Certifying a
Crash-safe File System

Nickolai Zeldovich

Collaborators: Tej Chajed, Haogang Chen, Alex Konradi,
Stephanie Wang, Daniel Ziegler, Adam Chlipala, M. Frans Kaashoek

Uty Agih

CSAIL

File systems should not lose data

e People use file systems to
store permanent data

« Computers can crash anytime

e power failures
e hardware failures (unplug USB drive)

e software bugs

e File systems should not lose or
corrupt data in case of crashes

of patches for bugs

File systems are complex and have bugs

e Linux ext4: ~60,000 lines of code

 Some bugs are serious: data loss, security exploits, etc.

Cumulative number of bug patches in Linux file systems [Lu et al., FAST'13]

600
= ext3
450 xfs
— |jfs
reiserfs
300 — ext4
— btrfs
150
/
; /
Dec-03 Apr-04 Dec-04 Jan-06 Feb-07 Apr-08 Jun-09 Aug-10 May-11

Researches in avoiding bugs in file systems

« Most research is on finding bugs
e Crash injection (e.g., EXPLODE [OSDI'06])
e Symbolic execution (e.g., EXE [Oakland’06])

e Design modeling (e.g., in Alloy [ABZ'08])

« Some elimination of bugs by proving:
e FS without directories [Arkoudas et al. 2004]
e BilbyFS [Keller 2014]
e« UBIFS [Ernst et al. 2013]

Researches in avoiding bugs in file systems

« Most research is on finding bugs
» Crash injection (e.g., EXPLODE [OSDI'06]) reduce
e Symbolic execution (e.g., EXE [Oakland’06]) # of bugs
e Design modeling (e.g., in Alloy [ABZ'08])

« Some elimination of bugs by proving:
e FS without directories [Arkoudas et al. 2004]
e BilbyFS [Keller 2014]
e« UBIFS [Ernst et al. 2013]

Researches in avoiding bugs in file systems

« Most research is on finding bugs
» Crash injection (e.g., EXPLODE [OSDI'06]) reduce
e Symbolic execution (e.g., EXE [Oakland’06]) # of bugs
e Design modeling (e.g., in Alloy [ABZ'08])

« Some elimination of bugs by proving:

e FS without directories [Arkoudas et al. 2004] .
incomplete

e« UBIFS [Ernst et al. 2013]

Dealing with crashes is hard

e Crashes expose many partially-updated states

e Reasoning about all failure cases is hard

e Performance optimizations lead to more tricky
partial states

e Disk I/O is expensive

o Buffer updates in memory

Dealing with crashes is hard

A patch for Linux’s write-ahead logging (jbd) in 2012:
“Is it safe to omit a disk write barrier here?”

commit 353b67d8ced4dc53281c88150ad295e24bc4b4c5
Author: Jan Kara <jack@suse.cz>

Date: Sat Nov 26 00:35:39 2011 +9100

Title: jbd: Issue cache flush after checkpointing

4 N

55*{ It's unlikely this will be necessary, ... but we
need this to guarantee correctness.
Fortunately this function doesn't get called all

+
+ t that often.

+

+ \ /out
+ * --- perhaps by log do_checkpoint() --- é\¥ff1ushed out before we

+ * drop the transactions from the journal. It's unlikely this will be
+ * necessary, especially with an appropriately sized journal, but we

+ * need this to guarantee correctness. Fortunately

+ * cleanup_journal_tail() doesn't get called all that often.

+ */

+ if (journal->j_flags & JFS_BARRIER)

+ blkdev_issue_flush(journal->j_fs_dev, GFP_KERNEL, NULL);

spin_lock(&journal->j_state_lock);

if (!tid_gt(first_tid, journal->j_tail_sequence)) {
spin_unlock(&journal->j_state_lock);
/* Someone else cleaned up journal so return 0 */
return 0;

+ + + + + +

Goal: certify a file system under crashes

A complete file system with a machine-checkable
proof that its implementation meets its specification,
both under normal execution and under any sequence
of crashes, including crashes during recovery.

