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Foreword and acknowledgements

This is a draft text intended for a class on operating systems. It explains the main con-
cepts of operating systems by studying an example kernel, named xv6. xv6 is a re-im-
plementation of Dennis Ritchie’s and Ken Thompson’s Unix Version 6 (v6). xv6 loose-
ly follows the structure and style of v6, but is implemented in ANSI C for an x86-
based multiprocessor.

The text should be read along with the source code for xv6. This approach is inspired
by John Lions’s Commentary on UNIX 6th Edition (Peer to Peer Communications; IS-
BN: 1-57398-013-7; 1st edition (June 14, 2000)). See http://pdos.csail.mit.edu/6.828 for
pointers to on-line resources for v6 and xv6.

We have used this text in 6.828, the operating system class at MIT. We thank the fac-
ulty, TAs, and students of 6.828 who all directly or indirectly contributed to xv6. In
particular, we would like to thank Austin Clements and Nickolai Zeldovich.
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Chapter 0

Operating system interfaces

The job of an operating system is to share a computer among multiple programs
and to provide a more useful set of services than the hardware alone supports. The
operating system manages the low-level hardware, so that, for example, a word proces-
sor need not concern itself with which video card is being used. It also multiplexes
the hardware, allowing many programs to share the computer and run (or appear to
run) at the same time. Finally, operating systems provide controlled ways for pro-
grams to interact, so that they can share data or work together.

An operating system provides services to user programs through some interface.
Designing a good interface turns out to be difficult. On the one hand, we would like
the interface to be simple and narrow because that makes it easier to get the imple-
mentation right. On the other hand, we may be tempted to offer many sophisticated
features to applications. The trick in resolving this tension is to design interfaces that
rely on a few mechanisms that can be combined to provide much generality.

This book uses a single operating system as a concrete example to illustrate oper-
ating system concepts. That operating system, xv6, provides the basic interfaces intro-
duced by Ken Thompson and Dennis Ritchie’s Unix operating system, as well as mim-
icking Unix’s internal design. Unix provides a narrow interface whose mechanisms
combine well, offering a surprising degree of generality. This interface has been so
successful that modern operating systems—BSD, Linux, Mac OS X, Solaris, and even,
to a lesser extent, Microsoft Windows—have Unix-like interfaces. Understanding xv6
is a good start toward understanding any of these systems and many others.

As shown in Figure 0-1, xv6 takes the traditional form of a kernel, a special pro-
gram that provides services to running programs. Each running program, called a
process, has memory containing instructions, data, and a stack. The instructions im-
plement the program’s computation. The data are the variables on which the computa-
tion acts. The stack organizes the program’s procedure calls.

When a process needs to invoke a kernel service, it invokes a procedure call in
the operating system interface. Such procedures are call system calls. The system
call enters the kernel; the kernel performs the service and returns. Thus a process al-
ternates between executing in user space and kernel space.

The kernel uses the CPU’s hardware protection mechanisms to ensure that each
process executing in user space can access only its own memory. The kernel executes
with the hardware privileges required to implement these protections; user programs
execute without those privileges. When a user program invokes a system call, the
hardware raises the privilege level and starts executing a pre-arranged function in the
kernel.

The collection of system calls that a kernel provides is the interface that user pro-
grams see. The xv6 kernel provides a subset of the services and system calls that Unix
kernels traditionally offer. The calls are:

DRAFT as of September 7, 2011 7 http://pdos.csail.mit.edu/6.828/xv6/



Kernel

shell cat
user

space

kernel

space

system

call

Figure 0-1. A kernel with 2 user processes.

System call Description

fork() Create process
exit() Terminate current process
wait() Wait for a child process
kill(pid) Terminate process pid
getpid() Return current process’s id
sleep(n) Sleep for n time units
exec(filename, *argv) Load a file and execute it
sbrk(n) Grow process’s memory by n bytes
open(filename, flags) Open a file; flags indicate read/write
read(fd, buf, n) Read n byes from an open file into buf
write(fd, buf, n) Write n bytes to an open file
close(fd) Release open file fd
dup(fd) Duplicate fd
pipe(p) Create a pipe and return fd’s in p
chdir(dirname) Change the current directory
mkdir(dirname) Create a new directory
mknod(name, major, minor) Create a device file
fstat(fd) Return info about an open file
link(f1, f2) Create another name (f2) for the file f1
unlink(filename) Remove a file

The rest of this chapter outlines xv6’s services—processes, memory, file descrip-
tors, pipes, and file system—and illustrates them with code snippets and discussions of
how the shell uses them. The shell’s use of system calls illustrates how carefully they
have been designed.

The shell is an ordinary program that reads commands from the user and exe-
cutes them, and is the primary user interface to traditional Unix-like systems. The fact
that the shell is a user program, not part of the kernel, illustrates the power of the sys-
tem call interface: there is nothing special about the shell. It also means that the shell
is easy to replace, and modern Unix systems have a variety of shells to choose from,
each with its own syntax and semantics. The xv6 shell is a simple implementation of
the essence of the Unix Bourne shell. Its implementation can be found at line (7650).

Code: Processes and memory

An xv6 process consists of user-space memory (instructions, data, and stack) and
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per-process state private to the kernel. Xv6 provides time-sharing: it transparently
switches the available CPUs among the set of processes waiting to execute. When a
process is not executing, xv6 saves its CPU registers, restoring them when it next runs
the process. Each process can be uniquely identified by a positive integer called its
process identifier, or pid.

A process may create a new process using the fork system call. Fork creates a
new process, called the child process, with exactly the same memory contents as the
calling process, called the parent process. Fork returns in both the parent and the
child. In the parent, fork returns the child’s pid; in the child, it returns zero. For ex-
ample, consider the following program fragment:

int pid;

pid = fork();

if(pid > 0){

printf("parent: child=%d\n", pid);

pid = wait();

printf("child %d is done\n", pid);

} else if(pid == 0){

printf("child: exiting\n");

exit();

} else {

printf("fork error\n");

}

The exit system call causes the calling process to stop executing and to release re-
sources such as memory and open files. The wait system call returns the pid of an
exited child of the current process; if none of the caller’s children has exited, wait
waits for one to do so. In the example, the output lines

parent: child=1234

child: exiting

might come out in either order, depending on whether the parent or child gets to its
printf call first. After those two, the child exits, and then the parent’s wait returns,
causing the parent to print

parent: child 1234 is done

Note that the parent and child were executing with different memory and different
registers: changing a variable in one does not affect the other.

The exec system call replaces the calling process’s memory with a new memory
image loaded from a file stored in the file system. The file must have a particular for-
mat, which specifies which part of the file holds instructions, which part is data, at
which instruction to start, etc.. The format xv6 uses is called the ELF format, which
Chapter 1 discusses in more detail. When exec succeeds, it does not return to the
calling program; instead, the instructions loaded from the file start executing at the en-
try point declared in the ELF header. Exec takes two arguments: the name of the file
containing the executable and an array of string arguments. For example:
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char *argv[3];

argv[0] = "echo";

argv[1] = "hello";

argv[2] = 0;

exec("/bin/echo", argv);

printf("exec error\n");

This fragment replaces the calling program with an instance of the program
/bin/echo running with the argument list echo hello. Most programs ignore the first
argument, which is conventionally the name of the program.

The xv6 shell uses the above calls to run programs on behalf of users. The main
structure of the shell is simple; see main on line (7801). The main loop reads the input
on the command line using getcmd. Then it calls fork, which creates another running
shell program. The parent shell calls wait, while the child process runs the command.
For example, if the user had typed ‘‘echo hello’’ at the prompt, runcmd would have
been called with ‘‘echo hello’’ as the argument. runcmd (7706) runs the actual com-
mand. For ‘‘echo hello’’, it would call exec on line (7726). If exec succeeds then the
child will execute instructions from echo instead of runcmd. At some point echo will
call exit, which will cause the parent to return from wait in main (7801). You might
wonder why fork and exec are not combined in a single call; we will see later that
separate calls for creating a process and loading a program is a clever design.

Xv6 allocates most user-space memory implicitly: fork allocates the memory re-
quired for the child’s copy of the parent’s memory, and exec allocates enough memory
to hold the executable file. A process that needs more memory at run-time (perhaps
for malloc) can call sbrk(n) to grow its data memory by n bytes; sbrk returns the
location of the new memory.

Xv6 does not provide a notion of users or of protecting one user from another; in
Unix terms, all xv6 processes run as root.

Code: File descriptors

A file descriptor is a small integer representing a kernel-managed object that
a process may read from or write to. A process may obtain a file descriptor by open-
ing a file, directory, or device, or by creating a pipe, or by duplicating an existing de-
scriptor. Internally, the xv6 kernel uses the file descriptor as an index into a per-pro-
cess table, so that every process has a private space of file descriptors starting at zero.
By convention, a process reads from file descriptor 0 (standard input), writes output to
file descriptor 1 (standard output), and writes error messages to file descriptor 2 (stan-
dard error). As we will see, the shell exploits the convention to implement I/O redi-
rection and pipelines. The shell ensures that it always has three file descriptors open
(7807), which are by default file descriptors for the console.

The read and write system calls read bytes from and write bytes to open files
named by file descriptors. The call read(fd, buf, n) reads at most n bytes from the
file descriptor fd, copies them into buf, and returns the number of bytes read. Every
file descriptor has an offset associated with it. Read reads data from the current file
offset and then advances that offset by the number of bytes read: a subsequent read
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will return the bytes following the ones returned by the first read. When there are no
more bytes to read, read returns zero to signal the end of the file.

The call write(fd, buf, n) writes n bytes from buf to the file descriptor fd and
returns the number of bytes written. Fewer than n bytes are written only when an er-
ror occurs. Like read, write writes data at the current file offset and then advances
that offset by the number of bytes written: each write picks up where the previous
one left off.

The following program fragment (which forms the essence of cat) copies data
from its standard input to its standard output. If an error occurs, it writes a message
to the standard error.

char buf[512];

int n;

for(;;){

n = read(0, buf, sizeof buf);

if(n == 0)

break;

if(n < 0){

fprintf(2, "read error\n");

exit();

}

if(write(1, buf, n) != n){

fprintf(2, "write error\n");

exit();

}

}

The important thing to note in the code fragment is that cat doesn’t know whether it
is reading from a file, console, or a pipe. Similarly cat doesn’t know whether it is
printing to a console, a file, or whatever. The use of file descriptors and the conven-
tion that file descriptor 0 is input and file descriptor 1 is output allows a simple imple-
mentation of cat.

The close system call releases a file descriptor, making it free for reuse by a fu-
ture open, pipe, or dup system call (see below). A newly allocated file descriptor is al-
ways the lowest-numbered unused descriptor of the current process.

File descriptors and fork interact to make I/O redirection easy to implement.
Fork copies then parent’s file descriptor table along with its memory, so that the child
starts with exactly the same open files as the parent. The system call exec replaces the
calling process’s memory but preserves its file table. This behavior allows the shell to
implement I/O redirection by forking, reopening chosen file descriptors, and then exec-
ing the new program. Here is a simplified version of the code a shell runs for the
command cat <input.txt:

char *argv[2];

argv[0] = "cat";

argv[1] = 0;

if(fork() == 0) {

close(0);

open("input.txt", O_RDONLY);
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exec("cat", argv);

}

After the child closes file descriptor 0, open is guaranteed to use that file descriptor for
the newly opened input.txt: 0 will be the smallest available file descriptor. Cat then
executes with file descriptor 0 (standard input) referring to input.txt.

The code for I/O redirection in the xv6 shell works exactly in this way (7730). Re-
call that at this point in the code the shell has already forked the child shell and that
runcmd will call exec to load the new program. Now it should be clear why it is a
good idea that fork and exec are separate calls. This separation allows the shell to fix
up the child process before the child runs the intended program.

Although fork copies the file descriptor table, each underlying file offset is shared
between parent and child. Consider this example:

if(fork() == 0) {

write(1, "hello ", 6);

exit();

} else {

wait();

write(1, "world\n", 6);

}

At the end of this fragment, the file attached to file descriptor 1 will contain the data
hello world. The write in the parent (which, thanks to wait, runs only after the
child is done) picks up where the child’s write left off. This behavior helps produce
useful results from sequences of shell commands, like (echo hello; echo world)

>output.txt.
The dup system call duplicates an existing file descriptor, returning a new one that

refers to the same underlying I/O object. Both file descriptors share an offset, just as
the file descriptors duplicated by fork do. This is another way to write hello world

into a file:

fd = dup(1);

write(1, "hello ", 6);

write(fd, "world\n", 6);

Two file descriptors share an offset if they were derived from the same original
file descriptor by a sequence of fork and dup calls. Otherwise file descriptors do not
share offsets, even if they resulted from open calls for the same file. Dup allows shells
to implement commands like this: ls existing-file non-existing-file > tmp1

2>&1. The 2>&1 tells the shell to give the command a file descriptor 2 that is a dupli-
cate of descriptor 1. Both the name of the existing file and the error message for the
non-existing file will show up in the file tmp1. The xv6 shell doesn’t support I/O redi-
rection for the error file descriptor, but now you can implement it.

