
Department of Electrical Engineering and Computer Science

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

6.828 Fall 2007

Quiz II Solutions

The average was 80.

1



I Virtual Machines

The x86 SIDT and LIDT instructions read and write the interrupt descriptor table register (IDTR). Recall
that the IDTR specifies the address of the interrupt descriptor table, which controls where the CPU jumps
when a fault or hardware device interrupt occurs. LIDT loadsthe IDTR (modifies the register) while SIDT
just reads the register so the executing code can examine itsvalue. LIDT is privileged: it can only be
executed at CPL 0. SIDT is not a privileged instruction: it can be executed at CPL 3.

1. [6 points]: A user program in JOS or xv6 could use SIDT to examine the IDTR.Is this a bad
thing? Why or why not?

Answer: It is not bad. The IDTR value is a constant in JOS and xv6, so there’s little to be learned from it.

Suppose you want to make a virtual machine monitor (VMM) for the x86, along the same lines as the Disco
paper. Remember that, for efficiency, Disco directly executes guest operating system instructions when
possible. It executes them with ordinary user privilege, sothat the guest kernel traps to the VMM when the
guest tries to execute privileged MIPS instructions.

2. [6 points]: The x86 will trap to the VMM if the guest kernel tries to use LIDT to load an address
a into the IDTR. Can the VMM just itself execute LIDTa and return to the guest? Why or why not?
You can assume thata is a valid linear address that really does refer to the base ofthe guest kernel’s
desired IDT, and that the IDT entries all refer to valid code locations within the guest kernel.

Answer: No. Hardware interrupts and traps should enter the VMM, not the guest kernel, so that the VMM
can decide whether the guest kernel should see them. Thus theVMM must supply its own IDT.

3. [6 points]: It turns out that SIDT causes problems for an x86 VMM. Explainwhy.

Answer: SIDT lets the guest see the real contents of the IDTR, which point to the VMM’s IDT. The guest
is expecting to see a pointer to the guest’s IDT. The fact thatSIDT does not trap when executed at CPL 3
means the VMM doesn’t get a chance to intervene.

2



II File System Naming

Look at xv6’s namei() in fs.c on sheet 43. The job ofnamei() is to turn a pathname, such as
/usr/rtm/quiz.tex , into a pointer to an in-core i-node. The while() loop processes each element
of the pathname in turn, descending the directory tree.namei() locks each directory while it is looking
at it; for example, it locks the inode of/ while it is searching forusr . It unlocks the directory at end of the
loop. These are not spin locks; instead these locks set the inode’sI BUSYflag, and waiting processes sleep
instead of spinning.

Suppose process P1 has callednamei() for /usr/rtm/quiz.tex and is about to executeip =
next at line 4379 after findingrtm in /usr . Thus the oldip refers to/usr , andnext refers tortm .
/usr/rtm has only one file in it:quiz.tex . A clock interrupt forces a switch to a different process,
which happens to be a root shell that runs

rm /usr/rtm/quiz.tex
rmdir /usr/rtm
mkdir /usr/zzz
echo hello > /usr/zzz/quiz.tex

All of these commands complete successfully; there are no errors. Then P1’snamei() continues.

4. [6 points]: Could the file system allocate/usr/zzz the same disk inode (i.e. same i-number)
that /usr/rtm was using before thermdir ? Why or why not?

Answer: No. namei() still has a pointer to the in-core inode of/usr/rtm , and has not callediput() ,
so theref reference count is non-zero. Thusiput() will not free the inode whenrmdir finishes. Thus
themkdir won’t allocate the same inode.

5. [6 points]: What will P1’s namei() do after it continues? Will it find the original quiz.tex?
Is there a possibility it could instead find the new quiz.tex?Or will something else happen? Explain
why.

Answer: namei() will return 0. It will search the original inode of/usr/rtm and, sincerm deleted
/usr/rtm/quiz.tex , namei() won’t find any file.

3



III File System Atomicity and Recovery

Suppose a program on xv6 creates and writes a file:

fd = open("file", O_CREATE | O_WRONLY);
write(fd, "hello", 5);
close(fd);

The following is an abbreviated list of the disk writes that would result:

write file inode
write directory entry
write block free bitmap
write data block
write file inode

These disk writes are synchronous: xv6 waits for the disk to finish each before it starts the next. xv6 uses
synchronous writes to enforce a particular order, much as described in Section 2.1 of the Soft Updates paper.

