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I Logging

1 inMemoryLog = {}
2
3 def log_flush():
4 i = 0
5 for (a, v) in inMemoryLog.iteritems():
6 if i >= LOGSIZE: return None
7 disk_write(LOGSTART + i, v)
8 logHeader.sector[i] = a
9 i = i + 1

10 logHeader.len = len(inMemoryLog)
11 return logHeader
12
13 def log_apply():
14 for (a, v) in inMemoryLog.iteritems():
15 disk_write(a, v)
16
17 def log_commit():
18 logHeader = log_flush()
19 if logHeader is None: return False
20 disk_sync()
21 disk_write(COMMITBLOCK, logHeader)
22 disk_sync()
23 log_apply()
24 disk_sync()
25 logHeader.len = 0
26 disk_write(COMMITBLOCK, logHeader)
27 disk_sync()
28 inMemoryLog = {}
29 return True
30
31 def log_recover():
32 logHeader = disk_read(COMMITBLOCK)
33 for i in range(0, logHeader.len):
34 v = disk_read(LOGSTART + i)
35 disk_write(logHeader.sector[i], v)
36 disk_sync()
37 logHeader.len = 0
38 disk_write(COMMITBLOCK, logHeader)
39 disk_sync()

The pseudo-code above replicates the key functions of the logging system from Figure 14 in the paper Using
Crash Hoare Logic for Certifying the FSCQ File System. The logging system guarantees that if a transaction
successfully commits, then all the blocks modified by the transaction will be installed or none.

The intended use is that every system call is wrapped in a transaction, starting with a call to log begin
and ending with a call to log commit. disk write writes a block to the disk’s non-persistent buffer.
disk sync tells the disk to flush its internal buffer to the persistent storage medium; when disk sync
returns, the disk has finished writing its internal buffer to persistent storage.
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1. [5 points]: The Linux ext3 file system as described in the paper Journaling the Linux ext2fs
Filesystem also wraps system calls inside a transaction, but provides different persistence guarantees.
Briefly explain the difference between the persistence guarantees of the pseudo-code above and ext3.
You should assume ext3 journals both file contents and meta-data.

Answer: For the pseudo-code given, if a system call returns, then its changes are guaranteed to be
persisted on disk, and to be present after a reboot. In contrast, Linux ext3 defers persisting the effects
of a system call until later (i.e., after a (f)sync).

Ben Bitdiddle observes that disk sync takes a long time, so he deletes the disk sync at line 27. He
reasons that erasing the commit record on disk isn’t really necessary after the transaction has already com-
pleted.

2. [5 points]: Give an example scenario that demonstrates that Ben’s change will break the
correctness of the logging system. (Briefly explain your answer)

Answer: A transaction writes some entries to the log, and commits. A second transaction writes
some of its blocks to the on-disk log but the computer crashes before writing the commit record (i.e.,
on line 20). On recovery, the code will read the old commit record, and install blocks from the log
(which contains the second transaction’s writes), because it reads the length from logHeader of the
previous transaction. This violates correctness, because that transaction didn’t commit.
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II Scalable locks

After reading the paper Non-scalable locks are dangerous, Ben is excited by scalable locks. But studying
the lecture notes and 6.828 quizzes from previous years, he is intimidated by the complexity of MCS locks.
He considers a simpler scalable lock design:

1 struct lock {
2 struct alock {
3 int x;
4 } __attribute__ ((aligned (CACHELINE)));
5 struct alock has_lock[NCORE];
6 unsigned int next_slot;
7 }
8
9 void init(lock *l) {

10 for (int i = 0; i < NCORE; i++)
11 l->has_lock[i].x = 0;
12 l->has_lock[0].x = 1;
13 next_slot = 0;
14 }
15
16 int acquire(lock *l)
17 {
18 int me = fetch_and_add(&l->next_slot, 1);
19 me = me % NCORE;
20 while(l->has_lock[me].x == 0)
21 ;
22 l->has_lock[me].x = 0;
23 return me;
24 }
25
26 void release(lock *l, int me)
27 {
28 l->has_lock[(me + 1) % NCORE].x = 1;
29 }

Ben’s implementation assumes there is one thread per core. Each lock has as many alock structures as
there are cores. Each alock is on a separate cache line. fetch and add is an atomic instruction that
atomically increments next slot and returns the previous value.