File descriptors are a powerful abstraction, because they hide the details of what
they are connected to: a process writing to file descriptor 1 may be writing to a file, to
a device like the console, or to a pipe.

Code: Pipes
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A pipe is a small kernel buffer exposed to processes as a pair of file descriptors,
one for reading and one for writing. Writing data to one end of the pipe makes that
data available for reading from the other end of the pipe. Pipes provide a way for
processes to communicate.

The following example code runs the program wc with standard input connected
to the read end of a pipe.

int p[2];

char *argv[2];

argv[0] = "wc";

argv[1] = 0;

pipe(p);

if(fork() == 0) {

close(0);

dup(p[0]);

close(p[0]);

close(p[1]);

exec("/bin/wc", argv);

} else {

write(p[1], "hello world\n", 12);

close(p[0]);

close(p[1]);

}

The program calls pipe, which creates a new pipe and records the read and write file
descriptors in the array p. After fork, both parent and child have file descriptors refer-
ring to the pipe. The child dups the read end onto file descriptor 0, closes the file de-
scriptors in p, and execs wc. When wc reads from its standard input, it reads from the
pipe. The parent writes to the write end of the pipe and then closes both of its file
descriptors.

If no data is available, a read on a pipe waits for either data to be written or all
file descriptors referring to the write end to be closed; in the latter case, read will re-
turn 0, just as if the end of a data file had been reached. The fact that read blocks
until it is impossible for new data to arrive is one reason that it’s important for the
child to close the write end of the pipe before executing wc above: if one of wc’s file
descriptors referred to the write end of the pipe, wc would never see end-of-file.

The xv6 shell implements pipes in a manner similar to the above code (7750). The
child process creates a pipe to connect the left end of the pipe with the right end of
the pipe. Then it calls runcmd for the left part of the pipe and runcmd for the right
end of the pipe, and waits for the left and the right end to finish, by calling wait

twice. The right end of the pipe may be a command that itself includes a pipe (e.g., a
| b | c), which itself forks two new child processes (one for b and one for c). Thus,
the shell may create a tree of processes. The leaves of this tree are commands and the
interior nodes are processes that wait until the left and right children complete. In
principle, you could have the interior nodes run the left end of a pipe, but doing so
correctly will complicate the implementation.

Pipes may seem no more powerful than temporary files: the pipeline
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echo hello world | wc

could also be implemented without pipes as

echo hello world >/tmp/xyz; wc </tmp/xyz

There are at least three key differences between pipes and temporary files. First, pipes
automatically clean themselves up; with the file redirection, a shell would have to be
careful to remove /tmp/xyz when done. Second, pipes can pass arbitrarily long
streams of data, while file redirection requires enough free space on disk to store all
the data. Third, pipes allow for synchronization: two processes can use a pair of pipes
to send messages back and forth to each other, with each read blocking its calling pro-
cess until the other process has sent data with write.

Code: File system

Xv6 provides data files, which are uninterpreted byte arrays, and directories, which
contain named references to other data files and directories. Xv6 implements directo-
ries as a special kind of file. The directories are arranged into a tree, starting at a spe-
cial directory called the root. A path like /a/b/c refers to the file or directory named
c inside the directory named b inside the directory named a in the root directory /.
Paths that don’t begin with / are evaluated relative to the calling process’s current

directory, which can be changed with the chdir system call. Both these code frag-
ments open the same file:

chdir("/a");

chdir("b");

open("c", O_RDONLY);

open("/a/b/c", O_RDONLY);

The first changes the process’s current directory to /a/b; the second neither refers to
nor modifies the process’s current directory.

There are multiple system calls to create a new file or directory: mkdir creates a
new directory, open with the O_CREATE flag creates a new data file, and mknod creates
a new device file. This example illustrates all three:

mkdir("/dir");

fd = open("/dir/file", O_CREATE|O_WRONLY);

close(fd);

mknod("/console", 1, 1);

Mknod creates a file in the file system, but the file has no contents. Instead, the file’s
metadata marks it as a device file and records the major and minor device numbers
(the two arguments to mknod), which uniquely identify a kernel device. When a pro-
cess later opens the file, the kernel diverts read and write system calls to the kernel
device implementation instead of passing them to the file system.

fstat retrieves information about the object a file descriptor refers to. It fills in a
struct stat, defined in stat.h as:
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#define T_DIR 1 // Directory

#define T_FILE 2 // File

#define T_DEV 3 // Special device

struct stat {

short type; // Type of file

int dev; // Device number

uint ino; // Inode number on device

short nlink; // Number of links to file

uint size; // Size of file in bytes

};

A file’s name is distinct from the file itself; the same underlying file, called an in-

ode, can have multiple names, called links. The link system call creates another file
system name referring to the same inode as an existing file. This fragment creates a
new file named both a and b.

open("a", O_CREATE|O_WRONLY);

link("a", "b");

Reading from or writing to a is the same as reading from or writing to b. Each inode
is identified by a unique inode number. After the code sequence above, it is possible to
determine that a and b refer to the same underlying contents by inspecting the result
of fstat: both will return the same inode number (ino), and the nlink count will be
set to 2.

The unlink system call removes a name from the file system. The file’s inode
and the disk space holding its content are only freed when the file’s link count is zero
and no file descriptors refer to it. Thus adding

unlink("a");

to the last code sequence leaves the inode and file content accessible as b. Further-
more,

fd = open("/tmp/xyz", O_CREATE|O_RDWR);

unlink("/tmp/xyz");

is an idiomatic way to create a temporary inode that will be cleaned up when the pro-
cess closes fd or exits.

Xv6 commands for file system operations are implemented as user-level programs
such as mkdir, ln, rm, etc. This design allows anyone to extend the shell with new user
commands. In hind-sight this plan seems obvious, but other systems designed at the
time of Unix often built such commands into the shell (and built the shell into the
kernel).

One exception is cd, which built into the shell (7816). The reason is that cd must
change the current working directory of the shell itself. If cd were run as a regular
command, then the shell would fork a child process, the child process would run cd,
change the child’s working directory, and then return to the parent. The parent’s (i.e.,
the shell’s) working directory would not change.

Real world
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Unix’s combination of the ‘‘standard’’ file descriptors, pipes, and convenient shell
syntax for operations on them was a major advance in writing general-purpose
reusable programs. The idea sparked a whole culture of ‘‘software tools’’ that was re-
sponsible for much of Unix’s power and popularity, and the shell was the first so-called
‘‘scripting language.’’ The Unix system call interface persists today in systems like BSD,
Linux, and Mac OS X.

Modern kernels provide many more system calls, and many more kinds of kernel
services, than xv6. For the most part, modern Unix-derived operating systems have
not followed the early Unix model of exposing devices as special files, like the console

device file discussed above. The authors of Unix went on to build Plan 9, which ap-
plied the ‘‘resources are files’’ concept to modern facilities, representing networks,
graphics, and other resources as files or file trees.

The file system as an interface has been a very powerful idea, most recently ap-
plied to network resources in the form of the World Wide Web. Even so, there are
other models for operating system interfaces. Multics, a predecessor of Unix, blurred
the distinction between data in memory and data on disk, producing a very different
flavor of interface. The complexity of the Multics design had a direct influence on the
designers of Unix, who tried to build something simpler.

This book examines how xv6 implements its Unix-like interface, but the ideas and
concepts apply to more than just Unix. Any operating system must multiplex process-
es onto the underlying hardware, isolate processes from each other, and provide mech-
anisms for controlled inter-process communication. After studying xv6, you should be
able to look at other, more complex operating systems and see the concepts underlying
xv6 in those systems as well.
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Chapter 1

The first process

This chapter explains what happens when xv6 first starts running, through the
creation of the first process. One of the most interesting aspects of this is how the ker-
nel manages memory for itself and for processes.

One purpose of processes is to isolate different programs that share the same
computer, so that one buggy program cannot break others. A process provides a pro-
gram with what appears to be a private memory system, or address space, which other
processes cannot read or write. This chapter examines how xv6 configures the proces-
sor’s paging hardware to provide processes with private address spaces, how it allocates
memory to hold process code and data, and how it creates new processes.

Paging hardware

Xv6 runs on Intel 80386 or later (‘‘x86’’) processors on a PC platform, and much
of its low-level functionality (for example, its virtual memory implementation) is x86-
specific. This book assumes the reader has done a bit of machine-level programming
on some architecture, and will introduce x86-specific ideas as they come up. Appendix
A briefly outlines the PC platform.

The x86 paging hardware uses a page table to translate (or ‘‘map’’) a virtual ad-

dress (the address that an x86 instruction manipulates) to a physical address (an
address that the processor chip sends to main memory).

An x86 page table is logically an array of 2^20 (1,048,576) page table entries

(PTEs). Each PTE contains a 20-bit physical page number (PPN) and some flags. The
paging hardware translates a virtual address by using its top 20 bits to index into the
page table to find a PTE, and replacing those bits with the PPN in the PTE. The pag-
ing hardware copies the low 12 bits unchanged from the virtual to the translated phys-
ical address. Thus a page table gives the operating system control over virtual-to-phys-
ical address translations at the granularity of aligned chunks of 4096 (2^12) bytes.
Such a chunk is called a page.

As shown in Figure 1-1, the actual translation happens in two steps. A page table
is stored in physical memory as a two-level tree. The root of the tree is a 4096-byte
page directory that contains 1024 PTE-like references to page table pages. Each
page table page is an array of 1024 32-bit PTEs. The paging hardware uses the top 10
bits of a virtual address to select a page directory entry. If the page directory entry is
present, the paging hardware uses the next 10 bits of the virtual address to select a
PTE from the page table page that the page directory entry refers to. If either the
page directory entry or the PTE is not present, the paging hardware raises a fault.
This two-level structure allows a page table to omit entire page table pages in the com-
mon case in which large ranges of virtual addresses have no mappings.
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Figure 1-1. Page tables on x86.

Each PTE contains flag bits that tell the paging hardware how the associated vir-
tual address is allowed to be used. PTE_P indicates whether the PTE is present: if it is
not set, a reference to the page causes a fault (i.e. is not allowed). PTE_W controls
whether instructions are allowed to issue writes to the page; if not set, only reads and
instruction fetches are allowed. PTE_U controls whether user programs are allowed to
use the page; if clear, only the kernel is allowed to use the page. Figure 1-1 shows how
it all works.

A few notes about terms. Physical memory refers to storage cells in DRAM. A
byte of physical memory has an address, called a physical address. A program uses
virtual addresses, which the paging hardware translate to physical addresses, and then
send to the DRAM hardware to read or write storage. At this level of discussion there
is no such thing as virtual memory, only virtual addresses.

Address space overview

Xv6 uses the paging hardware to give each process its own view of memory,
called an address space. Xv6 maintains a separate page table for each process that
defines that process’s address space. An address space includes the process’s user mem-

ory starting at virtual address zero. Instructions usually come first, followed by global
variables and a ‘‘heap’’ area (for malloc) that the process can expand as needed.

Each process’s address space maps the kernel’s instructions and data as well as the
user program’s memory. When a process invokes a system call, the system call exe-
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cutes in the kernel mappings of the process’s address space. This arrangement exists
so that the kernel’s system call code can directly refer to user memory. In order to
leave room for user memory to grow, xv6’s address spaces map the kernel at high ad-
dresses, starting at 0x80100000.

Code: entry page table

When a PC powers on, it initializes itself and then loads a boot loader from disk
into memory and executes it. Appendix B explains the details. Xv6’s boot loader loads
the xv6 kernel from disk and executes it starting at entry (1040). The x86 paging hard-
ware is not enabled when the kernel starts; virtual addresses map directly to physical
addresses.

The boot loader loads the xv6 kernel into memory at physical address 0x100000.
The reason it doesn’t load the kernel at 0x80100000, where the kernel expects to find
its instructions and data, is that there may not be any physical memory at such a high
address on a small machine. The reason it places the kernel at 0x100000 rather than
0x0 is because the address range 0xa0000:0x100000 contains older I/O devices. To
allow the rest of the kernel to run, entry sets up a page table that maps virtual ad-
dresses starting at 0x80000000 (called KERNBASE (0207)) to physical address starting at
0x0.

The entry page table is defined in main.c (1317). The array initialization sets two
of the 1024 PTEs, at indices zero and 960 (KERNBASE>>PDXSHIFT), leaving the other
PTEs zero. It causes both of these PTEs to use a superpage, which maps 4 megabytes
of virtual address space. Entry 0 maps virtual addresses 0:0x400000 to physical ad-
dresses 0:0x400000. This mapping is required as long as entry is executing at low
addresses, but will eventually be removed. The pages are mapped as present PTE_P

(present), PTE_W (writeable), and PTE_PS (super page). The flags and all other page
hardware related structures are defined in mmu.h (0200).

Entry 960 maps virtual addresses KERNBASE:KERNBASE+0x400000 to physical ad-
dresses 0:0x400000. This entry will be used by the kernel after entry has finished; it
maps the high virtual addresses at which the kernel expects to find its instructions and
data to the low physical addresses where the boot loader loaded them. This mapping
restricts the kernel instructions and data to 4 Mbytes.

