
Department of Electrical Engineering and Computer Science

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

6.828 Fall 2008

Quiz II Solutions

1



I File System Consistency

Ben is writing software that stores data in an xsyncfs file system (see the paper Rethink the Sync by Nightin-
gale et al). He’s nervous about crash recovery. To help himself test, he adds a new system call to his
operating system called crash(), which powers off his computer without doing anything else. He also writes
a simple “crash” command which calls his system call. His general test strategy is to perform some opera-
tions, call crash(), restart the computer and let the file system finish recovering, and then observe what files
and data are on the disk.

1. [7 points]: First, Ben types the following commands to his shell:

% echo hello > foo
% crash

After the restart, is Ben guaranteed to see a file foo with contents “hello”? Why or why not?

Answer: Yes. xsyncfs guarantees that any file system writes that causally precede user output will be stable
on disk before the user sees the output. echo’s write() to foo causally precedes the second “%” prompt in
the above output: echo exit()s after it write()s, and the shell wait()s for echo’s exit() before it displays the
prompt. Thus xsyncfs will have written echo’s output to foo before it allows the second % to be displayed.

2



2. [7 points]: Now Ben runs the following UNIX program which he believes is equivalent to the
above commands:

pid = fork();
if(pid == 0){

fd = creat("foo", 0666); // create a file foo
write(fd, "hello\n", 6);
close(fd);
exit(0);

}
wait(&status); // wait for pid to exit
crash();

After the restart, is Ben guaranteed to see “hello” in foo? Why or why not?

Answer: No. There is no user-visible output, so xsyncfs does not guarantee to send file writes to the
disk. Much of the point of xsyncfs is to avoid immediately writing the disk in cases like this, to increase
performance.

3. [7 points]: What would the answers be for the xv6 file system? Why?

Answer: If you used xv6, you’d see “hello” in foo after the restart. That’s because the xv6 file system is
synchronous: all file system operations (such as creat() and write()) wait for their modifications to be written
to disk before they return.

3



II Virtualization

The paper A Comparison of Software and Hardware Techniques for x86 Virtualization states that one of the
goals of virtualization is “Fidelity: Software on the VMM executes identically to its execution on hardware,
barring timing effects.”

The paper also says, at the end of Section 3.2, that the software virtualization technique outlined in Section 3
does not translate guest user-mode code. That is, when the guest operating system executes instructions that
would cause a switch to CPL=3 on real hardware, the VMM stops translating code and allows the original
guest instructions to execute directly on the hardware.

4. [8 points]: Explain a way that a carefully constructed guest kernel and/or user-mode program
could exploit direct execution of user-mode code to discover whether it was executing on a virtual
machine. You should assume the system outlined in Section 3, running on a 32-bit x86.

Answer: One possibility is for the guest kernel to transfer to user space with interrupts turned off (IF clear
in EFLAGS). The VMM will leave interrupts turned on in the real hardware, since it needs to see the real
hardware interrupts; IF will only be clear in the shadow EFLAGS. User-mode code can use pushf to examine
the real hardware EFLAGS. If interrupts are enabled in this situation, the software is running on a virtual
machine; if interrupts are disabled, the software is running on a real machine.

III Fault Tolerance

Ben is impressed with the paper Fault Tolerance Under UNIX, by Borg et al. He builds a system that is
identical – with one exception. In order to get better performance, his hardware has two busses, and every
machine has a connection to both busses. When a machine needs to send a message, it selects one of the
two busses at random, and sends the message on that bus.

5. [8 points]: Explain why this change will cause serious problems to the correctness of the system.
Give a specific example of something that will likely go wrong.

Answer: Suppose two different machines, M1 and M2, send messages to M3 at the same time, but use
different busses. M3 might see the messages in one order, and M3’s backup might see them in the other
order. If M3 were to crash, its backup would restore its state incorrectly, since it would replay those two
messages in a different order than M3 saw them.