A core is supposed to use the lock as follows:

1 struct lock l;
2 int me;
3
4 init(&l); // call once for a lock
5
6 me = acquire(&l);
7 // critical section
8 release(&l, me);

4



You should assume that the compiler and the processor do not eliminate or re-order memory references. You
can also assume that next slot is on a separate cache line.

3. [5 points]: Ben runs a sequence of experiments with increasing numbers of cores that all
continuously acquire and release the same lock. Ben observes that his lock doesn’t experience a
performance collapse. Instead, the lock is scalable: the number of acquires (and releases) completed
per second stays roughly constant regardless of the number of cores. Explain why, focusing on cache
line transfers.

Answer: Each core spins on a separate cache line in acquire. release results in constant number
of cache line transfers, independent of the number of cores waiting for the lock.

4. [5 points]: What is a downside of Ben’s lock compared to a single spinlock? Explain your
answer.

Answer: Space overhead
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III Refcache

Figure 2 in the RadixVM: Scalable address spaces for multithreaded applications paper describes the ref-
cache algorithm to implement scalable reference counters. Ben Bittdiddle finds it difficult to understand this
code and implements a different plan. The following code gives his scalable implementation for a distributed
reference counter for a single object.

1 struct obj *p;
2 int counter[NCORE];
3
4 void allocref() {
5 p = malloc(sizeof(*p));
6 counter[mycore()] = 1;
7 return p;
8 }
9

10 struct obj *getref() {
11 counter[mycore()]++;
12 return p;
13 }
14
15 void releaseref() {
16 counter[mycore()]--;
17 if (counter[mycore()] == 0 && isZero()) {
18 free(p);
19 }
20 }
21
22 bool isZero() {
23 int sum = 0;
24
25 for (int i = 0; i < NCORE; i++) {
26 sum += counter[i];
27 }
28 return sum == 0;
29 }

You can assume that there is exactly one thread per core. Each core maintains a local counter for the object
referenced by p in the array counter. A single core calls allocref to initialize the counter. Before
another core uses p, it calls getref, increasing its local counter. If a core is done with the object, it calls
releaseref, decreasing its local counter. If the local counter is 0, releaseref checks if the object can
be freed using isZero, which sums up all the per-core counters and checks if the sum is 0.
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5. [5 points]: Can Ben’s reference counter code cause the object to be freed even though there are
still references to it? Explain your answer.

Answer: Yes. Suppose, before isZero(), count[0] is zero, count[1] is 1, and count[2] is
1. Core 2 calls releaseref() and then isZero(). isZero() sees count[0] == 0. Then,
core 0 calls getref() and core 1 calls releaseref(). Then isZero() proceeds and sees
count[1] == 0 and count[2] == 0. sum will be zero, and releaseref() will free the
object even though core 1 has a reference!
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IV Dune

Suppose an application running as a Dune process has virtual address v1 mapped to a page of memory
allocated from the kernel.

6. [5 points]: What does the application have to do to create a second virtual address v2 that refers
to the same memory?

Answer: The Dune process has an x86 page table which it can modify directly. It only needs to
update the PTE for v2 to refer to v1’s “guest-physical” address, obtained from the kernel when it was
allocated. No interaction with the Dune kernel (i.e., the VM host) is necessary.
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V Singularity

Ben is implementing a file server as a SIP in Singularity. It will talk to client SIPs on the same machine
through Singularity channels. Ben would like his file server to maintain a cache of file blocks. Because
some files need to be read by many applications, Ben would like each cached block to be useable by multiple
clients without having to copy it.

7. [5 points]: Explain why this is difficult to achieve in Singularity.

Answer: Singularity only allows SIPs to share memory via the exchange heap. But there can be
only one reference to any given object in the exchange heap. Ben’s file server can store cached blocks
in the exchange heap, and give a cached block to the first client that asks for it without copying, but
the file server is not allowed to retain a reference to that block, so as to be able to give it to a second
client. Ben’s file server could keep the cached block in its private memory, and make a new copy in the
exchange heap for each client that asks for it, but that would not achieve Ben’s goals of no copying.

Consider the bar marked “Add Ring 3” in Figure 5 of the Singularity paper. This bar reflects the run-time
of the benchmark with the client SIP running at CPL=3. The run-time is noticeably longer than if the client
SIP runs at CPL=0 (the “Add Separate Domain” bar).