Returning to entry, the kernel first tells the paging hardware to allow super
pages by setting the flag CR_PSE (page size extension) in the control register %cr4.

Next it loads the physical address of entrypgdir into control register %cr3. The pag-
ing hardware must know the physical address of entrypgdir, because it doesn’t know
how to translate virtual addresses yet; it doesn’t have a page table yet. The symbol en-
trypgdir refers to an address in high memory, and the macro V2P_WO (0220) subtracts
KERNBASE in order to find the physical address. To enable the paging hardware, xv6
sets the flag CR0_PG in the control register %cr0. It also sets CR0_WP, which ensures
that the kernel honors write-protect flags in PTEs.

The processor is still executing instructions at low addresses after paging is en-
abled, which works since entrypgdir maps low addresses. If xv6 had omitted entry 0
from entrypgdir, the computer would have crashed when trying to execute the in-
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Figure 1-2. Layout of a virtual address space and the physical address space.

struction after the one that enabled paging.
Now entry needs to transfer to the kernel’s C code, and run it in high memory.

First it must make the stack pointer, %esp, point to a stack so that C code will work
(1054). All symbols have high addresses, including stack, so the stack will still be valid
even when the low mappings are removed. Finally entry jumps to main, which is also
a high address. The indirect jump is needed because the assembler would generate a
PC-relative direct jump, which would execute the low-memory version of main. Main
cannot return, since the there’s no return PC on the stack. Now the kernel is running
in high addresses in the function main (1216).

Address space details

The page table created by entry has enough mappings to allow the kernel’s C
code to start running. However, main immediately changes to a new page table by
calling kvmalloc (1753), because kernel has a more elaborate plan for page tables that
describe process address spaces.

Each process has a separate page table, and xv6 tells the page table hardware to
switch page tables when xv6 switches between processes. As shown in Figure 1-2, a
process’s user memory starts at virtual address zero and can grow up to KERNBASE, al-
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lowing a process to address up to 2 GB of memory. When a process asks xv6 for
more memory, xv6 first finds free physical pages to provide the storage, and then adds
PTEs to the process’s page table that point to the new physical pages. xv6 sets the
PTE_U, PTE_W, and PTE_P flags in these PTEs. Most processes do not use the entire
user address space; xv6 leaves PTE_P clear in unused PTEs. Different processes’ page
tables translate user addresses to different pages of physical memory, so that each pro-
cess has private user memory.

Xv6 includes all mappings needed for the kernel to run in every process’s page ta-
ble; these mappings all appear above KERNBASE. It maps virtual addresses KERN-

BASE:KERNBASE+PHYSTOP to 0:PHYSTOP. One reason for this mapping is so that the
kernel can use its own instructions and data. Another reason is that the kernel some-
times needs to be able to write a given page of physical memory, for example when
creating page table pages; having every physical page appear at a predictable virtual
address makes this convenient. A defect of this arrangement is that xv6 cannot make
use of more than 2 GB of physical memory. Some devices that use memory-mapped
I/O appear at physical addresses starting at 0xFE000000, so xv6 page tables including
a direct mapping for them. Xv6 does not set the PTE_U flag in the PTEs above KERN-

BASE, so only the kernel can use them.
Having every process’s page table contain mappings for both user memory and

the entire kernel is convenient when switching from user code to kernel code during
system calls and interrupts: such switches do not require page table switches. For the
most part the kernel does not have its own page table; it is almost always borrowing
some process’s page table.

To review, xv6 ensures that each process can only use its own memory, and that a
process sees its memory as having contiguous virtual addresses. xv6 implements the
first by setting the PTE_U bit only on PTEs of virtual addresses that refer to the pro-
cess’s own memory. It implements the second using the ability of page tables to trans-
late successive virtual addresses to whatever physical pages happen to be allocated to
the process.

Code: creating an address space

main calls kvmalloc (1753) to create and switch to a page table with the mappings
above KERNBASE required for the kernel to run. Most of the work happens in setup-

kvm (1734). It first allocates a page of memory to hold the page directory. Then it calls
mappages to install the translations that the kernel needs, which are described in the
kmap (1725) array. The translations include the kernel’s instructions and data, physical
memory up to PHYSTOP, and memory ranges which are actually I/O devices. setup-

kvm does not install any mappings for the user memory; this will happen later.
mappages (1679) installs mappings into a page table for a range of virtual addresses

to a corresponding range of physical addresses. It does this separately for each virtual
address in the range, at page intervals. For each virtual address to be mapped, map-
pages calls walkpgdir to find the address of the PTE for that address. It then initial-
izes the PTE to hold the relevant physical page number, the desired permissions (
PTE_W and/or PTE_U), and PTE_P to mark the PTE as valid (1692).
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walkpgdir (1654) mimics the actions of the x86 paging hardware as it looks up
the PTE for a virtual address (see Figure 1-1). walkpgdir uses the upper 10 bits of
the virtual address to find the page directory entry (1659). If the page directory entry
isn’t present, then the required page table page hasn’t yet been allocated; if the alloc

argument is set, walkpgdir allocates it and puts its physical address in the page direc-
tory. Finally it uses the next 10 bits of the virtual address to find the address of the
PTE in the page table page (1672).

Physical memory allocation

The kernel needs to allocate and free physical memory at run-time for page ta-
bles, process user memory, kernel stacks, and pipe buffers.

xv6 uses the physical memory between the end of the kernel and PHYSTOP for
run-time allocation. It allocates and frees whole 4096-byte pages at a time. It keeps
track of which pages are free by threading a linked list through the pages themselves.
Allocation consists of removing a page from the linked list; freeing consists of adding
the freed page to the list.

There is a bootstrap problem: all of physical memory must be mapped in order
for the allocator to initialize the free list, but creating a page table with those mappings
involves allocating page-table pages. xv6 solves this problem by using a separate page
allocator during entry, which allocates memory just after the end of the kernel’s data
segment. This allocator does not support freeing and is limited by the 4 MB mapping
in the entrypgdir, but that is sufficient to allocate the first kernel page table.

Code: Physical memory allocator

The allocator’s data structure is a free list of physical memory pages that are avail-
able for allocation. Each free page’s list element is a struct run (2711). Where does
the allocator get the memory to hold that data structure? It store each free page’s run

structure in the free page itself, since there’s nothing else stored there. The free list is
protected by a spin lock (2711-2713). The list and the lock are wrapped in a struct to
make clear that the lock protects the fields in the struct. For now, ignore the lock and
the calls to acquire and release; Chapter 3 will examine locking in detail.

The function main calls kinit to initialize the allocator (2740). kinit ought to
determine how much physical memory is available, but this turns out to be difficult on
the x86. Instead it assumes that the machine has 240 megabytes (PHYSTOP) of physical
memory, and uses all the memory between the end of the kernel and PHYSTOP as the
initial pool of free memory. kinit calls kfree with the address of each page of mem-
ory between end and PHYSTOP. This causes kfree to add those pages to the allocator’s
free list. The allocator starts with no memory; these calls to kfree give it some to
manage.

The allocator refers to physical pages by their virtual addresses as mapped in high
memory, not by their physical addresses, which is why kinit uses p2v(PHYSTOP) to
translate PHYSTOP (a physical address) to a virtual address. The allocator sometimes
treats addresses as integers in order to perform arithmetic on them (e.g., traversing all
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pages in kinit), and sometimes uses addresses as pointers to read and write memory
(e.g., manipulating the run structure stored in each page); this dual use of addresses is
the main reason that the allocator code is full of C type casts. The other reason is
that freeing and allocation inherently change the type of the memory.

The function kfree (2756) begins by setting every byte in the memory being freed
to the value 1. This will cause code that uses memory after freeing it (uses ‘‘dangling
references’’) to read garbage instead of the old valid contents; hopefully that will cause
such code to break faster. Then kfree casts v to a pointer to struct run, records the
old start of the free list in r->next, and sets the free list equal to r. kalloc removes
and returns the first element in the free list.

When creating the first kernel page table, setupkvm and walkpgdir use en-

ter_alloc (2725) instead of kalloc. This memory allocator moves the end of the ker-
nel by 1 page. enter_alloc uses the symbol end, which the linker causes to have an
address that is just beyond the end of the kernel’s data segment. A PTE can only refer
to a physical address that is aligned on a 4096-byte boundary (is a multiple of 4096),
so enter_alloc uses PGROUNDUP to ensure that it allocates only aligned physical ad-
dresses. Memory allocated with enter_alloc is never freed.

Code: Process creation

This section describes how xv6 creates the first process. The xv6 kernel maintains
many pieces of state for each process, which it gathers into a struct proc (2053). A
process’s most important pieces of kernel state are its page table and the physical
memory it refers to, its kernel stack, and its run state. We’ll use the notation p->xxx

to refer to elements of the proc structure.
You should view the kernel state of a process as a thread of execution (or thread

for short) that executes in the kernel on behalf of a process. A thread executes a com-
putation but can be stopped and then resumed. For example, when a process makes a
system call, the CPU switches from executing the process to executing the process’s
kernel thread. The process’s kernel thread executes the implementation of the system
call (e.g., reads a file), and then returns back to the process. xv6 executes a system call
as a thread so that a system can wait (or ‘‘block’’) in the kernel to wait for I/O, and re-
sume where it left off when the I/O has finished. Much of the state of a kernel thread
(local variables, functional call return addresses) is stored on the kernel thread’s stack,
p->kstack. Each process’s kernel stack is separate from its user stack, since the user
stack may not be valid. So, you can view a process has having two threads of execu-
tion: one user thread and one kernel thread.

p->state indicates whether the process is allocated, ready to run, running, wait-
ing for I/O, or exiting.

p->pgdir holds the process’s page table, an array of PTEs. xv6 causes the paging
hardware to use a process’s p->pgdir when executing that process. A process’s page
table also serves as the record of the addresses of the physical pages allocated to store
the process’s memory.

The story of the creation of the first process starts when main (1237) calls
userinit (2202), whose first action is to call allocproc. The job of allocproc (2155) is
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Figure 1-3. Set up of a new kernel stack.

to allocate a slot (a struct proc) in the process table and to initialize the parts of the
process’s state required for its kernel thread to execute. Allocproc is called for all
new processes, while userinit is called only for the very first process. Allocproc

scans the table for a process with state UNUSED (2161-2163). When it finds an unused
process, allocproc sets the state to EMBRYO to mark it as used and gives the process a
unique pid (2151-2169). Next, it tries to allocate a kernel stack for the process’s kernel
thread. If the memory allocation fails, allocproc changes the state back to UNUSED

and returns zero to signal failure.

Now allocproc must set up the new process’s kernel stack. Ordinarily processes
are created only by fork, so a new process starts life copied from its parent. The re-
sult of fork is a child process that has identical memory contents to its parent. al-

locproc sets up the child to start life running its kernel thread, with a specially pre-
pared kernel stack and set of kernel registers that cause it to ‘‘return’’ to user space at
the same place (the return from the fork system call) as the parent. The layout of the
prepared kernel stack will be as shown in Figure 1-3. allocproc does part of this
work by setting up return program counter values that will cause the new process’s
kernel thread to first execute in forkret and then in trapret (2186-2191). The kernel
thread will start executing with register contents copied from p->context. Thus set-
ting p->context->eip to forkret will cause the kernel thread to execute at the start
of forkret (2483). This function will return to whatever address is at the bottom of
the stack. The context switch code (2658) sets the stack pointer to point just beyond
the end of p->context. allocproc places p->context on the stack, and puts a point-
er to trapret just above it; that is where forkret will return. trapret restores user
registers from values stored at the top of the kernel stack and jumps into the process
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(2927). This setup is the same for ordinary fork and for creating the first process,
though in the latter case the process will start executing at location zero rather than at
a return from fork.

As we will see in Chapter 2, the way that control transfers from user software to
the kernel is via an interrupt mechanism, which is used by system calls, interrupts, and
exceptions. Whenever control transfers into the kernel while a process is running, the
hardware and xv6 trap entry code save user registers on the top of the process’s kernel
stack. userinit writes values at the top of the new stack that look just like those that
would be there if the process had entered the kernel via an interrupt (2214-2220), so that
the ordinary code for returning from the kernel back to the process’s user code will
work. These values are a struct trapframe which stores the user registers. Now the
new process’s kernel stack is completely prepared as shown in Figure 1-3.

The first process is going to execute a small program (initcode.S; (7500)). The
process needs physical memory in which to store this program, the program needs to
be copied to that memory, and the process needs a page table that refers to that mem-
ory.

userinit calls setupkvm (1734) to create a page table for the process with (at first)
mappings only for memory that the kernel uses. This function is the same one that
the kernel used to setup its page table.

The initial contents of the first process’s memory are the compiled form of init-

code.S; as part of the kernel build process, the linker embeds that binary in the kernel
and defines two special symbols _binary_initcode_start and _bina-

ry_initcode_size telling the location and size of the binary. Userinit copies that
binary into the new process’s memory by calling inituvm, which allocates one page of
physical memory, maps virtual address zero to that memory, and copies the binary to
that page (1786).