Contributions

e CHL: Crash Hoare Logic

o Specification framework for crash-safety of storage
 Crash condition and recovery semantics

 Automation to reduce proof effort

e FSCQ: the first certified crash-safe file system

e Basic Unix-like file system (no hard-links, no concurrency)
* Precise specification for the core subset of POSIX

e |/O performance on par with Linux ext4

 CPU overhead is high

FSCQ runs standard Unix programs

4 FSCQ (written in Coq) R

Crash Hoare Logic (CHL)
Top-level specification
Internal specifications

Program
Proof

FSCQ runs standard Unix programs

4 FSCQ (written in Coq) R

Crash Hoare Logic (CHL)
Top-level specification
Internal specifications

Program

/ g Proof P

C Coq proof checker)

OK

FSCQ runs standard Unix programs

=

FSCQ (written in Coq)

N

Crash Hoare Logic (CHL)
Top-level specification
Internal specifications

Program
Proof

)

A

C Coq proof checker)

Mechanical
code extraction

}

OK

C FSCQ’s Haskell code)

Haskell compiler

C FSCQ'’s FUSE server)

FSCQ runs standard Unix programs

4 FSCQ (written in Coq) R

Crash Hoare Logic (CHL)
Top-level specification
Internal specifications

Program

Droof Mechanical
_ roo) code extraction
C Coq proof checker) C FSCQ'’s Haskell code)

l Haskell compiler
OK

C FSCQ'’s FUSE server)

Haskell libraries
& FUSE driver

Linux kernel /dev/sda

FSCQ runs standard Unix programs
| FscQuiteninCon) |

Crash Hoare Logic (CHL)
Top-level specification
Internal specifications

Program

Broof Mechanical
/ _ roo) code extraction

C Coq proof checker) C FSCQ'’s Haskell code)

l Haskell compiler
OK

C FSCQ'’s FUSE server)

i m\i/tszclzoggsﬁe o Haskell libraries
$ r%ake S & FUSE driver
~ ¢7 =~ ~ 1
syscalls “~._ FUSE upcalls _.-=" Sl d'.Sk read(),
el emm=T y Wwrite(), sync()

Linux kernel /dev/sda

FSCQ's Trusted Computing Base
| Fcapwritenincod

Crash Hoare Logic (CHL)
Top-level specification
Internal specifications

Program

Droof Mechanical
_ roo) code extraction

C Coq proof checker) C FSCQ'’s Haskell code)

l Haskell compiler
OK

C FSCQ'’s FUSE server)

i m‘i’tSZ‘ioggsﬁe . Haskell libraries
¢ rgnake PO-.. & FUSE driver
~ '7 s S 1
syscalls “~._ FUSE upcalls _ .-~ R disk read(),
TR y Write(), sync()

Linux kernel /dev/sda

Outline

Crash safety

e What is the correct behavior after a crash?

Challenge 1: formalizing crashes
e Crash Hoare Logic (CHL)

Challenge 2: incorporating performance optimizations

e Disk sequences
Building a complete file system

Evaluation

What is crash safety?

 What guarantee should file system provide when it
crashes and reboot?

e Look it up in the POSIX standard?

POSIX is vague about crash behavior

[...] a power failure [...] can cause data to be lost. The data
may be associated with a file that is still open, with one
that has been closed, with a directory, or with any other
internal system data structures associated with
permanent storage. This data can be lost, in whole or part,
so that only careful inspection of file contents could
determine that an update did not occur.

IEEE Std 1003.1, 2013 Edition

e POSIX’s goal was to specify “common-denominator” behavior

e Gives freedom to file systems to implement their own optimizations

What is crash safety?

What guarantee should file system provide when it
crashes and reboot?

Lookitup-inthe POSPX-standard? (Too Vague)

A simple and useful definition is transactional
o Atomicity: every file-system call is all-or-nothing

e Durability: every call persists on disk when it returns

Run every file-system call inside a transaction, using
write-ahead logging.

Write-ahead logging

Disk

Write-ahead logging

= Jlog begin()

Disk 0

Log

Write-ahead logging

1. Append writes to the log

= log write(5, ‘c’)

. 218 |5
Disk Olalb|ec

Log

Write-ahead logging

1. Append writes to the log
2. Set commit record

= log commit()

. 2185
Disk Habc

Write-ahead logging

1. Append writes to the log
2. Set commit record
3. Apply the log to disk locations

= log commit()

. 2185
Disk a c b Ha o | Log
‘. ~

g
- L 4
—_— ‘,' PR d
- - -”
- - -
-
- - -
- - -

-- - -

- -- -

- mmm=="