4



IV Bugs as Deviant Behavior

Have a look at Figure 3 of the paper Bugs as Deviant Behavior by Engler et al. Suppose first function in
Figure 3 looked like:

ssize_t proc_mpc_write(struct file *file,
const char *buff){

retval = parse_qos(buff, incoming);
}

That is, suppose the first seven lines of the original function were deleted.

6. [8 points]: Would the checker described in Section 7.1 emit an error for this modified function?
Why or why not?

Answer: No. The checker looks for pointers that the code both dereferences and treats as suspect (by
passing to a “paranoid” function). There are no such pointers in this function.

It’s possible that the checker’s comparison of functions that are assigned to the same function pointer would
catch the error even in this modified code, if some other abstractly related function passes the buff argument
to a paranoid function.

V Livelock

Answer this question in the context of the paper Eliminating Receive Livelock in an Interrupt-driven Kernel
by Mogul et al.

7. [8 points]: Figure 6-3 shows that performance with polling and no quota is quite poor under high
input load, but polling with a quota performs much better. Explain what happens without a quota that
results in almost zero performance under high input load, and how a quota helps solve this problem.

Answer: Without a quota, the device driver spends 100% of the CPU time reading packets from the device
and queuing them in a software output queue. This leaves no CPU time to give the queued packets to
the output device hardware, so all packets (after the first queue’s worth) are dropped due to overflow of
the software output queue. With a quota, the polling system alternates between reading input packets and
sending packets to the output device.

5



VI KeyKOS

Answer this question in the context of the paper The KeyKOS Nanokernel Architecture by Bomberger et al.

8. [4 points]: Suppose a machine running KeyNIX loses power while creating a new file in a
directory. After the system is powered back up and executes to a quiescent state (e.g. so that any
recovery code is executed), what are the possible states that the file system could be in? Circle all that
apply (-1 point for each wrong answer).

A. The new file is allocated but the directory does not contain the new file.

B. The new file is not allocated but the directory contains a reference to the new (unallocated) file.

C. The new file is allocated and the directory contains a reference to the new file.

D. The new file is not allocated and the directory does not contain a reference to the new file.

Answer: C and D.

9. [7 points]: Most file system implementations worry a great deal about what happens after a
crash, but the KeyNIX file system has no explicit file system recovery code. Explain what strategy
KeyNIX and KeyKOS use to recover from crashes such as the one above. In particular, would the
KeyNIX file system recover to a consistent state if a new file was created but not added to its parent
directory by the time the machine was powered off (and if so, how)?

Answer: KeyKOS periodically checkpoints the entire state of the system to disk, including process memory
and the register state of each process. If there’s a crash, KeyKOS loads the most recent checkpoint into
memory and continues executing from that point. The KeyNIX file system is implemented as a set of
processes; these processes only write in-memory representations of files and directories, and do not directly
write the disk. If there were to be a crash during the creation of a file, two scenarios are possible, both of
which lead to a consistent state after recovery. The last checkpoint might have been taken early enough that
the file creation hadn’t started; in this case the recovered system will start out with neither file allocated nor
directory modified (though perhaps whatever program eventually tried to create the file will re-execute to
that point and create it again). Or the last checkpoint might have been taken after the start of creating the
file, in which case the file-creation code will continue running after the recovery and create both the file and
the directory entry.

6



VII HiStar

Answer this question in the context of the paper Making Information Flow Explicit in HiStar by Zeldovich
et al.

Recall that KeyNIX maintains a global table mapping process IDs to capabilities (keys) that allow sending a
message to that process’s Unix keeper. When one process running on top of KeyNIX wants to send a signal
to a different process, the sender’s Unix keeper must check that the sender is allowed to send a signal to the
recipient process (e.g. that both processes belong to the same user), before sending a “kill” message to the
recipient’s Unix keeper.

HiStar implements signals in a similar fashion: the Unix library locates the signal gate for the recipient
process and sends a “kill” message to that gate. (Even though the Unix library has no global process ID
table, it can still find the signal gate for a given process ID by enumerating that process’s container to find
the signal gate, since a process ID is the ID of that process’s container object.)