Then userinit sets up the trap frame with the initial user mode state: the %cs

register contains a segment selector for the SEG_UCODE segment running at privilege
level DPL_USER (i.e., user mode not kernel mode), and similarly %ds, %es, and %ss use
SEG_UDATA with privilege DPL_USER. The %eflags FL_IF is set to allow hardware in-
terrupts; we will reexamine this in Chapter 2.

The stack pointer %esp is the process’s largest valid virtual address, p->sz. The
instruction pointer is the entry point for the initcode, address 0.

The function userinit sets p->name to initcode mainly for debugging. Setting
p->cwd sets the process’s current working directory; we will examine namei in detail in
Chapter 5.

Once the process is initialized, userinit marks it available for scheduling by set-
ting p->state to RUNNABLE.

Code: Running a process

Now that the first process’s state is prepared, it is time to run it. After main calls
userinit, mpmain calls scheduler to start running processes (1267). Scheduler (2408)

looks for a process with p->state set to RUNNABLE, and there’s only one it can find:
initproc. It sets the per-cpu variable proc to the process it found and calls switchu-
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vm to tell the hardware to start using the target process’s page table (1764). Changing
page tables while executing in the kernel works because setupkvm causes all processes’
page tables to have identical mappings for kernel code and data. switchuvm also cre-
ates a new task state segment SEG_TSS that instructs the hardware to handle an inter-
rupt by returning to kernel mode with %ss and %esp set to SEG_KDATA <<3 and
(uint)proc->kstack+KSTACKSIZE, the top of this process’s kernel stack. We will re-
examine the task state segment in Chapter 2.

scheduler now sets p->state to RUNNING and calls swtch (2658) to perform a
context switch to the target process’s kernel thread. swtch saves the current registers
and loads the saved registers of the target kernel thread (proc->context) into the x86
hardware registers, including the stack pointer and instruction pointer. The current
context is not a process but rather a special per-cpu scheduler context, so scheduler

tells swtch to save the current hardware registers in per-cpu storage (cpu->sched-
uler) rather than in any process’s kernel thread context. We’ll examine switch in
more detail in Chapter 4. The final ret instruction (2677) pops a new %eip from the
stack, finishing the context switch. Now the processor is running the kernel thread of
process p.

Allocproc set initproc’s p->context->eip to forkret, so the ret starts exe-
cuting forkret. Forkret releases the ptable.lock (see Chapter 3). On the first in-
vocation (that is this one), forkret (2483) runs initialization functions that cannot be
run from main because they must be run in the context of a regular process with its
own kernel stack. Then, forkret returns. Allocproc arranged that the top word on
the stack after p->context is popped off would be trapret, so now trapret begins
executing, with %esp set to p->tf. Trapret (2927) uses pop instructions to walk up the
trap frame just as swtch did with the kernel context: popal restores the general regis-
ters, then the popl instructions restore %gs, %fs, %es, and %ds. The addl skips over
the two fields trapno and errcode. Finally, the iret instructions pops %cs, %eip, and
%flags off the stack. The contents of the trap frame have been transferred to the
CPU state, so the processor continues at the %eip specified in the trap frame. For
initproc, that means virtual address zero, the first instruction of initcode.S.

At this point, %eip holds zero and %esp holds 4096. These are virtual addresses
in the process’s address space. The processor’s paging hardware translates them into
physical addresses. allocuvm set up the PTE for the page at virtual address zero to
point to the physical memory allocated for this process, and marked that PTE with
PTE_U so that the process can use it. No other PTEs in the process’s page table have
the PTE_U bit set. The fact that userinit (2214) set up the low bits of %cs to run the
process’s user code at CPL=3 means that the user code can only use PTE entries with
PTE_U set, and cannot modify sensitive hardware registers such as %cr3. So the process
is constrained to using only its own memory.

Initcode.S (7508) begins by pushing three values on the stack—$argv, $init,
and $0—and then sets %eax to SYS_exec and executes int T_SYSCALL: it is asking the
kernel to run the exec system call. If all goes well, exec never returns: it starts run-
ning the program named by $init, which is a pointer to the NUL-terminated string
/init (7521-7523). If the exec fails and does return, initcode loops calling the exit sys-
tem call, which definitely should not return (7515-7519).
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Figure 1-4. Memory layout of a user process with its initial stack.

The arguments to the exec system call are $init and $argv. The final zero
makes this hand-written system call look like the ordinary system calls, as we will see
in Chapter 2. As before, this setup avoids special-casing the first process (in this case,
its first system call), and instead reuses code that xv6 must provide for standard opera-
tion.

Exec

As we saw in Chapter 0, exec replaces the memory and registers of the current pro-
cess with a new program, but it leaves the file descriptors, process id, and parent pro-
cess the same.

Figure 1-4 shows the user memory image of an executing process. The heap is
above the stack so that it can expand (with sbrk). The stack is a single page, and is
shown with the initial contents as created by exec. Strings containing the command-
line arguments, as well as an array of pointers to them, are at the very top of the stack.
Just under that are values that allow a program to start at main as if the function call
main(argc, argv) had just started.

Code: exec

When the system call arrives (Chapter 2 will explain how that happens), syscall in-
vokes sys_exec via the syscalls table (3250). Sys_exec (5620) parses the system call
arguments (also explained in Chapter 2), and invokes exec (5642).
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Exec (5710) opens the named binary path using namei (5720), which is explained in
Chapter 5, and then reads the ELF header. Xv6 applications are described in the wide-
ly-used ELF format, defined in elf.h. An ELF binary consists of an ELF header,
struct elfhdr (0955), followed by a sequence of program section headers, struct

proghdr (0974). Each proghdr describes a section of the application that must be load-
ed into memory; xv6 programs have only one program section header, but other sys-
tems might have separate sections for instructions and data.

The first step is a quick check that the file probably contains an ELF binary. An
ELF binary starts with the four-byte ‘‘magic number’’ 0x7F, ’E’, ’L’, ’F’, or
ELF_MAGIC (0952). If the ELF header has the right magic number, exec assumes that
the binary is well-formed.

Then exec allocates a new page table with no user mappings with setupkvm

(5731), allocates memory for each ELF segment with allocuvm (5743), and loads each
segment into memory with loaduvm (5745). The program section header for /init

looks like this:

# objdump -p _init

_init: file format elf32-i386

Program Header:

LOAD off 0x00000054 vaddr 0x00000000 paddr 0x00000000 align 2**2

filesz 0x000008c0 memsz 0x000008cc flags rwx

allocuvm checks that the virtual addresses requested is below KERNBASE. loaduvm
(1803) uses walkpgdir to find the physical address of the allocated memory at which to
write each page of the ELF segment, and readi to read from the file.

The program section header’s filesz may be less than the memsz, indicating that
the gap between them should be filled with zeroes (for C global variables) rather than
read from the file. For /init, filesz is 2240 bytes and memsz is 2252 bytes, and thus
allocuvm allocates enough physical memory to hold 2252 bytes, but reads only 2240
bytes from the file /init.

Now exec allocates and initializes the user stack. It allocates just one stack page.
It also places an inaccessible page just below the stack page, so that programs that try
to use more than one page will fault. This inaccessible page also allows exec to deal
with arguments that are too large; in that situation, the copyout function that exec

uses to copy arguments to the stack will notice that the destination page in not acces-
sible, and will return –1.

Exec copies the argument strings to the top of the stack one at a time, recording
the pointers to them in ustack. It places a null pointer at the end of what will be the
argv list passed to main. The first three entries in ustack are the fake return PC,
argc, and argv pointer.

During the preparation of the new memory image, if exec detects an error like
an invalid program segment, it jumps to the label bad, frees the new image, and re-
turns –1. Exec must wait to free the old image until it is sure that the system call will
succeed: if the old image is gone, the system call cannot return –1 to it. The only er-
ror cases in exec happen during the creation of the image. Once the image is com-
plete, exec can install the new image (5789) and free the old one (5790). Finally, exec
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returns 0. Success!
Now the initcode (7500) is done. Exec has replaced it with the /init binary,

loaded out of the file system. Init (7610) creates a new console device file if needed
and then opens it as file descriptors 0, 1, and 2. Then it loops, starting a console shell,
handles orphaned zombies until the shell exits, and repeats. The system is up.

Although the system is up, we skipped over some important subsystems of xv6.
The next chapter examines how xv6 configures the x86 hardware to handle the system
call interrupt caused by int $T_SYSCALL. The rest of the book explains process man-
agement and the file system.

Real world

Most operating systems have adopted the process concept, and most processes
look similar to xv6’s. A real operating system would find free proc structures with an
explicit free list in constant time instead of the linear-time search in allocproc; xv6
uses the linear scan (the first of many) for simplicity.

Like most operating systems, xv6 uses the paging hardware for memory protec-
tion and mapping. Most operating systems make far more sophisticated use of paging
than xv6; for example, xv6 lacks demand paging from disk, copy-on-write fork, shared
memory, and automatically extending stacks. The x86 also supports address transla-
tion using segmentation (see Appendix B), but xv6 uses them only for the common
trick of implementing per-cpu variables such as proc that are at a fixed address but
have different values on different CPUs (see seginit). Implementations of per-CPU
(or per-thread) storage on non-segment architectures would dedicate a register to
holding a pointer to the per-CPU data area, but the x86 has so few general registers
that the extra effort required to use segmentation is worthwhile.

xv6’s address space layout has the defect that it cannot make use of more than 2
GB of physical RAM. It’s possible to fix this, though the best plan would be to switch
to a machine with 64-bit addresses.

Xv6 should determine the actual RAM configuration, instead of assuming 240
MB. On the x86, there are at least three common algorithms: the first is to probe the
physical address space looking for regions that behave like memory, preserving the val-
ues written to them; the second is to read the number of kilobytes of memory out of a
known 16-bit location in the PC’s non-volatile RAM; and the third is to look in BIOS
memory for a memory layout table left as part of the multiprocessor tables. Reading
the memory layout table is complicated.

Memory allocation was a hot topic a long time ago, the basic problems being effi-
cient use of very limited memory and preparing for unknown future requests. See
Knuth. Today people care more about speed than space-efficiency. In addition, a
more elaborate kernel would likely allocate many different sizes of small blocks, rather
than (as in xv6) just 4096-byte blocks; a real kernel allocator would need to handle
small allocations as well as large ones.

Exec is the most complicated code in xv6. It involves pointer translation (in
sys_exec too), many error cases, and must replace one running process with another.
Real world operationg systems have even more complicated exec implementations.

DRAFT as of September 7, 2011 29 http://pdos.csail.mit.edu/6.828/xv6/



They handle shell scripts (see exercise below), more complicated ELF binaries, and
even multiple binary formats.

Exercises

1. Set a breakpoint at swtch. Single step with gdb’s stepi through the ret to forkret,
then use gdb’s finish to proceed to trapret, then stepi until you get to initcode

at virtual address zero.

2. Look at real operating systems to see how they size memory.

3. If xv6 had not used super pages, what would be the right declaration for en-

trypgdir?

4. Unix implementations of exec traditionally include special handling for shell scripts.
If the file to execute begins with the text #!, then the first line is taken to be a pro-
gram to run to interpret the file. For example, if exec is called to run myprog arg1

and myprog’s first line is #!/interp, then exec runs /interp with command line
/interp myprog arg1. Implement support for this convention in xv6.

5. KERNBASE limits the amount of memory a single process can use, which might be
irritating on a machine with a full 4 GB of RAM. Would raising KERNBASE allow a
process to use more memory?
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Chapter 2

Traps, interrupts, and drivers

When running a process, a CPU executes the normal processor loop: read an in-
struction, advance the program counter, execute the instruction, repeat. But there are
events on which control from a user program must transferred back to the kernel in-
stead of executing the next instruction. These events include a device signaling that it
wants attention, a user program doing something illegal (e.g., references a virtual ad-
dress for which there is no PTE), or a user program asking the kernel for a service
with a system call. There are three main challenges in handling these events: 1) the
kernel must arrange that a processor switches from user mode to kernel mode (and
back); 2) the kernel and devices must coordinate their parallel activities; and 3) the
kernel must understand the interface of the devices well. Addressing these 3 chal-
lenges requires detailed understanding of hardware and careful programming, and can
result in opaque kernel code. This chapter explains how xv6 addresses these three
challenges.

Systems calls, exceptions, and interrupts

With a system call a user program can ask for an operating system service, as we saw
at the end of the last chapter. The term exception refers to an illegal program action
that generates an interrupt. Examples of illegal programs actions include divide by ze-
ro, attempt to access memory for a PTE that is not present, and so on. The term in-

terrupt refers to a signal generated by a hardware device, indicating that it needs at-
tention of the operating system. For example, a clock chip may generate an interrupt
every 100 msec to allow the kernel to implement time sharing. As another example,
when the disk has read a block from disk, it generates an interrupt to alert the operat-
ing system that the block is ready to be retrieved.

The kernel handles all interrupts, rather than processes handling them, because in
most cases only the kernel has the required privilege and state. For example, in order
to time-slice among processes in response the clock interrupts, the kernel must be in-
volved, if only to force uncooperative processes to yield the processor.