8. [5 points]: Explain why the system is slower when the client SIP runs with CPL=3 rather than
CPL=0.

Answer: At CPL=3, each system call involves an INT instruction and a stack switch, which take
time. At CPL=0 each system call is an ordinary function call, with no stack switch.
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VI IX

Consider the paper IX: A Protected Dataplane Operating System for High Throughput and Low Latency, by
Belay et al.

In the experiment in the paper’s Section 5.2 (Figure 2), for a message size of 20 kilobytes, the client sends
20 kilobytes, and then the server sends a 20-kilobyte reply. The experiments use 1500-byte packets, so a
20-kilobyte message consists of roughly 14 packets.

9. [5 points]: How many transitions between IX and the application (ring 0 and ring 3 in Figure
1) does the server make in receiving and replying to one 20-kilobyte message? Briefly explain your
answer.

Answer: It depends on the batch size, and on how many packets arrive before the server’s polling
notices them. The minimum possible is two: one for run io() to give all 14 received packets to ring 3,
and one for the next run io() to pass a 14-packet reply to IX at ring 0.

10. [5 points]: IX requires use of a NIC that supports multiple independendent hardware DMA
queues (called Receive Side Scaling (RSS)). Explain how IX benefits from these multiple queues.
Answer:

IX uses the multiple queues to help avoid lock and cache-line contention between cores in the IX
network stack, to allow different applications to each have direct access to the NIC without interfering
with each other, and to deliver packets direct to each application while ensuring that each application
only sees its own packets.
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VII Lab 4

Alyssa P. Hacker is working her way through the Copy-on-Write fork implementation in Lab 4. When she
gets to the part on setting up user-level pagefault handling, she feels that it is silly to have two separate
stacks—a normal stack and a user exception stack—for every environment. So she decides to have a single
stack instead. Her implementation uses this single stack for both application code and exception handling.
Her fork implementation maps the page of this single stack COW.

11. [5 points]: Explain what will go wrong with Alyssa’s single stack scheme.

Answer: If the fork implementation treats the normal stack page as copy-on-write, and the user-level
pagefault handler runs on the same stack, then this can result in endless recursive pagefaults before the
kernel eventually kills the environment. This occurs because, at a minimum, the user-level pagefault
handler has to invoke system calls to modify page-mappings. However, any function call writes to the
stack (by pushing the return address, for instance). Since the stack is marked as copy-on-write, this
causes a pagefault, thus transferring control back to the beginning of the user-level pagefault handler,
and this repeats indefinitely.

Ben Bitdiddle decides to change the success return value of sys ipc recv() from zero to 0x6828. So he
modifies his kernel to look like this:

static int
sys_ipc_recv(void *dstva)
{

if ((dstva < (void*)UTOP) && ((uint32_t)dstva % PGSIZE != 0))
return -E_INVAL;

curenv->env_ipc_recving = 1;
curenv->env_ipc_dstva = dstva;
curenv->env_status = ENV_NOT_RUNNABLE;
sched_yield();
return 0x6828; // success!

}
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12. [5 points]: Explain why this change will not cause 0x6828 to be returned from a successful
call to sys ipc recv().

Answer: The return statement in sys ipc recv() is never executed. The call to sched yield()
in sys ipc recv() transfers control to the scheduler, which eventually runs the receiving environ-
ment by calling env run(). env run() resumes the execution of that environment in user space
by restoring the CPU’s registers with the trap-frame values that were saved when that environment
last trapped into the kernel. This includes the eax register, whose value is the return value from the
system call.

Ben modifies the sys ipc try send() system call implementation to keep trying until the send succeeds,
instead of returning an error if the target environment isn’t ready. Here’s his code:

static int
sys_ipc_try_send(envid_t envid, uint32_t value, void *srcva, unsigned perm)
{

while (do_ipc_try_send(envid, value, srcva, perm) == -E_IPC_NOT_RECV)
;

return 0;
}

do ipc try send tries to deliver the IPC to the destination environment. When he runs the pingpong
program, however, it hangs.

13. [5 points]: Explain why Ben’s modification causes the program to hang.

