT
• VMCALL instruction forces a VM Exit
• Dune module vectors exit into kernel system call table

• Challenge: Compatibility
• Existing code and libraries don’t use VMCALL

• Solution: Shadow IDT handler forwards the system 
calls it catches using VMCALL



How to perform a Linux system 
call in a Dune process?
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Microbenchmarks: Overheads

(cycles) Getpid Page fault Page walk

Linux 138 2,687 36

Dune 895 5,093 86

• Two sources of overhead
– VM exits and VM enters
– EPT translations



Microbenchmarks: Speedups

(cycles) ptrace
(getpid)

trap Appel 1
(TRAP, PROT1, 

UNPROT)

Appel 2
(PROTN, TRAP, 

UNPROT)

Linux 27,317 2,821 701,413 684,909
Dune 1,091 587 94,496 94,854
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• Large opportuni8es for op8miza8on
– Faster system call interposi8on and traps
– More efficient user-level virtual memory manipula8on



Example: Sandboxed execution

• Suppose your browser wants to run a plugin
• It could be buggy or malicious

• Need a way to execute plugin but limit system calls 
and memory access
• Using Dune:
• Could create a page table with PTE_U mappings for 

allowed access and ~PTE_U for prohibited access
• Run browser in CPL0 and plugin in CPL3
• Plugin can run system calls but they trap into browser
• Browser filters or emulates system calls



Sandboxing diagram

Web Browser (Dune CPL 0)

Linux Kernel

Hardware

Plugin (CPL 3)Plugin (CPL 3)

sh



Sandbox: SPEC2000 performance
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• Only notable end-to-end effect is EPT overhead
• Can be eliminated through use of large pages



Example: Garbage collection (GC)

• GC is mostly about tracing pointers to find live data
• set a mark flag in every reached object
• Any object not marked is dead and can be freed

• Boehm collector is concurrent GC:
• Mutator runs in parallel with tracer -- with no locks
• At some point the tracer has followed all pointers

• But mutator might modify pointers in already traced objects
• Solution: pause mutator briefly, look at all pages modified since 

tracer has started

• How does Dune help?
• Clear all PTE dirty bits (PTE_D) at start of GC
• Scan for set PTE dirty bits to detect written pages



Example: Garbage collection (GC)
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More thoughts on use cases

• Dune provides similar benefits to Exokernel
• Raw access to paging hardware for Appel + Li paper
• Speed improvements alone may make some ideas more 

feasible (GC, DSM, etc.)
• Each Dune thread can have a different page table!
• E.g. sthreads, a mechanism for least privilege



Conclusion

• VT-x, EPT, and SR-IOV/IOMMU enable direct 
execution of guest instructions
• Dune implements processes with VT-x and EPT 

rather than ordinary ring protection
• Dune processes can use both Linux system calls and 

privileged HW
• Enables fast access to page table and page faults
• Enables processes to build kernel-like functionality

• E.g. sandboxing untrusted plugins in CPL3
• Hard to do this at all in Linux let alone efficiently