In all three cases, the operating system design must arrange for the following to
happen. The system must save the processor’s registers for future transparent resume.
The system must be set up for execution in the kernel. The system must chose a place
for the kernel to start executing. The kernel must be able to retrieve information about
the event, e.g., system call arguments. It must all be done securely; the system must
maintain isolation of user processes and the kernel.

To achieve this goal the operating system must be aware of the details of how the
hardware handles system calls, exceptions, and interrupts. In most processors these
three events are handled by a single hardware mechanism. For example, on the x86, a
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program invokes a system call by generating an interrupt using the int instruction.
Similarly, exceptions generate an interrupt too. Thus, if the operating system has a
plan for interrupt handling, then the operating system can handle system calls and ex-
ceptions too.

The basic plan is as follows. An interrupts stops the normal processor loop and
starts executing a new sequence called an interrupt handler. Before starting the in-
terrupt handler, the processor saves its registers, so that the operating system can re-
store them when it returns from the interrupt. A challenge in the transition to and
from the interrupt handler is that the processor should switch from user mode to ker-
nel mode, and back.

A word on terminology: Although the official x86 term is interrupt, x86 refers to
all of these as traps, largely because it was the term used by the PDP11/40 and there-
fore is the conventional Unix term. This chapter uses the terms trap and interrupt in-
terchangeably, but it is important to remember that traps are caused by the current
process running on a processor (e.g., the process makes a system call and as a result
generates a trap), and interrupts are caused by devices and may not be related to the
currently running process. For example, a disk may generate an interrupt when it is
done retrieving a block for one process, but at the time of the interrupt some other
process may be running. This property of interrupts makes thinking about interrupts
more difficult than thinking about traps, because interrupts happen concurrently with
other activities. Both rely, however, on the same hardware mechanism to transfer con-
trol between user and kernel mode securely, which we will discuss next.

X86 protection

The x86 has 4 protection levels, numbered 0 (most privilege) to 3 (least privilege).
In practice, most operating systems use only 2 levels: 0 and 3, which are then called
kernel mode and user mode, respectively. The current privilege level with which the
x86 executes instructions is stored in %cs register, in the field CPL.

On the x86, interrupt handlers are defined in the interrupt descriptor table (IDT).
The IDT has 256 entries, each giving the %cs and %eip to be used when handling the
corresponding interrupt.

To make a system call on the x86, a program invokes the int n instruction, where
n specifies the index into the IDT. The int instruction performs the following steps:

• Fetch the n’th descriptor from the IDT, where n is the argument of int.

• Check that CPL in %cs is <= DPL, where DPL is the privilege level in the de-
scriptor.

• Save %esp and %ss in a CPU-internal registers, but only if the target segment se-
lector’s PL < CPL.

• Load %ss and %esp from a task segment descriptor.

• Push %ss.
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Figure 2-1. Kernel stack after an int instruction.

• Push %esp.

• Push %eflags.

• Push %cs.

• Push %eip.

• Clear some bits of %eflags.

• Set %cs and %eip to the values in the descriptor.
The int instruction is a complex instruction, and one might wonder whether all

these actions are necessary. The check CPL <= DPL allows the kernel to forbid sys-
tems for some privilege levels. For example, for a user program to execute int in-
struction succesfully, the DPL must be 3. If the user program doesn’t have the appro-
priate privilege, then int instruction will result in int 13, which is a general protec-
tion fault. As another example, the int instruction cannot use the user stack to save
values, because the user might not have set up an appropriate stack so that hardware
uses the stack specified in the task segments, which is setup in kernel mode.

Figure 2-1 shows the stack after an int instruction completes and there was a
privilege-level change (the privilege level in the descriptor is lower than CPL). If the
int instruction didn’t require a privilege-level change, the x86 won’t save %ss and
%esp. After both cases, %eip is pointing to the address specified in the descriptor ta-
ble, and the instruction at that address is the next instruction to be executed and the
first instruction of the handler for int n. It is job of the operating system to imple-
ment these handlers, and below we will see what xv6 does.

An operating system can use the iret instruction to return from an int instruc-
tion. It pops the saved values during the int instruction from the stack, and resumes
execution at the saved %eip.

Code: The first system call

The last chapter ended with initcode.S invoking a system call. Let’s look at that

DRAFT as of September 7, 2011 33 http://pdos.csail.mit.edu/6.828/xv6/



again (7513). The process pushed the arguments for an exec call on the process’s stack,
and put the system call number in %eax. The system call numbers match the entries
in the syscalls array, a table of function pointers (3250). We need to arrange that the
int instruction switches the processor from user mode to kernel mode, that the kernel
invokes the right kernel function (i.e., sys_exec), and that the kernel can retrieve the
arguments for sys_exec. The next few subsections describes how xv6 arranges this for
system calls, and then we will discover that we can reuse the same code for interrupts
and exceptions.

Code: Assembly trap handlers

Xv6 must set up the x86 hardware to do something sensible on encountering an
int instruction, which causes the processor to generate a trap. The x86 allows for 256
different interrupts. Interrupts 0-31 are defined for software exceptions, like divide er-
rors or attempts to access invalid memory addresses. Xv6 maps the 32 hardware inter-
rupts to the range 32-63 and uses interrupt 64 as the system call interrupt.

Tvinit (2967), called from main, sets up the 256 entries in the table idt. Interrupt
i is handled by the code at the address in vectors[i]. Each entry point is different,
because the x86 provides does not provide the trap number to the interrupt handler.
Using 256 different handlers is the only way to distinguish the 256 cases.

Tvinit handles T_SYSCALL, the user system call trap, specially: it specifies that
the gate is of type ‘‘trap’’ by passing a value of 1 as second argument. Trap gates don’t
clear the FL flag, allowing other interrupts during the system call handler.

The kernel also sets the system call gate privilege to DPL_USER, which allows a
user program to generate the trap with an explicit int instruction. xv6 doesn’t allow
processes to raise other interrupts (e.g., device interrupts) with int; if they try, they
will encounter a general protection exception, which goes to vector 13.

When changing protection levels from user to kernel mode, the kernel shouldn’t
use the stack of the user process, because it may not be valid. The user process may
be malicious or contain an error that causes the user %esp to contain an address that
is not part of the process’s user memory. Xv6 programs the x86 hardware to perform
a stack switch on a trap by setting up a task segment descriptor through which the
hardware loads a stack segment selector and a new value for %esp. The function
switchuvm (1769) stores the address of the top of the kernel stack of the user process
into the task segment descriptor.

When a trap occurs, the processor hardware does the following. If the processor
was executing in user mode, it loads %esp and %ss from the task segment descriptor,
pushes the old user %ss and %esp onto the new stack. If the processor was executing
in kernel mode, none of the above happens. The processor then pushes the %eflags,

%cs, and %eip registers. For some traps, the processor also pushes an error word.
The processor then loads %eip and %cs from the relevant IDT entry.

xv6 uses a Perl script (2850) to generate the entry points that the IDT entries point
to. Each entry pushes an error code if the processor didn’t, pushes the interrupt num-
ber, and then jumps to alltraps.

Alltraps (2904) continues to save processor registers: it pushes %ds, %es, %fs,
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Figure 2-2. The trapframe on the kernel stack

%gs, and the general-purpose registers (2905-2910). The result of this effort is that the
kernel stack now contains a struct trapframe (0602) containing the processor regis-
ters at the time of the trap (see Figure 2-2). The processor pushes %ss, %esp,

%eflags, %cs, and %eip. The processor or the trap vector pushes an error number,
and alltraps pushes the rest. The trap frame contains all the information necessary
to restore the user mode processor registers when the kernel returns to the current
process, so that the processor can continue exactly as it was when the trap started.
Recall from Chapter 1, that userinit build a trapframe by hand to achieve this goal
(see Figure 1-3).

In the case of the first system call, the saved %eip is the address of the instruction
right after the int instruction. %cs is the user code segment selector. %eflags is the
content of the eflags register at the point of executing the int instruction. As part of
saving the general-purpose registers, alltraps also saves %eax, which contains the
system call number for the kernel to inspect later.

Now that the user mode processor registers are saved, alltraps can finishing set-
ting up the processor to run kernel C code. The processor set the selectors %cs and
%ss before entering the handler; alltraps sets %ds and %es (2913-2915). It sets %fs and
%gs to point at the SEG_KCPU per-CPU data segment (2916-2918).

Once the segments are set properly, alltraps can call the C trap handler trap. It
pushes %esp, which points at the trap frame it just constructed, onto the stack as an
argument to trap (2921). Then it calls trap (2922). After trap returns, alltraps pops
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the argument off the stack by adding to the stack pointer (2923) and then starts execut-
ing the code at label trapret. We traced through this code in Chapter 1 when the
first user process ran it to exit to user space. The same sequence happens here: pop-
ping through the trap frame restores the user mode registers and then iret jumps
back into user space.

The discussion so far has talked about traps occurring in user mode, but traps
can also happen while the kernel is executing. In that case the hardware does not
switch stacks or save the stack pointer or stack segment selector; otherwise the same
steps occur as in traps from user mode, and the same xv6 trap handling code executes.
When iret later restores a kernel mode %cs, the processor continues executing in
kernel mode.

Code: C trap handler

We saw in the last section that each handler sets up a trap frame and then calls
the C function trap. Trap (3001) looks at the hardware trap number tf->trapno to
decide why it has been called and what needs to be done. If the trap is T_SYSCALL,
trap calls the system call handler syscall. We’ll revisit the two cp->killed checks in
Chapter 4.

After checking for a system call, trap looks for hardware interrupts (which we dis-
cuss below). In addition to the expected hardware devices, a trap can be caused by a
spurious interrupt, an unwanted hardware interrupt.

If the trap is not a system call and not a hardware device looking for attention,
trap assumes it was caused by incorrect behavior (e.g., divide by zero) as part of the
code that was executing before the trap. If the code that caused the trap was a user
program, xv6 prints details and then sets cp->killed to remember to clean up the
user process. We will look at how xv6 does this cleanup in Chapter 4.

If it was the kernel running, there must be a kernel bug: trap prints details
about the surprise and then calls panic.

Code: System calls

For system calls, trap invokes syscall (3275). Syscall loads the system call
number from the trap frame, which contains the saved %eax, and indexes into the
system call tables. For the first system call, %eax contains the value SYS_exec (3107),
and syscall will invoke the SYS_exec’th entry of the system call table, which corre-
sponds to invoking sys_exec.

Syscall records the return value of the system call function in %eax. When the
trap returns to user space, it will load the values from cp->tf into the machine regis-
ters. Thus, when exec returns, it will return the value that the system call handler re-
turned (3281). System calls conventionally return negative numbers to indicate errors,
positive numbers for success. If the system call number is invalid, syscall prints an
error and returns –1.

Later chapters will examine the implementation of particular system calls. This
chapter is concerned with the mechanisms for system calls. There is one bit of mecha-
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nism left: finding the system call arguments. The helper functions argint and argptr,
argstr retrieve the n’th system call argument, as either an integer, pointer, or a string.
argint uses the user-space %esp register to locate the n’th argument: %esp points at
the return address for the system call stub. The arguments are right above it, at
%esp+4. Then the nth argument is at %esp+4+4*n.

argint calls fetchint to read the value at that address from user memory and
write it to *ip. fetchint can simply cast the address to a pointer, because the user
and the kernel share the same page table, but the kernel must verify that the pointer
by the user is indeed a pointer in the user part of the address space. The kernel has
set up the page-table hardware to make sure that the process cannot access memory
outside its local private memory: if a user program tries to read or write memory at
an address of p->sz or above, the processor will cause a segmentation trap, and trap
will kill the process, as we saw above. Now though, the kernel is running and it can
derefence any address that the user might have passed, so it must check explicitly that
the address is below p->sz

argptr is similar in purpose to argint: it interprets the nth system call argu-
ment. argptr calls argint to fetch the argument as an integer and then checks if the
integer as a user pointer is indeed in the user part of the address space. Note that two
checks occur during a call to code argptr . First, the user stack pointer is checked dur-
ing the fetching of the argument. Then the argument, itself a user pointer, is checked.

argstr is the final member of the system call argument trio. It interprets the nth
argument as a pointer. It ensures that the pointer points at a NUL-terminated string
and that the complete string is located below the end of the user part of the address
space.

The system call implementations (for example, sysproc.c and sysfile.c) are typically
wrappers: they decode the arguments using argint, argptr, and argstr and then call
the real implementations. In chapter 1, sys_exec uses these functions to get at its ar-
guments.

Code: Interrupts

Devices on the motherboard can generate interrupts, and xv6 must setup the
hardware to handle these interrupts. Without device support xv6 wouldn’t be usable; a
user couldn’t type on the keyboard, a file system couldn’t store data on disk, etc. Fortu-
nately, adding interrupts and support for simple devices doesn’t require much addition-
al complexity. As we will see, interrupts can use the same code as for systems calls
and exceptions.

Interrupts are similar to system calls, except devices generate them at any time.
There is hardware on the motherboard to signal the CPU when a device needs atten-
tion (e.g., the user has typed a character on the keyboard). We must program the de-
vice to generate an interrupt, and arrange that a CPU receives the interrupt.

