
6.828:	OS/Language
Co-design

Adam	Belay	<abelay@mit.edu>



Singularity

• An	experimental	research	OS	at	Microsoft	in	the	
early	2000s
• Many	people	and	papers,	high	profile	project
• Influenced	by	experiences	at	Microsoft?
• CLR	and	C#
• Kernel	stability	issues	from	third-party	device	drivers



Goals

• Primary:	Improved	dependability	and	
trustworthiness
• Safe	language	– prevents	buffer	overflows,	etc.
• Program	verification	– detects	defects	at	compile	time
• System	architecture	– prevents	errors	from	propagating

• Modern	techniques,	isolation	through	PL
• Not	a	real-world	system,	a	research	testbed



High-level	Structure

• Microkernel-like:	kernel,	processes,	IPC
• Factored	OS	services	as	userspace processes
• UNIX	compatibility	is	not	a	goal,	so	avoids	MACH	pitfalls
• But	192	system	calls!

Microkernel

Extension

Runtime

Application

Runtime

File	System

Runtime

Block	Driver

Runtime



Most	radical	design	choice:	No	
Paging
• Entire	OS	runs	in	a	single	address	space
• Both	kernel	and	processes

• Paging	HW	disabled	entirely,	no	use	of	segments
• User	programs	run	in	CPL	0	and	can	execute	
privileged	instructions	(carefully	verified)



Why	turn	off	paging?

• Performance?
• Faster	process	switching,	no	page	root	switch
• Faster	system	calls,	CALL	not	INT
• Faster	IPC,	no	copying	needed
• Device	drivers	can	access	hardware	directly
• Benefits	shown	in	benchmarks

• But	main	goal	isn’t	performance	(recall	
dependability	and	trustworthiness)



Is	turning	off	paging	consistent	
with	robustness	goal?
• A	lot	of	unreliability	comes	from	extensions
• E.g.	kernel	modules,	browser	plugins,	etc.
• And	those	already	loaded	into	host	program’s	address	
space	for	convenience	and	performance

• So	maybe	VM	HW	is	already	not	relevant
• Can	we	do	without	it?
• Later,	the	paper	mentions	optional	support	for	VM



Extensions	in	Singularity

• Separate	process,	communication	through	IPC
• But	lightweight,	IPC	overheads	not	burdened	by	
address	space	switches



Key	Concept:	Software	Isolated	
Processes	(SIPs)
Each	SIP	is	“sealed”
• No	modifications	from	outside
• E.g.	JOS	system	calls	that	take	an	envid are	not	allowed
• Could	there	be	a	debugger?
• Only	IPC	for	communication

• No	modifications	from	inside
• No	JIT
• No	class	loader
• No	dynamically-loaded	libraries



SIP	Communication

SIP

Microkernel

IMP

EXP

System	Call	ABI



Rules	governing	SIPs

• Only	pointers	to	own	data
• No	pointers	to	other	SIP	data,	no	pointers	to	kernel
• No	sharing	despite	shared	address	space!
• Exception:	Exchange	heap

• SIP	can	ask	for	pages	from	the	kernel
• May	not	be	contiguous



Why	can’t	SIPs	be	modified?



Why	can’t	SIPs	be	modified?

• What	are	the	benefits?
• No	code	insertion	attacks
• Easier	to	reason	about	correctness?
• Probably	better	optimization?
• Inline?	Delete	unused	functions?
• Easier	to	verify?

• Is	it	worth	the	pain?



Why	not	use	a	single,	shared	
runtime?



Why	not	use	a	single,	shared	
runtime?
• IPC	is	the	only	interaction	between	SIPs
• More	robust,	enables	fault	isolation
• More	customizable
• Each	SIP	can	have	its	own	language	run-time,	GC	
scheme,	etc.
• But	the	runtime	is	a	trusted	component!
• Better	not	have	bugs!

• SIPs	make	it	easier	to	clean	up	after	kill	or	exit



How	to	keep	SIPs	isolated?

• Only	read/write	memory	the	kernel	has	given	you
• Could	the	compiler	check	each	access?
• ”Does	this	point	to	memory	the	kernel	gave	us?”
• Really	slow,	especially	because	memory	is	
noncontiguous
• Compiler	isn’t	trusted



Singularity	uses	PL-based	
protection
Overall	plan:
1. Compile	code	to	bytecode
2. Verify	bytecode	during	install
3. Compile	verified	bytecode	to	machine	code
4. Run	machine	code	with	trusted	runtime



How	does	bytecode	verification	
work?
• Does	it	check	for	“only	access	memory	kernel	gave	
us?”
• Not	exactly,	but	related!