Seo
-
S~ ~ ~
~~~~~~~~
...........
------.-h-‘----------_.-.. -
-



Write-ahead logging

1. Append writes to the log

2. Set commit record

3. Apply the log to disk locations
= log commit() 4. Truncate the log

Disk 2 C b 0 Log

* Recovery: after crash, replay (apply) any committed transaction in the log
e Atomicity: either all writes appear on disk or none do

* Durability: all changes are persisted on disk when log_commit() returns



Example: transactional crash safety

... after crash ...

def create(dir, name): def log recover():
log begin() if committed:
newfile = allocate_inode() log _apply()
newfile.init() log_truncate()

dir.add(name, newfile)
log commit()

e Q: How to formally define what happens when the computer crashes?

 Q: How to formally specify the behavior of “create” in presence of
crash and recovery?



Approach: Crash Hoare Logic

{pre} code {post}

SPEC  disk_write(a, v)
PRE a— Vo
POST a—vVv



Approach: Crash Hoare Logic

{pre} code {post}
fcrash}

SPEC  disk_write (a, v)
PRE a— Vo

POST a+— v
CRASH a—~vg Va—v

e Crash condition: all intermediate disk states (plus two end-states)

e CHLU's disk model matches what most other file systems assume:

 Writing a single block is an atomic operation, no data corruption



Asynchronous disk |/O




Asynchronous disk |/O

e For performance, hard drive caches
writes in its internal volatile buffer

 Writes do not persist immediately




Asynchronous disk |/O

e For performance, hard drive caches
writes in its internal volatile buffer

 Writes do not persist immediately

 Disk flushes the buffer to media in
background

e Writes might be reordered



Asynchronous disk |/O

e For performance, hard drive caches
writes in its internal volatile buffer

 Writes do not persist immediately

 Disk flushes the buffer to media in
background

e Writes might be reordered

e Use write barrier (disk_sync) to force
flushing the buffer

 Make data persistent & enforce ordering: log
contents are persistent before commit record

e Disk syncs are expensive!



Formalizing asynchronous disk |/O

e Challenge: when crashes, the disk might lose some of
the recent writes

Q: What are the possible disk states if ar— 0, br— 0

crashing after the 3 writes? disk_write(a, 1)
disk _write(b, 2)
disk write(a, 3)



Formalizing asynchronous disk |/O

e Challenge: when crashes, the disk might lose some of
the recent writes

Q: What are the possible disk states if ar— 0, br— 0

crashing after the 3 writes? disk_write(a, 1)
disk _write(b, 2)

A:6cases;a——0orlor3, b—0o0r2 disk write(a, 3)

 Idea: use value-sets:  a+— (vgp, vs)
e Read returns the latest value: Vo
* Write adds a value to the set: a— <V, {Vo} U VS>
e Sync discards previous values: a— <V0, @>

 Reboot chooses a random value: a4 +— <V/, @>, V' € {Vo} J Vs



CHL asynchronous disk model

SPEC  disk_write(a, v)

PRE disk
POST disk
CRASH disk

e Specifications for disk_write, disk_read, and disk_sync are axioms

 “disk |=...” means the disk address space entails the predicate



Abstraction layers

e Each abstraction layer forms an address space

Physical disk log a — (Vp, VS)




Abstraction layers

e Each abstraction layer forms an address space

Logical disk a—V

Physical disk log a — (Vp, VS)




Abstraction layers

e Each abstraction layer forms an address space

Files

Logical disk

Physical disk

fileo

file1

fileo

filen

inum — file
a— vV

a — (Vp, VS)



Abstraction layers

e Each abstraction layer forms an address space

Directory tree

Files

Logical disk

Physical disk

fileo

file1

fileo

filen

inum — file
a— vV

a — (Vp, VS)



Abstraction layers

e Each abstraction layer forms an address space

 Representation invariants connect logical states between layers

Directory tree ‘

\ dir_rep

Files | fileo | file1 | file: filen inum — file
¢ files_rep

Logical disk a—V
¢ log_rep

Physical disk log a — (Vp, VS)




Example: representation invariant

SPEC log_write (a, v)
PRE

old state F a — v
POST

new state F a— v

e old_state and new_state are “logical disks” exposed by the logging
system



Example: representation invariant

