
Virtualiza)on II
Adam Belay <abelay@mit.edu>

Plan for today

• Last lecture: Virtualization basics
• A VMM is an operating system that maintains a

machine-like interface instead of a process interface
• Many compelling reasons to use virtualization
• Originally, virtualization wasn’t believed to be possible

on x86
• VMware introduced binary translation solution

• Today: Recent developments
• More detailed discussion of HW support for

virtualization
• Safe user-level access to privileged CPU features

Intel VT-x

• Makes x86 hardware “virtualizable” under Popek
and Goldberg definition
• Goal: Direct execution of most privileged

instructions
• Introduces two CPU modes, kind of like ring

protection
• VMX Root Mode: For running VMM (host)
• VMX Non-root Mode: For running VMs (guest)
• But each mode has its own rings (CPL0 – CPL3)

• In-memory structure called VMCS stores privileged
register state and control flags

Intel VT-x

VMX Non-Root Mode

VMX Root Mode

CPL 3

CPL 0IDTGDT

%CR0-8 %EFLAG

CPL 3

CPL 0IDTGDT

%CR0-8 %EFLAG VMCS

CONTROL

GUEST STATE

HOST STATE

Intel VT-x: VM Enter

VMX Non-Root Mode

VMX Root Mode

CPL 3

CPL 0IDTGDT

%CR0-8 %EFLAG

CPL 3

CPL 0IDTGDT

%CR0-8 %EFLAG VMCS

CONTROL

GUEST STATE

HOST STATE

VM Enter

Intel VT-x: VM Exit

VMX Non-Root Mode

VMX Root Mode

CPL 3

CPL 0IDTGDT

%CR0-8 %EFLAG

CPL 3

CPL 0IDTGDT

%CR0-8 %EFLAG VMCS

CONTROL

GUEST STATE

HOST STATE

VM Exit

VM Enter and VM Exit

• Transi'ons between VMX Root Mode and VMX
Non-root Mode
• VM Exit
• VMCALL instruc'on, EPT Page Faults, some trap and

emulate (configured in VMCS)
• VM Enter
• VMLAUNCH instruc'on: Enter VMX Non-root Mode for a

new VMCS
• VMRESUME instruc'on: Enter VMX Non-root Mode for

the last VMCS (faster)
• Typical VM Exit/Enter is ~200 cycles on modern HW

Intel EPT (nested paging)

• Goal: Direct execution of guest page table
interactions
• Reads and write to page table in memory
• mov %eax, %cr3, INVLPG, etc.

• Idea: Maintain two layers of paging translation
• Normal page table: Guest-virtual to guest-physical
• EPT: guest-physical to host-physical

EPT
Guest
Virtual

Address

Host
Physical
Address

PT
Guest

Physical
Address

Intel EPT

MMU

TLB

Page Walker

PGTBL

PGDIR

PGDIR

EPGTBL

PGDIR

PGDIR

Guest Kernel

VMM

GVA | HPA
GVA | HPA
GVA | HPA

…

Guest VA -> Guest PA

Guest PA -> Host PA

Q: What’s the worst case page
walk time with EPT enabled?

Q: What’s the worst case page
walk time with EPT enabled?
• O(N^2): Each page table level could require an EPT

page walk
• But in practice CPU hardware caches the first

couple levels of page table and EPT, so usually O(N)

Q: What’s faster EPT or Shadow
Page Tables?

SR-IOV + IOMMU

• Goal: Allows direction execution of I/O device
access
• Challenge #1: How to partition a single device into

multiple instances
• SR-IOV: Allows a PCIe device to expose multiple,

seperate memory-mapped I/O regions

• Challenge #2: How to prevent DMA from
overwriting memory belonging to VMM or another
guest
• IOMMU: Provides paging translation across PCIe bus

IOMMU

CPU 0 CPU 1 CPU 2 CPU 3

RAM

bus

PCIe Device

MMU

IOMMU

Big picture

• Direct execution reduces overhead
• Avoids VM exits, trap-and-emulate, binary translation

• Enabled by three microarchitectural changes:
• Intel VT-x: direct execution of most privileged

instructions (e.g. IDT, GDT, ring protection, EFLAG, etc.)
• Intel EPT: direct execution of page table manipulation
• IOMMU + SRIOV: direct execution of I/O interactions

(e.g. disk, network, etc.)

Opera&ng systems today

16

App

Kernel

Hardware

App App

What if you could give a process
access to raw hardware?