10. [7 points]: The HiStar Unix library is not trusted; anything the Unix library can do, ordinary
program code can also do. As a result, the Unix library cannot be trusted to check that signals are
only sent to processes owned by the same user. How does HiStar prevent a malicious user program
from sending signals to other users’ processes?

Answer: HiStar relies on the signal gate’s clearance to restrict the set of threads that can send a signal to a
process. Each process’s signal gate has a clearance of {uw0, 2}, where the uw category corresponds to the
user that owns that process. This means only threads that either own uw or have a label of {uw0, ...} can
invoke this gate, and one process cannot send signals to processes of other users whose categories it does
not own.

7



11. [7 points]: Can KeyNIX be re-designed to prevent a compromised Unix keeper (controlled
by an attacker) from sending signals to other users’ processes? Sketch out a design that would run on
KeyKOS, or describe why it would be difficult to implement using capabilities.

Answer: One possible design would be to keep the keys to Unix keepers in a per-user process table,
rather than in a single global table. Unix keepers would maintain a key to the process table corresponding
to the user they’re running as, and would be able to send signals to processes in that table. Unix keepers
of processes running as root would have a key to a top-level table of keys for every user’s process table,
allowing root to send signals to anyone’s process. When a root process calls setuid to run as a particular
user, its Unix keeper would delete its key for the top-level table, and only keep a key to the table for that
user. A non-root process would not be able to send signals to processes of other users, since it would have
no way to get the relevant key.

An alternative design would be to create a separate key representing each user in the system (the key could
refer to anything, e.g. an empty segment), and pass this key as part of the “kill” message sent to any Unix
keeper. Each Unix keeper would have a key for the user it’s running as, and on receiving a “kill” message,
it would use Keybits to compare the key it received with the key for the user it’s running as, and only accept
the signal if the keys matched. Care would have to be taken for signals sent by root. If a Unix keeper running
as root were to include root’s key in signals sent to non-root processes, those processes’ Unix keepers could
save that key and use it to send their own signals to other processes. To avoid this problem, keepers running
as root would have to use the correct user’s key when sending signals, perhaps using some other table to
ensure they don’t divulge one user’s key to a Unix keeper of another user.

8



VIII RCU

Answer this question in the context of the paper Read-Copy Update by McKenney et al.

12. [7 points]: Illustrate a specific problem that could occur if the reference-counted linked list
search code in Figure 4 did not obtain a read lock on list lock. Be sure to indicate what would go
wrong as a result.

Answer: search() might be about to use p->next for some element, while at the same time another
thread is calling delete() for the same element. A third thread might re-use the freed element’s memory
for another purpose, overwriting p->next. If search() now dereferences p->next, it may crash or
interpret an inappropriate piece of data as a list element.

13. [7 points]: The RCU version of the linked list search code in Figure 8 does not use locks.
Describe the steps taken by RCU to ensure that the problem seen in the above question does not occur
in this case.

Answer: In Figure 9, RCU’s kfree rcu() does not immediately free the list element; it defers freeing
it until all threads have voluntarily given up the CPU. Since search() in Figure 8 doesn’t voluntarily
context switch, it can safely use any list element without fear that it will be concurrently freed and reused.

14. [8 points]: Suppose you want to use RCU for a linked list in the xv6 kernel. Explain how to
detect quiescence in xv6. To maximize read performance, you may not use any additional code (such
as locks) around read accesses to the linked list.

Answer: xv6 has involuntary context switches: if interrupts are enabled (which they usually are in the
kernel), a timer interrupt can cause a switch to a different process. This means that any RUNNING or
RUNNABLE thread that’s in the kernel might hold a reference to an RCU-protected object; let’s call them
“suspect” threads. Thus, when an object is passed to kfree rcu(), RCU must defer the free until every
thread that is suspect at that time has voluntarily given up the CPU. In xv6, this means waiting for each such
thread to call sleep() or return to user space or exit. One possibility is to associate, with each thread, a
count of the number of voluntary context switches it has performed. kfree rcu() would tag the object
with each suspect thread’s count. It would free the object after all of those threads’ counts had changed.

9