SPEC log_write(a, V)

PRE disk = log rep (ActiveTxn, start_state, old_state)
old_state F a+— vg

POST disk F log rep (ActiveTxn, start_state, new _state)
new_state = a+— v

CRASH disk F log rep (ActiveTxn, start_state, any _state)

* old_state and new_state are “logical disks” exposed by the logging
system

* log_rep connects transaction state to an on-disk representation

o Describes the log’s on-disk layout using many — primitives



Certifying procedures

 bmap: return the block address at a given offset for an inode

a a

def bmap(inode, bnum):
if bnum >= NDIRECT:
indirect = log _read(inode.blocks[NDIRECT])
return indirect[bnum - NDIRECT]
else:
return inode.blocks[bnum]

\_ J




Certifying procedures

 bmap: return the block address at a given offset for an inode

4 B

def bmap(inode, bnum):
if bnum >= NDIRECT:

m indirect = log read(inode.blocks[NDIRECT]) POST

return indirect[bnum - NDIRECT]
else:
return inode.blocks[bnum]

\\\~ CRASH 4///




Certifying procedures

* Follow the control flow graph




Certifying procedures

* Follow the control flow graph

 Need pre/post/crash conditions for each called procedure

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

K CRASH j




Certifying procedures

* Follow the control flow graph
 Need pre/post/crash conditions for each called procedure

e Chain pre- and postconditions, forming proof obligations —

Grocedure bmap() x

return

\_




Certifying procedures

* Follow the control flow graph
 Need pre/post/crash conditions for each called procedure
e Chain pre- and postconditions, forming proof obligations —

e CHL: combines crash conditions, get more proof obligations —>

Grocedure bmap() x

log_read return

return

\_




Proof automation

 CHL follows the CFG, and generates proof obligations

Kprocedure bmap()

x

log_read

return

return




Proof automation

 CHL follows the CFG, and generates proof obligations

e CHL solves trivial obligations automatically (common case)

Grocedure bmap() x

K CRASH j




Proof automation

 CHL follows the CFG, and generates proof obligations

e CHL solves trivial obligations automatically (common case)

e Remaining proof effort: changing representation invariants

e Show that rep invariant holds at entry and exit

Grocedure bmap()

log_read _ inodes_fep

inodes_rep

w
R -
N
N ToE o
Wy T I
oW
id
E
- -
- T
aqry !
~ PP -

return " inodes_rep

K CRASH j




Specifying an entire system call (simplified)

SPEC  create (dnum, fn)
PRE disk = log_rep(NoTxn, start_state)
start_state = dir_rep(tree) A
3 path, tree[path].node = dnum A
fn & tree[path]



Specifying an entire system call (simplified)

SPEC  create (dnum, fn)
PRE disk = log_rep(NoTxn, start_state)

start_state = dir_rep(tree) A
 path, tree[path].node = dnum A

fn & tree[path]
POST disk = log rep(NoTxn, new_state)

new_state | dir_rep(new_tree) A
new_tree = tree.update(path, fn, EmptyFile)



Specifying an entire system call (simplified)

SPEC  create (dnum, fn)
PRE disk = log_rep(NoTxn, start_state)
start_state = dir_rep(tree) A
 path, tree[path].node = dnum A
fn & tree[path]

POST disk = log rep(NoTxn, new_state)
new_state | dir_rep(new_tree) A
new_tree = tree.update(path, fn, EmptyFile)

CRASH disk | log_rep(NoTxn, start_state) V

og_rep(NoTxn, new_state) V
og_rep(ActiveTxn, start_state, any_state) \/
og_rep(CommittingTxn, start_state, new_state)




Specifying an entire system call (simplified)

SPEC  create (dnum, fn)
PRE disk = log_rep(NoTxn, start_state)
start_state = dir_rep(tree) A
 path, tree[path].node = dnum A
fn & tree[path]

POST disk = log rep(NoTxn, new_state)
new_state | dir_rep(new_tree) A

~_hew_tree = tree. updatepathn EmptyFlle)

i’og’repoT'nsttv_stte v

! log_rep(NoTxn, new_state) V

t log_rep(ActiveTxn, start_state, any_state) V |

{ og_rep(CommittingTxn, start_state, new_state) §

would recover either (start_state, new_state)



Specifying an entire system call (simplified)

SPEC create (dnum, fn)
PRE disk = log_rep(NoTxn, start_state)
start_state = dir_rep(tree) A
 path, tree[path].node = dnum A
fn & tree[path]

POST disk = log rep(NoTxn, new_state)