Let’s look at the timer device and timer interrupts. We would like the timer hard-
ware to generate an interrupt, say, 100 times per second so that the kernel can track
the passage of time and so the kernel can time-slice among multiple running process-
es. The choice of 100 times per second allows for decent interactive performance
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while not swamping the processor with handling interrupts.
Like the x86 processor itself, PC motherboards have evolved, and the way inter-

rupts are provided has evolved too. The early boards had a simple programmable in-
terrupt controler (called the PIC), and you can find the code to manage it in pi-

cirq.c.
With the advent of multiprocessor PC boards, a new way of handling interrupts

was needed, because each CPU needs an interrupt controller to handle interrupts send
to it, and there must be a method for routing interrupts to processors. This way con-
sists of two parts: a part that is in the I/O system (the IO APIC, ioapic.c), and a
part that is attached to each processor (the local APIC, lapic.c). Xv6 is designed for
a board with multiple processors, and each processor must be programmed to receive
interrupts.

To also work correctly on uniprocessors, Xv6 programs the programmable inter-
rupt controler (PIC) (6732). Each PIC can handle a maximum of 8 interrupts (i.e., de-
vices) and multiplex them on the interrupt pin of the processor. To allow for more
than 8 devices, PICs can be cascaded and typically boards have at least two. Using
inb and outb instructions Xv6 programs the master to generate IRQ 0 through 7 and
the slave to generate IRQ 8 through 16. Initially xv6 programs the PIC to mask all in-
terrupts. The code in timer.c sets timer 1 and enables the timer interrupt on the
PIC (7374). This description omits some of the details of programming the PIC. These
details of the PIC (and the IOAPIC and LAPIC) are not important to this text but the
interested reader can consult the manuals for each device, which are referenced in the
source files.

On multiprocessors, xv6 must program the IOAPIC, and the LAPIC on each pro-
cessor. The IO APIC has a table and the processor can program entries in the table
through memory-mapped I/O, instead of using inb and outb instructions. During
initialization, xv6 programs to map interrupt 0 to IRQ 0, and so on, but disables them
all. Specific devices enable particular interrupts and say to which processor the inter-
rupt should be routed. For example, xv6 routes keyboard interrupts to processor 0
(7316). Xv6 routes disk interrupts to the highest numbered processor on the system, as
we will see below.

The timer chip is inside the LAPIC, so that each processor can receive timer in-
terrupts independently. Xv6 sets it up in lapicinit (6451). The key line is the one that
programs the timer (6464). This line tells the LAPIC to periodically generate an inter-
rupt at IRQ_TIMER, which is IRQ 0. Line (6493) enables interrupts on a CPU’s LAPIC,
which will cause it to deliver interrupts to the local processor.

A processor can control if it wants to receive interrupts through the IF flag in the
eflags register. The instruction cli disables interrupts on the processor by clearing IF,
and sti enables interrupts on a processor. Xv6 disables interrupts during booting of
the main cpu (8212) and the other processors (1126). The scheduler on each processor
enables interrupts (2414). To control that certain code fragments are not interrupted,
xv6 disables interrupts during these code fragments (e.g., see switchuvm (1769)).

The timer interrupts through vector 32 (which xv6 chose to handle IRQ 0), which
xv6 setup in idtinit (1265). The only difference between vector 32 and vector 64 (the
one for system calls) is that vector 32 is an interrupt gate instead of a trap gate. Inter-
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rupt gates clears IF, so that the interrupted processor doesn’t receive interrupts while it
is handling the current interrupt. From here on until trap, interrupts follow the same
code path as system calls and exceptions, building up a trap frame.

Trap when it’s called for a time interrupt, does just two things: increment the
ticks variable (2963), and call wakeup. The latter, as we will see in Chapter 4, may cause
the interrupt to return in a different process.

Drivers

A driver is the piece of code in an operating system that manage a particular device:
it provides interrupt handlers for a device, causes a device to perform operations, caus-
es a device to generate interrupts, etc. Driver code can be tricky to write because a
driver executes concurrently with the device that it manages. In addition, the driver
must understand the device’s interface (e.g., which I/O ports do what), and that inter-
face can be complex and poorly documented.

The disk driver provides a good example in xv6. The disk driver copies data
from and back to the disk. Disk hardware traditionally presents the data on the disk
as a numbered sequence of 512-byte blocks (also called sectors): sector 0 is the first 512
bytes, sector 1 is the next, and so on. To represent disk sectors an operating system
has a structure that corresponds to one sector. The data stored in this structure is of-
ten out of sync with the disk: it might have not yet been read in from disk (the disk is
working on it but hasn’t returned the sector’s content yet), or it might have been up-
dated but not yet written out. The driver must ensure that the rest of xv6 doesn’t get
confused when the structure is out of sync with the disk.

Code: Disk driver

The IDE device provides access to disks connected to the PC standard IDE con-
troller. IDE is now falling out of fashion in favor of SCSI and SATA, but the interface
is simple and lets us concentrate on the overall structure of a driver instead of the de-
tails of a particular piece of hardware.

The disk driver represent disk sectors with a data structure called a buffer,
struct buf (3400). Each buffer represents the contents of one sector on a particular
disk device. The dev and sector fields give the device and sector number and the
data field is an in-memory copy of the disk sector.

The flags track the relationship between memory and disk: the B_VALID flag
means that data has been read in, and the B_DIRTY flag means that data needs to be
written out. The B_BUSY flag is a lock bit; it indicates that some process is using the
buffer and other processes must not. When a buffer has the B_BUSY flag set, we say
the buffer is locked.

The kernel initializes the disk driver at boot time by calling ideinit (3701) from
main (1232). Ideinit calls picenable and ioapicenable to enable the IDE_IRQ inter-
rupt (3706-3707). The call to picenable enables the interrupt on a uniprocessor; ioapi-
cenable enables the interrupt on a multiprocessor, but only on the last CPU (ncpu-1):
on a two-processor system, CPU 1 handles disk interrupts.
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Next, ideinit probes the disk hardware. It begins by calling idewait (3708) to
wait for the disk to be able to accept commands. A PC motherboard presents the sta-
tus bits of the disk hardware on I/O port 0x1f7. Idewait (3683) polls the status bits
until the busy bit (IDE_BSY) is clear and the ready bit (IDE_DRDY) is set.

Now that the disk controller is ready, ideinit can check how many disks are
present. It assumes that disk 0 is present, because the boot loader and the kernel were
both loaded from disk 0, but it must check for disk 1. It writes to I/O port 0x1f6 to
select disk 1 and then waits a while for the status bit to show that the disk is ready
(3710-3717). If not, ideinit assumes the disk is absent.

After ideinit, the disk is not used again until the buffer cache calls iderw,
which updates a locked buffer as indicated by the flags. If B_DIRTY is set, iderw

writes the buffer to the disk; if B_VALID is not set, iderw reads the buffer from the
disk.

Disk accesses typically take milliseconds, a long time for a processor. The boot
loader issues disk read commands and reads the status bits repeatedly until the data is
ready. This polling or busy waiting is fine in a boot loader, which has nothing bet-
ter to do. In an operating system, however, it is more efficient to let another process
run on the CPU and arrange to receive an interrupt when the disk operation has com-
pleted. Iderw takes this latter approach, keeping the list of pending disk requests in a
queue and using interrupts to find out when each request has finished. Although
iderw maintains a queue of requests, the simple IDE disk controller can only handle
one operation at a time. The disk driver maintains the invariant that it has sent the
buffer at the front of the queue to the disk hardware; the others are simply waiting
their turn.

Iderw (3804) adds the buffer b to the end of the queue (3817-3821). If the buffer is
at the front of the queue, iderw must send it to the disk hardware by calling
idestart (3774-3776); otherwise the buffer will be started once the buffers ahead of it
are taken care of.

Idestart (3725) issues either a read or a write for the buffer’s device and sector,
according to the flags. If the operation is a write, idestart must supply the data now
(3739) and the interrupt will signal that the data has been written to disk. If the opera-
tion is a read, the interrupt will signal that the data is ready, and the handler will read
it. Note that iderw has detailed knowledge about the IDE device, and writes the right
values at the right ports. If any of these outb statements is wrong, the IDE will do
something differently than what we want. Getting these details right is one reason
why writing device drivers is challenging.

Having added the request to the queue and started it if necessary, iderw must
wait for the result. As discussed above, polling does not make efficient use of the
CPU. Instead, iderw sleeps, waiting for the interrupt handler to record in the buffer’s
flags that the operation is done (3829-3830). While this process is sleeping, xv6 will
schedule other processes to keep the CPU busy.

Eventually, the disk will finish its operation and trigger an interrupt. trap will
call ideintr to handle it (3024). Ideintr (3752) consults the first buffer in the queue to
find out which operation was happening. If the buffer was being read and the disk
controller has data waiting, ideintr reads the data into the buffer with insl (3765-
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3767). Now the buffer is ready: ideintr sets B_VALID, clears B_DIRTY, and wakes up
any process sleeping on the buffer (3769-3772). Finally, ideintr must pass the next wait-
ing buffer to the disk (3774-3776).

Real world

Supporting all the devices on a PC motherboard in its full glory is much work, be-
cause there are many devices, the devices have many features, and the protocol be-
tween device and driver can be complex. In many operating systems, the drivers to-
gether account for more code in the operating system than the core kernel.

Actual device drivers are far more complex than the disk driver in this chapter,
but the basic ideas are the same: typically devices are slower than CPU, so the hard-
ware uses interrupts to notify the operating system of status changes. Modern disk
controllers typically accept multiple outstanding disk requests at a time and even re-
order them to make most efficient use of the disk arm. When disks were simpler, op-
erating system often reordered the request queue themselves.

Many operating systems have drivers for solid-state disks because they provide
much faster access to data. But, although a solid-state works very differently from a
traditional mechanical disk, both devices provide block-based interfaces and read-
ing/writing blocks on a solid-state disk is still more expensive than reading/writing
RAM.

Other hardware is surprisingly similar to disks: network device buffers hold pack-
ets, audio device buffers hold sound samples, graphics card buffers hold video data and
command sequences. High-bandwidth devices—disks, graphics cards, and network
cards—often use direct memory access (DMA) instead of the explicit I/O (insl, out-
sl) in this driver. DMA allows the disk or other controllers direct access to physical
memory. The driver gives the device the physical address of the buffer’s data field and
the device copies directly to or from main memory, interrupting once the copy is com-
plete. Using DMA means that the CPU is not involved at all in the transfer, which
can be more efficient and is less taxing for the CPU’s memory caches.

Most of the devices in this chapter used I/O instructions to program them, which
reflects the older nature of these devices. All modern devices are programmed using
memory-mapped I/O.

Some drivers dynamically switch between polling and interrupts, because using
interrupts can be expensive, but using polling can introduce delay until the driver pro-
cesses an event. For example, for a network driver that receives a burst of packets,
may switch from interrupts to polling since it knows that more packets must be pro-
cessed and it is less expensive to process them using polling. Once no more packets
need to be processed, the driver may switch back to interrupts, so that it will be alert-
ed immediately when a new packet arrives.

The IDE driver routed interrupts statically to a particular processor. Some drivers
have a sophisticated algorithm for routing interrupts to processor so that the load of
processing packets is well balanced but good locality is achieved too. For example, a
network driver might arrange to deliver interrupts for packets of one network connec-
tion to the processor that is managing that connection, while interrupts for packets of
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another connection are delivered to another processor. This routing can get quite so-
phisticated; for example, if some network connections are short lived while others are
long lived and the operating system wants to keep all processors busy to achieve high
throughput.

If user process reads a file, the data for that file is copied twice. First, it is copied
from the disk to kernel memory by the driver, and then later it is copied from kernel
space to user space by the read system call. If the user process, then sends the data
on the network, then the data is copied again twice: once from user space to kernel
space and from kernel space to the network device. To support applications for which
low latency is important (e.g., a Web serving static Web pages), operating systems use
special code paths to avoid these many copies. As one example, in real-world operat-
ing systems, buffers typically match the hardware page size, so that read-only copies
can be mapped into a process’s address space using the paging hardware, without any
copying.

Exercises

1. Set a breakpoint at the first instruction of syscall() to catch the very first system call
(e.g., br syscall). What values are on the stack at this point? Explain the output of
x/37x $esp at that breakpoint with each value labeled as to what it is (e.g., saved %ebp
for trap, trapframe.eip, scratch space, etc.).

2. Add a new system call

3. Add a network driver

DRAFT as of September 7, 2011 42 http://pdos.csail.mit.edu/6.828/xv6/



Chapter 3

Locking

Xv6 runs on multiprocessors, computers with multiple CPUs executing code inde-
pendently. These multiple CPUs operate on a single physical address space and share
data structures; xv6 must introduce a coordination mechanism to keep them from in-
terfering with each other. Even on a uniprocessor, xv6 must use some mechanism to
keep interrupt handlers from interfering with non-interrupt code. Xv6 uses the same
low-level concept for both: a lock. A lock provides mutual exclusion, ensuring that
only one CPU at a time can hold the lock. If xv6 only accesses a data structure while
holding a particular lock, then xv6 can be sure that only one CPU at a time is access-
ing the data structure. In this situation, we say that the lock protects the data struc-
ture. The rest of this chapters why xv6 needs locks, how xv6 implements them, and
how it uses them.