You can assume that individual disk writes are atomic with respect to crashes: if there’s a crash or power
failure during a write, the write either completes successfully, or does nothing. You should assume that there
is no file system checker (i.e. there is nothing like UNIX’sfsck ).

The above sequence writes the file inode twice, which sounds inefficient. Suppose xv6 delayed the first file
inode update, and combined it with the second, to save one write:

write directory entry
write block free bitmap
write data block
write file inode

6. [6 points]: Suppose there’s a power failure during the above sequence. What inconsistency
could exist in the on-disk file system after the failure as a result of eliminating the first inode write?
How might that inconsistency eventually cause the file system to return the wrong data for aread() ?

Answer: The directory will contain the i-number of an inode that is marked free (type zero). A future
creation of a different file might use the same inode, causingthe first file to be the same as the second.

4



Suppose xv6 were modified to omit updating the block free bitmap right away, and rather only update the
bitmap every 30 seconds in order to increase efficiency. The write order would then be:

write file inode
write directory entry
write data block
write file inode

7. [6 points]: Suppose there’s a power failure just after the above sequence. What inconsistency
could exist in the on-disk file system after the failure as a result of eliminating the free bitmap write?
How might that inconsistency eventually cause the file system to return the wrong data for aread() ?

Answer: The file will contain a block that is on the free list. A future file write might allocate the same
block and change its content, thus incorrectly modifying the first file.

5



IV XFI Memory Protection

The XFI paper describes a system that ensures that a module can only read, write, and execute inside its own
memory. XFI would be useful for Linux loadable kernel modules, which the kernel loads from a file into
kernel memory and executes with full privilege (CPL 0). Without something like XFI, a buggy or malicious
loadable kernel module could wreck the kernel by writing into its memory. XFI could be used to make sure
that a loadable kernel module only used its own memory, and did not read or write any of the kernel’s data
structures.

Below is a copy of Figure 2 of the XFI paper. XFI has inserted code that checks that the target of thecall
really is the start of a function inside the module.

EAX := 0x12345677
EAX := EAX + 1
if Mem[EBX - 4] != EAX, goto CFIERR
call EBX
...
0x12345678

L: push EBP

8. [6 points]: Why is it absolutely necessary for XFI to check that the module is jumping to the
start of a function? Why can’t XFI just enforce that the module is jumping somewhere inside its own
memory – i.e. just prevent the module from jumping into the kernel?

Answer: When XFI checks that the module’s code doesn’t contain instructions that write outside the mod-
ule’s memory, it only looks at instructions that could be reached from the beginnings of functions. If the
module could jump anywhere in its memory, it could jump into the middle of a legitimate instruction, thus
executing an instruction that XFI did not check. The module could also jump directly to a load or store
instruction, bypassing XFI’s checks.

You could view XFI as providing a software version of the memory protection provided by the x86’s pageta-
bles. You could even imagine using XFI instead of the x86’s pagetables in order to protect the kernel against
user processes. That is, you might be able to re-design JOS torun user environments with CPL zero (full
privilege), but use XFI to make sure environments only read and wrote their own memory. Environments
would use function calls into the kernel instead of INT system calls; XFI is powerful enough to check that
environments only call approved system call functions in the kernel.

9. [6 points]: Explain two different ways that JOS uses x86 pagetables to dothings that XFI (as
described in the paper) does not support.

Answer: Copy on write fork and direct transfer of file pages from the file server. XFI doesn’t provide the
level of indirection in addressing that pagetables provide.

6



V L3, Microkernels, and fast IPC

The L3 paper (Improving IPC by Kernel Design) describes a number of techniques to achieve fast inter-
process communication in a micro-kernel on an x86.

10. [6 points]: Explain why the L3 paper worries much more about avoiding TLBmisses than
about avoiding data cache misses.

Answer: For both the TLB and the CPU data cache, you will get expensivemisses if you touch too many
different areas in memory. Thus much of what the paper is doing is reducing the number of distinct areas
of memory that the IPC code uses. The paper concentrates on the TLB because it has fewer entries than the
data cache (32 vs 512 on the Intel i486).