new_state | dir_rep(new_tree) A
new_tree = tree.update(path, fn, EmptyFile)

CRASH disk F would recover either (start_state, new _state)



Specifying log recovery

SPEC log_recover ()

PRE disk = would recover either (last_state, committed_state)
POST disk F log_rep(NoTxn, last_state) Vv

log_rep(NoTxn, committed_state)
CRASH disk F would recover either (last_state, committed_state)

e log_recover() is idempotent:
* Crash condition implies its own precondition

e OK to run log_recover() again after a crash in itself



Recovery execution semantics

Kprocedure bmap() \
El = ¢ =

\_

* Iog_ﬁover *



Recovery execution semantics

Kprocedure bmap() \
El = ¢ =

. p
g N—




Recovery execution semantics

Kprocedure bmap() \
El = ¢ =

\_




Recovery execution semantics

Kl = = POST

Joint execution of two procedures ** log_recover

K bmap X log_recover u

« Whenever bmap (or log_recover) crashes, run log_recover after reboot




End-to-end specification

SPEC create (drum, fn) x log_recover ()
PRE disk = log rep(NoTxn, start_state)
start_state = dir_rep(tree) A
 path, tree[path].node = drum A
fn & tree[path]
POST disk F log_rep(NoTxn, new_state)
new_state | dir_rep(new_tree) A

new_tree = tree.update(path, fn, EmptyFile)
RECOVER disk = log_rep(NoTxn, start_state) Vv

log_rep(NoTxn, new_state)

e create() is atomic, if log_recover() runs after every crash

e POST is stronger than RECOVER



CHL summary

« Key ideas: crash conditions and recovery semantics

« CHL benefit: enables precise failure specifications
e Allows for automatic chaining of pre/post/crash conditions

e Reduces proof burden

e CHL cost: must write crash condition for every
function, loop, etc.

e Crash conditions are often simple (above logging layer)



Outline

v

e Challenge 2: incorporating performance optimizations

e Disk sequences

e Building a complete file system

e Evaluation



FSCQ implements many optimizations

Group commit
e Buffer transactions in memory, and flush them in a single batch

e Relax durability guarantee

Log-bypass writes
* File data writes go to the disk (buffer cache) directly

Log checksums

e Checksum log entries to reduce write barriers

Deferred apply
e Apply the log only when the log is full



Example: group commit

disk R
|

data | log




Example: group commit

1. Each file-system call forms a
transaction, which is buffered in
the transaction cache

transaction
cache

disk R

data




Example: group commit

1. Each file-system call forms a
transaction, which is buffered in

the transaction cache
= prename(‘d/a’, €‘d/b’)

transaction
cache ’ ’

disk R

data




Example: group commit

1. Each file-system call forms a
transaction, which is buffered in

the transaction cache

2. fsync() flushes cached transactions

= fsync(d’)
to the on-disk log in a batch

e Preserve order

transaction
cache

disk ]

data log




Challenge: formalizing group commit

e Many more crash states (e.g., before or after mkdir() )

e On-disk state can be irrelevant to create() itself, but to some
previous operations

SPEC  create (dnum, fn) = mkdir(<d’)
PRE disk = log_rep(NoTxn, start_state) = create(‘d/a’)
start_state = dir_rep(tree) A
- path, tree|path].node = dnum A
fn & tree[path]
POST disk F log_rep(NoTxn, new state)
new_state |- dir_rep(new_tree) A
new_tree = tree.update(path, fn, Empt
CRASH disk = would_recover_either (start_state, new _sta




Specification idea: disk sequences

s A
disko
T disk sequence
disko (txm) «oo | txnn
flushed state in-memory transactions write-ahead log

\ _J




Specification idea: disk sequences

e Each (cached) system call adds a new logical disk to the sequence

disko disk1 (F)—> +++ —(Fr—| diskn latest
T disk sequence

disko (txm) soe

flushed state in-memory transactions write-ahead log
- Y,




Specification idea: disk sequences

e Each (cached) system call adds a new logical disk to the sequence

 Each logical disk has a corresponding tree

NI A

tree_rep tree_rep tree_rep

i l l l :

disko disk1 (F)—> +++ —(Fr—| diskn latest
T disk sequence

disko (txm) soe

flushed state in-memory transactions write-ahead log
- Y,