17

1. Access to full hardware
capabilities

2. Access to all exis7ng Linux
abstrac7ons

App

Kernel

Hardware

Could build new OS on top of
Linux

18

1. Access to full hardware
capabili5es

2. Access to all existing Linux
abstractions

Custom Kernel

Kernel

Hardware

AppApp

Key idea: Using Linux means access through system calls

But s&ll have to maintain process
isola&on

19

1. Access to full hardware
capabili5es

2. Access to all existing Linux
abstractions

Custom Kernel

Kernel

Hardware

AppApp

Dune

• Key Idea: Use VT-x, EPT, etc. to support Linux
processes instead of virtual machines
• Dune is loadable kernel module, makes it possible

for an ordinary Linux process to switch to “Dune
mode”
• Dune mode processes can run along side ordinary

processes. Within a process, some threads can be
in Dune mode even if others aren’t.

20

A dune process

• Is still a process
• has memory, can make Linux system calls, is fully

isolated, etc.

• But isolated with VT-x Non-root mode
• Rather than with CPL=3 and page table protections

• memory protection via EPT
• Dune configures EPT so process can only access the

same physical pages it would normally have access to

Why isolate a process with VT-x?

• Process can access all of Linux environment while
also directly executing most privileged instructions
• User code now runs at CPL 0
• Process can manage its own page table via %CR3
• Fast exceptions (e.g. page faults) via shadow IDT
• Kernel crossings eliminated

• Can run sandboxed code at CPL 3
• So process can act like a kernel!

How to perform a Linux system
call in a Dune process?
• INT $80 just traps inside process at handler

specified in shadow IDT

How to perform a Linux system
call in a Dune process?
• INT $80 just traps inside process at handler

specified in shadow IDT
• VMCALL instruction forces a VM Exit
• Dune module vectors exit into kernel system call table

• Challenge: Compatibility
• Existing code and libraries don’t use VMCALL

• Solution: Shadow IDT handler forwards the system
calls it catches using VMCALL

How to perform a Linux system
call in a Dune process?

CPU

Kernel

VMX Root Mode VMX Non-root Mode

Process Syscall
Handler

Syscall
Handler

VMCALL

SYSCALL

Microbenchmarks: Overheads

(cycles) Getpid Page fault Page walk

Linux 138 2,687 36

Dune 895 5,093 86

• Two sources of overhead
– VM exits and VM enters
– EPT translations

Microbenchmarks: Speedups

(cycles) ptrace
(getpid)

trap Appel 1
(TRAP, PROT1,

UNPROT)

Appel 2
(PROTN, TRAP,

UNPROT)

Linux 27,317 2,821 701,413 684,909
Dune 1,091 587 94,496 94,854

27

• Large opportuni8es for op8miza8on
– Faster system call interposi8on and traps
– More efficient user-level virtual memory manipula8on

Example: Sandboxed execution

• Suppose your browser wants to run a plugin
• It could be buggy or malicious

• Need a way to execute plugin but limit system calls
and memory access
• Using Dune:
• Could create a page table with PTE_U mappings for

allowed access and ~PTE_U for prohibited access
• Run browser in CPL0 and plugin in CPL3
• Plugin can run system calls but they trap into browser
• Browser filters or emulates system calls

Sandboxing diagram

Web Browser (Dune CPL 0)

Linux Kernel

Hardware

Plugin (CPL 3)Plugin (CPL 3)

sh

Sandbox: SPEC2000 performance

 −25

 −20

 −15

 −10

 −5

 0

 5

 10

 15

 20

 25

gzip
vpr

gcc
m

esa
art

m
cf

equake

crafty

am
m

p

parser

eon
perlbm

k

gap
vortex

bzip2

tw
olf

%
 S

lo
w

d
o
w

n

 Sandbox
 Sandbox w/ LGPG
 Linux w/ LGPG

30

• Only notable end-to-end effect is EPT overhead
• Can be eliminated through use of large pages

Example: Garbage collection (GC)

• GC is mostly about tracing pointers to find live data
• set a mark flag in every reached object
• Any object not marked is dead and can be freed

• Boehm collector is concurrent GC:
• Mutator runs in parallel with tracer -- with no locks
• At some point the tracer has followed all pointers

• But mutator might modify pointers in already traced objects
• Solution: pause mutator briefly, look at all pages modified since

tracer has started

• How does Dune help?
• Clear all PTE dirty bits (PTE_D) at start of GC
• Scan for set PTE dirty bits to detect written pages

Example: Garbage collection (GC)

Heap

PTE_D PTE_D

More thoughts on use cases

• Dune provides similar benefits to Exokernel
• Raw access to paging hardware for Appel + Li paper
• Speed improvements alone may make some ideas more

feasible (GC, DSM, etc.)
• Each Dune thread can have a different page table!
• E.g. sthreads, a mechanism for least privilege

Conclusion

• VT-x, EPT, and SR-IOV/IOMMU enable direct
execution of guest instructions
• Dune implements processes with VT-x and EPT

rather than ordinary ring protection
• Dune processes can use both Linux system calls and

privileged HW
• Enables fast access to page table and page faults
• Enables processes to build kernel-like functionality

• E.g. sandboxing untrusted plugins in CPL3
• Hard to do this at all in Linux let alone efficiently