Race conditions

As an example on why we need locks, consider several processors sharing a single
disk, such as the IDE disk in xv6. The disk driver maintains a linked list of the out-
standing disk requests (3671) and processors may add new requests to the list concur-
rently (3804). If there were no concurrent requests, you might implement the linked list
as follows:

1 struct list {

2 int data;

3 struct list *next;

4 };

5

6 struct list *list = 0;

7

8 void

9 insert(int data)

10 {

11 struct list *l;

12

13 l = malloc(sizeof *l);

14 l->data = data;

15 l->next = list;

16 list = l;

17 }

Proving this implementation correct is a typical exercise in a data structures and algo-
rithms class. Even though this implementation can be proved correct, it isn’t, at least
not on a multiprocessor. If two different CPUs execute insert at the same time, it
could happen that both execute line 15 before either executes 16 (see Figure 3-1). If
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Figure 3-1. Example race

this happens, there will now be two list nodes with next set to the former value of
list. When the two assignments to list happen at line 16, the second one will over-
write the first; the node involved in the first assignment will be lost. This kind of
problem is called a race condition. The problem with races is that they depend on
the exact timing of the two CPUs involved and how their memory operations are or-
dered by the memory system, and are consequently difficult to reproduce. For exam-
ple, adding print statements while debugging insert might change the timing of the
execution enough to make the race disappear.

The typical way to avoid races is to use a lock. Locks ensure mutual exclusion, so
that only one CPU can execute insert at a time; this makes the scenario above im-
possible. The correctly locked version of the above code adds just a few lines (not
numbered):

6 struct list *list = 0;

struct lock listlock;

7

8 void

9 insert(int data)

10 {

11 struct list *l;

12

acquire(&listlock);

13 l = malloc(sizeof *l);

14 l->data = data;

15 l->next = list;

16 list = l;

release(&listlock);

17 }

When we say that a lock protects data, we really mean that the lock protects some
collection of invariants that apply to the data. Invariants are properties of data struc-
tures that are maintained across operations. Typically, an operation’s correct behavior
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depends on the invariants being true when the operation begins. The operation may
temporarily violate the invariants but must reestablish them before finishing. For ex-
ample, in the linked list case, the invariant is that list points at the first node in the
list and that each node’s next field points at the next node. The implementation of
insert vioilates this invariant temporarily: line 13 creates a new list element l with
the intent that l be the first node in the list, but l’s next pointer does not point at the
next node in the list yet (reestablished at line 15) and list does not point at l yet
(reestablished at line 16). The race condition we examined above happened because a
second CPU executed code that depended on the list invariants while they were (tem-
porarily) violated. Proper use of a lock ensures that only one CPU at a time can oper-
ate on the data structure, so that no CPU will execute a data structure operation when
the data structure’s invariants do not hold.

Code: Locks

Xv6’s represents a lock as a struct spinlock (1401). The critical field in the structure
is locked, a word that is zero when the lock is available and non-zero when it is held.
Logically, xv6 should acquire a lock by executing code like

21 void

22 acquire(struct spinlock *lk)

23 {

24 for(;;) {

25 if(!lk->locked) {

26 lk->locked = 1;

27 break;

28 }

29 }

30 }

Unfortunately, this implementation does not guarantee mutual exclusion on a modern
multiprocessor. It could happen that two (or more) CPUs simultaneously reach line
25, see that lk->locked is zero, and then both grab the lock by executing lines 26 and
27. At this point, two different CPUs hold the lock, which violates the mutual exclu-
sion property. Rather than helping us avoid race conditions, this implementation of
acquire has its own race condition. The problem here is that lines 25 and 26 execut-
ed as separate actions. In order for the routine above to be correct, lines 25 and 26
must execute in one atomic (i.e., indivisible) step.

To execute those two lines atomically, xv6 relies on a special 386 hardware in-
struction, xchg (0569). In one atomic operation, xchg swaps a word in memory with
the contents of a register. The function acquire (1474) repeats this xchg instruction in
a loop; each iteration reads lk->locked and atomically sets it to 1 (1483). If the lock is
held, lk->locked will already be 1, so the xchg returns 1 and the loop continues. If
the xchg returns 0, however, acquire has successfully acquired the lock—locked was
0 and is now 1—so the loop can stop. Once the lock is acquired, acquire records, for
debugging, the CPU and stack trace that acquired the lock. When a process acquires a
lock and forget to release it, this information can help to identify the culprit. These
debugging fields are protected by the lock and must only be edited while holding the
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lock.
The function release (1502) is the opposite of acquire: it clears the debugging

fields and then releases the lock.

Modularity and recursive locks

System design strives for clean, modular abstractions: it is best when a caller does
not need to know how a callee implements particular functionality. Locks interfere
with this modularity. For example, if a CPU holds a particular lock, it cannot call any
function f that will try to reacquire that lock: since the caller can’t release the lock un-
til f returns, if f tries to acquire the same lock, it will spin forever, or deadlock.

There are no transparent solutions that allow the caller and callee to hide which
locks they use. One common, transparent, but unsatisfactory solution is recursive

locks, which allow a callee to reacquire a lock already held by its caller. The problem
with this solution is that recursive locks can’t be used to protect invariants. After in-

sert called acquire(&listlock) above, it can assume that no other function holds
the lock, that no other function is in the middle of a list operation, and most impor-
tantly that all the list invariants hold. In a system with recursive locks, insert can as-
sume nothing after it calls acquire: perhaps acquire succeeded only because one of
insert’s caller already held the lock and was in the middle of editing the list data
structure. Maybe the invariants hold or maybe they don’t. The list no longer protects
them. Locks are just as important for protecting callers and callees from each other as
they are for protecting different CPUs from each other; recursive locks give up that
property.

Since there is no ideal transparent solution, we must consider locks part of the
function’s specification. The programmer must arrange that function doesn’t invoke a
function f while holding a lock that f needs. Locks force themselves into our abstrac-
tions.

Code: Using locks

Xv6 is carefully programmed with locks to avoid race conditions. A simple example is
in the IDE driver (3650). As mentioned in the beginning of the chapter, iderw (3804)

has a queue of disk requests and processors may add new requests to the list concur-
rently (3819). To protect this list and other invariants in the driver, iderw acquires the
idelock (3815) and releases at the end of the function. Exercise 1 explores how to trig-
ger the race condition that we saw at the beginning of the chapter by moving the ac-

quire to after the queue manipulation. It is worthwhile to try the exercise because it
will make clear that it is not that easy to trigger the race, suggesting that it is difficult
to find race-conditions bugs. It is not unlikely that xv6 has some races.

A hard part about using locks is deciding how many locks to use and which data
and invariants each lock protects. There are a few basic principles. First, any time a
variable can be written by one CPU at the same time that another CPU can read or
write it, a lock should be introduced to keep the two operations from overlapping.
Second, remember that locks protect invariants: if an invariant involves multiple data
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structures, typically all of the structures need to be protected by a single lock to ensure
the invariant is maintained.

The rules above say when locks are necessary but say nothing about when locks
are unnecessary, and it is important for efficiency not to lock too much, because locks
reduce parallelism. If efficiency wasn’t important, then one could use a uniprocessor
computer and no worry at all about locks. For protecting kernel data structures, it
would suffice to create a single lock that must be acquired on entering the kernel and
released on exiting the kernel. Many uniprocessor operating systems have been con-
verted to run on multiprocessors using this approach, sometimes called a ‘‘giant kernel
lock,’’ but the approach sacrifices true concurrency: only one CPU can execute in the
kernel at a time. If the kernel does any heavy computation, it would be more efficient
to use a larger set of more fine-grained locks, so that the kernel could execute on mul-
tiple CPUs simultaneously.

Ultimately, the choice of lock granularity is an exercise in parallel programming.
Xv6 uses a few coarse data-structure specific locks; for example, xv6 uses a single lock
protecting the process table and its invariants, which are described in Chapter 4. A
more fine-grained approach would be to have a lock per entry in the process table so
that threads working on different entries in the process table can proceed in parallel.
However, it complicates operations that have invariants over the whole process table,
since they might have to take out several locks. Hopefully, the examples of xv6 will
help convey how to use locks.

Lock ordering

If a code path through the kernel must take out several locks, it is important that all
code paths acquire the locks in the same order. If they don’t, there is a risk of dead-
lock. Let’s say two code paths in xv6 needs locks A and B, but code path 1 acquires
locks in the order A and B, and the other code acquires them in the order B and A.
This situation can result in a deadlock, because code path 1 might acquire lock A and
before it acquires lock B, code path 2 might acquire lock B. Now neither code path can
proceed, because code path 1 needs lock B, which code path 2 holds, and code path 2
needs lock A, which code path 1 holds. To avoid such deadlocks, all code paths must
acquire locks in the same order. Deadlock avoidance is another example illustrating
why locks must be part of a function’s specification: the caller must invoke functions
in a consistent order so that the functions acquire locks in the same order.

Because xv6 uses coarse-grained locks and xv6 is simple, xv6 has few lock-order
chains. The longest chain is only two deep. For example, ideintr holds the ide lock
while calling wakeup, which acquires the ptable lock. There are a number of other
examples involving sleep and wakeup. These orderings come about because sleep

and wakeup have a complicated invariant, as discussed in Chapter 4. In the file system
there are a number of examples of chains of two because the file system must, for ex-
ample, acquire a lock on a directory and the lock on a file in that directory to unlink a
file from its parent directory correctly. Xv6 always acquires the locks in the order first
parent directory and then the file.
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Interrupt handlers

Xv6 uses locks to protect interrupt handlers running on one CPU from non-interrupt
code accessing the same data on another CPU. For example, the timer interrupt han-
dler (3014) increments ticks but another CPU might be in sys_sleep at the same
time, using the variable (3373). The lock tickslock synchronizes access by the two
CPUs to the single variable.

Interrupts can cause concurrency even on a single processor: if interrupts are en-
abled, kernel code can be stopped at any moment to run an interrupt handler instead.
Suppose iderw held the idelock and then got interrupted to run ideintr. Ideintr
would try to lock idelock, see it was held, and wait for it to be released. In this situ-
ation, idelock will never be released—only iderw can release it, and iderw will not
continue running until ideintr returns—so the processor, and eventually the whole
system, will deadlock.

To avoid this situation, if a lock is used by an interrupt handler, a processor must
never hold that lock with interrupts enabled. Xv6 is more conservative: it never holds
any lock with interrupts enabled. It uses pushcli (1555) and popcli (1566) to manage a
stack of ‘‘disable interrupts’’ operations (cli is the x86 instruction that disables inter-
rupts. Acquire calls pushcli before trying to acquire a lock (1476), and release calls
popcli after releasing the lock (1521). Pushcli (1555) and popcli (1566) are more than
just wrappers around cli and sti: they are counted, so that it takes two calls to pop-

cli to undo two calls to pushcli; this way, if code acquires two different locks, inter-
rupts will not be reenabled until both locks have been released.

It is important that acquire call pushcli before the xchg that might acquire the
lock (1483). If the two were reversed, there would be a few instruction cycles when the
lock was held with interrupts enabled, and an unfortunately timed interrupt would
deadlock the system. Similarly, it is important that release call popcli only after the
xchg that releases the lock (1483).

The interaction between interrupt handlers and non-interrupt code provides a
nice example why recursive locks are problematic. If xv6 used recursive locks (a sec-
ond acquire on a CPU is allowed if the first acquire happened on that CPU too), then
interrupt handlers could run while non-interrupt code is in a critical section. This
could create havoc, since when the interrupt handler runs, invariants that the handler
relies on might be temporarily violated. For example, ideintr (3752) assumes that the
linked list with outstanding requests is well-formed. If xv6 would have used recursive
locks, then ideintr might run while iderw is in the middle of manipulating the
linked list, and the linked list will end up in an incorrect state.

Memory ordering

This chapter has assumed that processors start and complete instructions in the
order in which they appear in the program. Many processors, however, execute in-
structions out of order to achieve higher performance. If an instruction takes many
cycles to complete, a processor may want to issue the instruction early so that it can
overlap with other instructions and avoid processor stalls. For example, a processor
may notice that in a serial sequence of instruction A and B are not dependent on each
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other and start instruction B before A so that it will be completed when the processor
completes A. Concurrency, however, may expose this reordering to software, which
lead to incorrect behavior.

For example, one might wonder what happens if release just assigned 0 to lk-

>locked, instead of using xchg. The answer to this question is unclear, because differ-
ent generations of x86 processors make different guarantees about memory ordering.
If lk->locked=0, were allowed to be re-ordered say after popcli, than acquire might
break, because to another thread interrupts would be enabled before a lock is released.
To avoid relying on unclear processor specifications about memory ordering, xv6 takes
no risk and uses xchg, which processors must guarantee not to reorder.