Specification idea: disk sequences

e Each (cached) system call adds a new logical disk to the sequence
 Each logical disk has a corresponding tree

e Captures the idea that metadata updates must be ordered

NN A

tree_rep tree_rep tree_rep

[ l l l )

disko disk1 (F)—> +++ —(Fr—| diskn latest
T disk sequence

disko (txm) soe

flushed state in-memory transactions write-ahead log
- Y,




New specification with disk sequences

SPEC create (dnum, fn)
PRE disk = log_rep(NoTxn, disk_seq)
disk seq.latest = dir_rep(tree) A
 path, tree|[path].node = dnum A
fn & tree[path]
POST disk F log_rep(NoTxn, disk seq ++ {new state})
new_state | dir_rep(new_tree) A
new_tree = tree.update(path, fn, EmptyFile)
CRASH disk F would_recover_any (disk_seq ++ {new state})

* Disk sequences allow for simple specifications



Specification for fsync on directories

SPEC  fsync(dir_inum)
PRE disk = log_rep(NoTxn, disk_seq)
disk seq.latest = tree_rep(tree) A
IsDir(find_inum(tree, dir_inum))
log_rep(NoTxn, {disk_seq.latest })
would_recover_any(disk_seq)

POST disk
CRASH disk

o After fsync(), there is only one possible on-disk state (the latest one)



Formalization techniques for optimizations

¢3roup commit

* Disk sequences: captures ordered metadata updates

e Log-bypass writes

* Disk relations: enforces safety w.r.t. metadata updates

e Log checksums

e Checksum model: soundly reasons about hash collision



Outline

e Building a complete file system

e Evaluation



FSCQ: building a complete file system

» File system design is close [ FSCQ system calls )
to v6 Unix (+ logging) !

( Directory tree )
v
( Directory )
v v
( Block-level file )
v
( Inode )
' '
( Bitmap allocator )

vy ! v

( Write-ahead log )

v

( Buffer cache )




FSCQ: building a complete file system

» File system design is close [ FSCQ system calls )
to v6 Unix (+ logging) !
( Directory tree )
e Implementation aims to ( Directofy )
reduce proof effort

\ 4

v
C Block-level ﬁli )
C Inodel )
( Bitmap aIIocatc')r )

vy ! v

( Write-ahead log )

v

C Buffer cache )




FSCQ: building a complete file system

e File system design is close
to v6 Unix (+ logging)

e |Implementation aims to
reduce proof effort

 Many precise internal
abstraction layers

e e.g. split File and Inode

)

( FSCQ system calls
( Directory tree )
v

( Directory )

Block-level file

A 4

( Bitmap allocator )

v v l

v

( Write-ahead log

)

v

( Buffer cache )




FSCQ: building a complete file system

e File system design is close C FSCQ system calls )
to v6 Unix (+ logging) g Directorytee )
e Implementation aims to ( Directofy )
reduce proof effort |
« Many precise internal C Block-level file )
abstraction layers :
e e.g., split File and Inode C o )
¢ Reuse proven components
e e.g., general bitmap allocator C v v e el e ) )
v

( Buffer cache )




FSCQ: building a complete file system

» File system designis close FSCQ system calls )
to v6 Unix (+ logging)

Directory tree

e |Implementation aims to ( Directory )
reduce proof effort |
« Many precise internal C Block-level file )
abstraction layers ( ; )
Inode
e e.g. split File and Inode |
Reuse C Bitmap allocator )
. proven components l
v v v
* e.g., general bitmap allocator C Write-ahead log )
 Simpler specifications ( y )
Buffer cache

e e.g.,no hard link = tree spec



Evaluation

 What bugs do FSCQ’s theorems eliminate?
« How much development effort is required for FSCQ?

e How well does FSCQ perform?



Does FSCQ eliminate bugs?

 One data point: once theorems proven, no
implementation bugs in proven code

 Did find some mistakes in spec, as a result of end-to-end checks

o E.g., forgot to specify that extending a file should zero-fill

e Systematic study

e Categorize bugs from Linux kernel’s patch history

 Manually examine if FSCQ can eliminate bugs in each category



FSCQ’s theorems eliminate many bugs

Bug category Prevented?

Mistakes in logging logic v
e.g., combining incompatible optimizations

Misuse of logging API
e.q., releasing indirect block in two transactions

e.q., issuing write barrier in the wrong order

Improper corner-case handling

/
Mistakes in recovery protocol v