An IPC sending process in L3 waits until the receiving process is ready to receive (i.e. in the receive system
call) before sending the message (see the start of Section 5.1).

11. [6 points]: Explain why L3’s high performance depends on the receiver being ready.

Answer: If the receiver is ready, the sending process can directly enter the receiver’s user space, carrying
along the IPC message in the registers. This direct entry also eliminates the expense of scheduling (putting
the sender to sleep and calling the scheduler).

7



VI Bugs as Deviant Behavior

Recall Section 3.1 of the Bugs as Deviant Behavior paper, which aims to detect possible dereferences of
null pointers by looking for inconsistencies between the programmer’s pointer checks and dereferences.
The paper’s checker flags both the examples in 3.1 as bugs.

Assume there is no inter-procedural information – the checker only looks at the current function.

Consider the following code:

fn1(int x, int * p){
if(x){

printf("p -> %d\n", * p);
}
if(p == 0)

panic("p is null");
}

12. [6 points]: Will a checker like the one in 3.1 flag the above code as having inconsistent use of
pointers? Why or why not?

Answer: Yes. There is a path throughfn1() that dereferencesp and then checks ifp is null. p’s belief set
will be “not null” after the dereference, which contradictsthe “null” and “not null” implied by the check.

8



Now consider this code:

fn2(int x, int * p){
if(x){

printf("p -> %d\n", * p);
} else {

if(p == 0)
panic("p is null");

}
}

13. [6 points]: Will a checker like the one in 3.1 flag the above code as having inconsistent use of
pointers? Why or why not?

Answer: No. There is no path through the code that has both a derefenceand a check.

9



VII OKWS

14. [6 points]: Section 6.1 (4) of the OKWS paper mentions that okld does no message parsing.
Why is that important to the security of the system?

Answer: Since attackers cannot arrange to send data to okld (even indirectly), they won’t have the oppor-
tunity to exploit bugs that might exist in okld’s message handling code. okld runs as root (unlike the rest of
OKWS), so it’s particularly important that it not be exposedto attacks.

VIII Scalable Synchronization

Suppose you are running xv6 on a machine with 10 CPUs and shared memory. After reading the Scalable
Synchronization paper you’re worried that xv6 might have bad spin-lock performance, and you wonder if it
might benefit from the techniques in the paper.

15. [6 points]: Would a more scalable spin-lock be likely to improve the performance of
pipewrite() on sheet 52? Why or why not?

Answer: Probably not. In most cases pipes have just a single reader and a single writer, so even with many
CPUs there is not likely to be much contention for any given pipe’s lock.

10



Here’s a copy of the paper’s Algorithm 5, the MCS list-based queuing lock:

procedure acquire_lock(L : ˆlock, I : ˆqnode)
I->next := nil
predecessor : ˆqnode := fetch_and_store(L, I)
if predecessor != nil

I->locked := true
predecessor->next := I
repeat while I->locked // <-- XXX

procedure release_lock(L : ˆlock, I : ˆqnode)
if I->next = nil

if compare_and_swap(L, I, nil)
return

repeat while I->next = nil
I->next->locked := false

Suppose 10 CPUs try to acquire the same MCS lock at the same time. Each releases the lock immediately
after it successfully acquires it. The amount of time it takes all 10 CPUs to finish acquiring and releasing
the lock is mostly determined by the number of cache misses. ACPU will incur a cache miss if it reads a
location that was last written on a different CPU, or if it writes a location that is currently in the cache of a
different CPU.

You can assume that each CPU’sqnode structure starts out locally cached on just that CPU. You can
assume that variables and data that are only used by one CPU incur no cache misses. You can assume that
predecessor is non-nil for 9 of the 10 calls toacquire lock() .

16. [6 points]: How many cache misses will be incurred by the line markedXXX, summed over all
the CPUs, in the process of all 10 CPUs each acquiring and releasing the lock? Explain your answer.

Answer: Nine. Each waiting CPU will see one cache miss on itsI->locked , when its predecessor sets
locked to false at the end ofrelease() .

End of Quiz

11