• Plan:	Each	SIP	can	only	access	reachable	pointers
• Only	the	trusted	runtime	can	“give”	new	pointers
• So	if	kernel/runtime	never	supply	incorrect	
pointers,	each	SIP	can	only	access	its	own	memory



Reachable	pointer	diagram

Root Root

SIP	A SIP	B



What	does	the	verifier	check?

1. Don't	cook	up	pointers	(only	use	pointers	
runtime/kernel	gives	you)

2. Don’t	allow	casts	to	pointers
• E.g.	int to	pointer	would	violate	rule	#1

3. Don't	use	after	free
• Otherwise,	could	be	used	to	violate	rule	#2
• GC	and	transfer	heap	help	guarantee	this

4. Don't	use	uninitialized	variables
• Zero	allocated	memory

In	general,	don’t	trick	the	verifier.



Example

R0 <- new SomeClass
jmp L1
…
R0 <- 1000
jmp L1
…
L1:
mov (R0) -> R1



Example	(continued)

• Verifier	tries	to	deduce	the	type	of	every	register
• Pretends	to	execute	along	each	code	path
• Requires	that	all	paths	to	a	register	use	result	in	same	
type
• Check	that	all	reg use	okay	for	type

• In	this	case,	R0	has	type	int or	type	*SomeClass
• Validator	would	say	no!



Bytecode	verification	may	be	
stricter	than	needed
• E.g.	It’s	might	be	okay	to	cast	pointers	that	are	still	
within	the	SIP’s	memory
• Benefits	of	verification:
• Faster	execution,	may	be	able	to	elide	runtime	check!
• Type	check	IPC	channels
• Need	to	allow	R/W	of	exchange	heap	but	not	SIP’s	
memory
• Do	system	calls	run	on	SIP’s	stack?

• If	so,	could	prevent	another	SIP	thread	from	wrecking	stack	
memory

• An	interpreter	could	evade	ban	on	self	modifying	
code



Key	concept:	Exchange	heaps

• Shared	memory	communication
• Message	bodies	are	stored	in	exchange	heap
• Possible	dangers:
• Send	wrong	type	of	data
• Modify	a	sent	message	while	it’s	in	use	by	receiver
• Modify	an	unrelated	message
• Use	up	all	exchange	heap	memory	and	never	free



Exchange	heap	diagram

SIP SIP

Exchange



How	to	prevent	abuse

• Verifiers	only	allows	bytecode	to	keep	a	single	
pointer	to	items	in	the	exchange	heap	(i.e.	linearity)
• A	SIP	must	relinquish	a	pointer	when	it	send()s	it
• Verifier	knows	when	last	reference	is	dropped
• e.g.	send(),	delete(),	or	pointer	from	another	object	on	
exchange	heap

• Single	pointer	rule	prevents	modify-after-send	and	
makes	reference	counting	easy
• Runtime	can	maintain	a	datastructure that	maps	
objects	to	the	SIPs	that	own	them
• Why	is	this	useful?



What	about	channel	contracts?

• Nice	to	have	or	does	singularity	rely	on	them?
• Type	signatures	are	clearly	important
• Verifier	must	check	they	match

• State	machine	guarantees	finite	queues
• State	machine	guarantees	each	send	operation	is	
paired	with	a	receive
• Queue	sizes	can	be	bounded	and	send	doesn’t	block

• Receive	can	block,	send	must	perform	the	wakeup



How	do	system	calls	work?

• No	INT	instruction,	instead	just	CALL
• Or	inline	kernel	code	directly	into	SIP	(e.g.	channel	
send	and	receive)
• Kernel	uses	same	stack	as	SIP
• Stacks	can	grow	dynamically	so	no	size	issue
• Must	delineate	kernel	part	and	user	part	of	stack	frame,	
otherwise	how	to	garbage	collect,	etc.?



Other	concepts

• Manifest	files
• Describe	every	detail	of	an	application,	including	verified	
code,	initial	channels	at	startup,	etc.

• Channels
• Are	like	capabilities,	a	channel	can	be	passed	through	a	
channel
• Can	only	communicate	with	a	SIP	if	you	have	the	right	
channel



Does	evaluation	support	claims?

• Robustness?
• Good	model	for	extensions?
• Performance?