. . 4

e.g., running out of blocks during rename



FSCQ’s theorems eliminate many bugs

Bug category Prevented?

Mistakes in logging logic v
e.g., combining incompatible optimizations

Misuse of logging API v
e.q., releasing indirect block in two transactions

Mistakes in recovery protocol v
e.g., issuing write barrier in the wrong order

Improper corner-case handling v
e.g., running out of blocks during rename

Low-level bugs

e.g., double free, integer overflow Some (memory safe)

Returning incorrect error code Some



FSCQ’s theorems eliminate many bugs

Bug category Prevented?

Mistakes in logging logic v
e.g., combining incompatible optimizations

Misuse of logging API v
e.q., releasing indirect block in two transactions

Mistakes in recovery protocol v
e.g., issuing write barrier in the wrong order

Improper corner-case handling v
e.g., running out of blocks during rename

Low-level bugs

e.g., double free, integer overflow Some (memory safe)

Returning incorrect error code Some
Concurrency Not supported

Security Not supported



Development effort

e Total of ~50,000 lines of verified code, specs, and proofs in Coq
« ~3,500 lines of implementation; rest is specs, lemmas, and proofs
e > 50% reusable infrastructure

e Comparison: ext4 has ~60,000 lines of C code (many more features)

 What's the cost of adding new features to FSCQ?

@ CHL infrastructure

@ General data structures
@ Write-ahead log

© Buffer cache

© Inodes and files

O Directories

@ Top-level API




Change effort proportional to scope of change

C FSCQ system calls )

C Directory tree )
v
C Directory )
v v
C Block-level file )
v
C Inode )
' '
C Bitmap allocator )

v ! v

C Write-ahead log )

v

C Buffer cache )




Change effort proportional to scope of change

e Indirect blocks: ¢ e Syitem = )
e« + 1,500 lines in Inode ( Directory tree )

v
( Directory )

v v
( Block-level file )

=9

( Bitmap allocator )

v ! v

( Write-ahead log )

v

( Buffer cache )




Change effort proportional to scope of change

 Indirect blocks: C FSCQ system calls )
e + 1,500 lines in Inode C Directorytee )
« Write-back buffer cache: ( Directofy )
e + 2300 lines beneath log ¥ '
~ 600 lines in rest of FSCQ C Block-level file )
[ Inodel )

A 4

( Bitmap allocator )

v ! v

( Write-ahead log )




Change effort proportional to scope of change

* Indirect blocks: ( FSCQ system calls )
|
e + 1,500 lines in Inode ( Directory tree )
. v
o Write-back buffer cache: ( Directory )
e + 2300 lines beneath log 4 !
~ 600 lines in rest of FSCQ C Block-level file )
e Group commit: C '“°del )
e + 1800 lines in Log ( Bitmap allocator )
~ 100 lines in rest of FSCQ ! | | !
( Write-ahead log )
 Changed lines include |

code, specs and proofs [ Buffer cache )




Performance comparison

e File-system-intensive workload
e LFS “largefile” benchmark

e mailbench, a gmail-like mail server

e Compare with ext4 (hon-certified) in default mode
« Mount option: async,data=ordered

e Use FUSE to forward and serialize requests (disable concurrency)

 Running on an hard disk on a desktop

e Quad-core Intel i7-980X 3.33 GHz / 24 GB / Hitachi HDS721010CLA332
e Linux 3.11 / GHC 8.0.1 / all file systems run on a separate partition



FSCQ Performance

Number of disk 1/Os per operation

largefile mailbench

write sync write sync

1,550 1,290 4298 13.8

Running Time (seconds)

1,554 1,290 40.40 123

largefile mailbench

« FSCQ’s CPU overhead is high
e FSCQ’s I/0 performance is on par with ext4



Future directions

e Extracting to native code
e Reduce both CPU overhead and TCB

e Certifying crash-safe applications

e Use FSCQ’s top-level spec to certify a mail server or a KV store

e Supporting concurrency
e Run FSCQ in a multi-user environment

e Exploit both I/O concurrency and parallelism



Conclusion

e CHL helps specify and prove crash safety
e Crash conditions

 Recovery execution semantics

o FSCQ: first certified crash-safe file system

e Precise specification in presence of crashes
e |/O performance on par with Linux ext4

« Moderate development effort

https:/github.com/mit-pdos/fscq-impl