Answer: If the destination of the IPC has not invoked sys ipc recv() yet, sys ipc send()
retries indefinitely while still executing in the kernel. But since JOS uses a big kernel lock to ensure
that only one environment can execute in the kernel at a time, the destination environment will never
get to execute the sys ipc recv() system call. Therefore sys ipc send()will be stuck forever
in the kernel, resulting in the hang.
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VIII Lab 5

14. [5 points]: Ben Bitdiddle is working on exercise 7 of lab 5, and is writing up his implementation
of the sys env set trapframe syscall. He proudly shows his code to Alyssa. Alyssa promptly
points out that his code is wildly insecure since he doesn’t do any checks on the values set in the user
trapframe. Ben is skeptical that this is actually a problem, and stubbornly challenges Alyssa to find a
way to use sys env set trapframe to give an environment privileges it wouldn’t normally have.
Describe how Alyssa might construct a malicious trapframe, and what privileges this trapframe would
give to an environment.

Answer: She could set the CPL of the code segment selector to 0, which lets the environment read
and write kernel memory. She could not enable interrupts in an environment, letting it perform a
denial of service attack by going into an infinite loop. She could set the FL IOPL eflag to let an
environment directly access and modify the jos boot disk, potentially changing the kernel such that
permission checks are removed after a reboot.
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Ben is on exercise 3, and is having issues with his implementation of alloc block. Here is the full code
of Ben’s implementation:

int
alloc_block(void)
{

uint32_t i, blockno;
for (i = 0; i < BLKSIZE; i++) {

if (bitmap[i] != 0) {
// assume this correctly identifies the first free block
blockno = 32*i + (32 - __builtin_clzl(bitmap[i])-1);
break;

}
}
// assume this correctly sets the bit corresponding to blockno
bitmap[blockno/32] ˆ= (1<<(blockno%32));
return blockno;

}

15. [5 points]: When he runs the tests, he observes that the disk never seems to fill (i.e.,
alloc block always returns a block number). Not even for the tests that are designed to write
enough to fill the disk. What check is Ben’s code missing?

Answer: Ben is not checking that blockno is not past the end of the disk, as indicated by super-
->s nblocks. Note that it is not sufficient for Ben to return -E NO DISK when i == BLKSIZE
after the loop, because that will likely still be beyond the real size of the disk.

16. [5 points]: When Ben runs the persistence tests with the code above, he observes that after a
reboot, certain file system operations corrupt data in entirely unrelated files. In particular, appends to
an existing file, or creating and/or writing to a new file, exhibit this behavior, but modifying the blocks
of an existing file does not. What is causing this mysterious issue?

Answer: Ben is not flushing the bitmap with flush block(bitmap), so after a reboot his file
system may start to give out occupied blocks as free (since they aren’t marked as busy in the on-disk
bitmap).
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IX 6.828

We’d like to hear your opinions about 6.828, so please answer the following questions. (Any answer, except
no answer, will receive full credit.)

17. [1 points]: Grade 6.828 on a scale of 0 (worst) to 10 (best)?

Answer:

0.00

0.25

0.50

0.75

1.00

0 1 2 3 4 5 6 7 8 9 10

18. [2 points]: Any suggestions for how to improve 6.828?

Answer:
Labs: 11x less hand holding, 8x less boilerplate code, 8x better code review/feedback, 5x more test
cases, 4x release reference code, 3x list of common mistakes, 2x more focus on design, 2x more final
project idea suggestions

Homework: 3x less of it, 2x more feedback, 2x not 10pm deadline

Readings: 4x fewer, but in more depth, 3x more in depth (discussion/recitations), 2x more guidance,
2x make more interesting, 2x connect back to XV6 and JOS

Lectures: 11x clearer lecture notes, 6x lecture videos, 3x shorter, 3x relate to the lab, 2x better JOS
lectures, 2x revist the big picture, 2x better TA lectures

Other: 6x have recitations, 3x no exams, 2x grades are unclear

19. [1 points]: What is the best aspect of 6.828?

Answer: 71x labs, 14x building/understanding OS, 11x papers, 5x staff, 3x lectures, 3x freedom of
lab 6, 2x office hours, 2x material

20. [1 points]: What is the worst aspect of 6.828?

Answer: 34x debugging (incl. debugging previous labs), 27x quizzes, 9x long papers, 4x time/amount
of work, 3x confusing papers, 3x classroom (1-190), 3x pre-class assignments, 3x forgetting about
pre-class assignments, 2x fast pace, 2x early question deadlines, 2x long lectures, 2x code reviews, 2x
hand-holding in labs, 2x reading manuals, 2x amount of HW
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End of Quiz II
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