Real world

Concurrency primitives and parallel programming are active areas of of research, be-
cause programming with locks is still challenging. It is best to use locks as the base
for higher-level constructs like synchronized queues, although xv6 does not do this. If
you program with locks, it is wise to use a tool that attempts to identify race condi-
tions, because it is easy to miss an invariant that requires a lock.

User-level programs need locks too, but in xv6 applications have one thread of ex-
ecution and processes don’t share memory, and so there is no need for locks in xv6
applications.

It is possible to implement locks without atomic instructions, but it is expensive,
and most operating systems use atomic instructions.

Atomic instructions are not free either when a lock is contented. If one processor
has a lock cached in its local cache, and another processor must acquire the lock, then
the atomic instruction to update the line that holds the lock must move the line from
the one processor’s cache to the other processor’s cache, and perhaps invalidate any
other copies of the cache line. Fetching a cache line from another processor’s cache
can be orders of magnitude more expensive than fetching a line from a local cache.

To avoid the expenses associated with locks, many operating systems use lock-free
data structures and algorithms, and try to avoid atomic operations in those algorithms.
For example, it is possible to implemented a link list like the one in the beginning of
the chapter that requires no locks during list searches, and one atomic instruction to
insert an item in a list.

Exercises

1. get rid off the xchg in acquire. explain what happens when you run xv6?

2. move the acquire in iderw to before sleep. is there a race? why don’t you observe it
when booting xv6 and run stressfs? increase critical section with a dummy loop; what
do you see now? explain.

3. do posted homework question.
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4. Setting a bit in a buffer’s flags is not an atomic operation: the processor makes a
copy of flags in a register, edits the register, and writes it back. Thus it is important
that two processes are not writing to flags at the same time. xv6 edits the B_BUSY bit
only while holding buflock but edits the B_VALID and B_WRITE flags without holding
any locks. Why is this safe?
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Chapter 4

Scheduling

Any operating system is likely to run with more processes than the computer has
processors, and so some plan is needed to time share the processors between the pro-
cesses. An ideal plan is transparent to user processes. A common approach is to pro-
vide each process with the illusion that it has its own virtual processor, and have the
operating system multiplex multiple virtual processors on a single physical processor.
This chapter how xv6 multiplexes a processor among several processes.

Multiplexing

Xv6 adopts this multiplexing approach. When a process is waiting for disk re-
quest, xv6 puts it to sleep, and schedules another process to run. Furthermore, xv6 us-
ing timer interrupts to force a process to stop running on a processor after a fixed-
amount of time (100 msec), so that it can schedule another process on the processor.
This multiplexing creates the illusion that each process has its own CPU, just as xv6
used the memory allocator and hardware page tables to create the illusion that each
process has its own memory.

Implementing multiplexing has a few challenges. First, how to switch from one
process to another? Xv6 uses the standard mechanism of context switching; although
the idea is simple, the code to implement is typically among the most opaque code in
an operating system. Second, how to do context switching transparently? Xv6 uses the
standard technique of using the timer interrupt handler to drive context switches.
Third, many CPUs may be switching among processes concurrently, and a locking plan
is necessary to avoid races. Fourth, when a process has exited its memory and other
resources must be freed, but it cannot do all of this itself because (for example) it can’t
free its own kernel stack while still using it. Xv6 tries to solve these problems as sim-
ply as possible, but nevertheless the resulting code is tricky.

xv6 must provide ways for processes to coordinate among themselves. For exam-
ple, a parent process may need to wait for one of its children to exit, or a process
reading on a pipe may need to wait for some other process to write the pipe. Rather
than make the waiting process waste CPU by repeatedly checking whether the desired
event has happened, xv6 allows a process to give up the CPU and sleep waiting for an
event, and allows another process to wake the first process up. Care is needed to avoid
races that result in the loss of event notifications. As an example of these problems
and their solution, this chapter examines the implementation of pipes.

Code: Context switching

As shown in Figure 4-1, to switch between processes, xv6 performs two kinds of
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Figure 4-1. Switching from one user process to another. In this example, xv6 runs with one CPU (and

thus one scheduler thread).

context switches at a low level: from a process’s kernel thread to the current CPU’s
scheduler thread, and from the scheduler thread to a process’s kernel thread. xv6 nev-
er directly switches from one user-space process to another; this happens by way of a
user-kernel transition (system call or interrupt), a context switch to the scheduler, a
context switch to a new process’s kernel thread, and a trap return. In this section we’ll
example the mechanics of switching between a kernel thread and a scheduler thread.

Every xv6 process has its own kernel stack and register set, as we saw in Chapter
1. Each CPU has a separate scheduler thread for use when it is executing the sched-
uler rather than any process’s kernel thread. Switching from one thread to another in-
volves saving the old thread’s CPU registers, and restoring previously-saved registers of
the new thread; the fact that %esp and %eip are saved and restored means that the
CPU will switch stacks and switch what code it is executing.

swtch doesn’t directly know about threads; it just saves and restores register sets,
called contexts. When it is time for the process to give up the CPU, the process’s ker-
nel thread will call swtch to save its own context and return to the scheduler context.
Each context is represented by a struct context*, a pointer to a structure stored on
the kernel stack involved. Swtch takes two arguments: struct context **old and
struct context *new. It pushes the current CPU register onto the stack and saves the
stack pointer in *old. Then swtch copies new to %esp, pops previously saved regis-
ters, and returns.

Instead of following the scheduler into swtch, let’s instead follow our user process
back in. We saw in Chapter 2 that one possibility at the end of each interrupt is that
trap calls yield. Yield in turn calls sched, which calls swtch to save the current
context in proc->context and switch to the scheduler context previously saved in
cpu->scheduler (2466).

Swtch (2652) starts by loading its arguments off the stack into the registers %eax

and %edx (2659-2660); swtch must do this before it changes the stack pointer and can no
longer access the arguments via %esp. Then swtch pushes the register state, creating a
context structure on the current stack. Only the callee-save registers need to be saved;
the convention on the x86 is that these are %ebp, %ebx, %esi, %ebp, and %esp.
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Swtch pushes the first four explicitly (2663-2666); it saves the last implicitly as the
struct context* written to *old (2669). There is one more important register: the
program counter %eip was saved by the call instruction that invoked swtch and is
on the stack just above %ebp. Having saved the old context, swtch is ready to restore
the new one. It moves the pointer to the new context into the stack pointer (2670).
The new stack has the same form as the old one that swtch just left—the new stack
was the old one in a previous call to swtch—so swtch can invert the sequence to re-
store the new context. It pops the values for %edi, %esi, %ebx, and %ebp and then
returns (2673-2677). Because swtch has changed the stack pointer, the values restored
and the instruction address returned to are the ones from the new context.

In our example, sched called swtch to switch to cpu->scheduler, the per-CPU
scheduler context. That context had been saved by scheduler’s call to swtch (2428).
When the swtch we have been tracing returns, it returns not to sched but to sched-

uler, and its stack pointer points at the current CPU’s scheduler stack, not initproc’s
kernel stack.

Code: Scheduling

The last section looked at the low-level details of swtch; now let’s take swtch as a
given and examine the conventions involved in switching from process to scheduler
and back to process. A process that wants to give up the CPU must acquire the pro-
cess table lock ptable.lock, release any other locks it is holding, update its own state
(proc->state), and then call sched. Yield (2472) follows this convention, as do sleep

and exit, which we will examine later. Sched double-checks those conditions (2457-

2462) and then an implication of those conditions: since a lock is held, the CPU should
be running with interrupts disabled. Finally, sched calls swtch to save the current
context in proc->context and switch to the scheduler context in cpu->scheduler.
Swtch returns on the scheduler’s stack as though scheduler’s swtch had returned
(2428). The scheduler continues the for loop, finds a process to run, switches to it, and
the cycle repeats.

We just saw that xv6 holds ptable.lock across calls to swtch: the caller of
swtch must already hold the lock, and control of the lock passes to the switched-to
code. This convention is unusual with locks; the typical convention is the thread that
acquires a lock is also responsible of releasing the lock, which makes it easier to reason
about correctness. For context switching is necessary to break the typical convention
because ptable.lock protects invariants on the process’s state and context fields
that are not true while executing in swtch. One example of a problem that could arise
if ptable.lock were not held during swtch: a different CPU might decide to run the
process after yield had set its state to RUNNABLE, but before swtch caused it to stop
using its own kernel stack. The result would be two CPUs running on the same stack,
which cannot be right.

A kernel thread always gives up its processor in sched and always switches to the
same location in the scheduler, which (almost) always switches to a process in sched.
Thus, if one were to print out the line numbers where xv6 switches threads, one would
observe the following simple pattern: (2428), (2466), (2428), (2466), and so on. The proce-
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dures in which this stylized switching between two threads happens are sometimes re-
ferred to as coroutines; in this example, sched and scheduler are co-routines of
each other.

There is one case when the scheduler’s swtch to a new process does not end up
in sched. We saw this case in Chapter 1: when a new process is first scheduled, it be-
gins at forkret (2483). Forkret exists only to honor this convention by releasing the
ptable.lock; otherwise, the new process could start at trapret.

Scheduler (2408) runs a simple loop: find a process to run, run it until it stops,
repeat. scheduler holds ptable.lock for most of its actions, but releases the lock
(and explicitly enables interrupts) once in each iteration of its outer loop. This is im-
portant for the special case in which this CPU is idle (can find no RUNNABLE process).
If an idling scheduler looped with the lock continuously held, no other CPU that was
running a process could ever perform a context switch or any process-related system
call, and in particular could never mark a process as RUNNABLE so as to break the
idling CPU out of its scheduling loop. The reason to enable interrupts periodically on
an idling CPU is that there might be no RUNNABLE process because processes (e.g., the
shell) are waiting for I/O; if the scheduler left interrupts disabled all the time, the I/O
would never arrive.

The scheduler loops over the process table looking for a runnable process, one
that has p->state == RUNNABLE. Once it finds a process, it sets the per-CPU current
process variable proc, switches to the process’s page table with switchuvm, marks the
process as RUNNING, and then calls swtch to start running it (2422-2428).

One way to think about the structure of the scheduling code is that it arranges to
enforce a set of invariants about each process, and holds ptable.lock whenever those
invariants are not true. One invariant is that if a process is RUNNING, things must be
set up so that a timer interrupt’s yield can correctly switch away from the process;
this means that the CPU registers must hold the process’s register values (i.e. they
aren’t actually in a context), %cr3 must refer to the process’s pagetable, %esp must re-
fer to the process’s kernel stack so that swtch can push registers correctly, and proc

must refer to the process’s proc[] slot. Another invariant is that if a process is
RUNNABLE, things must be set up so that an idle CPU’s scheduler can run it; this
means that p->context must hold the process’s kernel thread variables, that no CPU
is executing on the process’s kernel stack, that no CPU’s %cr3 refers to the process’s
page table, and that no CPU’s proc refers to the process.

Maintaining the above invariants is the reason why xv6 acquires ptable.lock in
one thread (often in yield) and releases the lock in a different thread (the scheduler
thread or another next kernel thread). Once the code has started to modify a running
process’s state to make it RUNNABLE, it must hold the lock until it has finished restoring
the invariants: the earliest correct release point is after scheduler stops using the pro-
cess’s page table and clears proc. Similarly, once scheduler starts to convert a
runnable process to RUNNING, the lock cannot be released until the kernel thread is
completely running (after the swtch, e.g. in yield).

ptable.lock protects other things as well: allocation of process IDs and free
process table slots, the interplay between exit and wait, the machinery to avoid lost
wakeups (see next section), and probably other things too. It might be worth thinking
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about whether the different functions of ptable.lock could be split up, certainly for
clarity and perhaps for performance.

Sleep and wakeup

Locks help CPUs and processes avoid interfering with each other, and scheduling
helps processes share a CPU, but so far we have no abstractions that make it easy for
processes to communicate. Sleep and wakeup fill that void, allowing one process to
sleep waiting for an event and another process to wake it up once the event has hap-
pened. Sleep and wakeup are often called sequence coordination or conditional

synchronization mechanisms, and there are many other such mechanisms in the op-
erating systems literature.

To illustrate what we mean, let’s consider a simple producer/consumer queue.
This queue is similar to the one used by the IDE driver to synchronize a processor
and device driver (see Chapter 2), but abstracts all IDE-specific code away. The queue
allows one process to send a nonzero pointer to another process. Assuming there is
only one sender and one receiver and they execute on different CPUs, this implemen-
tation is correct:

100 struct q {

101 void *ptr;

102 };

103

104 void*

105 send(struct q *q, void *p)

106 {

107 while(q->ptr != 0)

108 ;

109 q->ptr = p;

110 }

111

112 void*

113 recv(struct q *q)

114 {

115 void *p;

116

117 while((p = q->ptr) == 0)

118 ;

119 q->ptr = 0;

120 return p;

121 }

Send loops until the queue is empty (ptr == 0) and then puts the pointer p in the
queue. Recv loops until the queue is non-empty and takes the pointer out. When run
in different processes, send and recv both edit q->ptr, but send only writes to the
pointer when it is zero and recv only writes to the pointer when it is nonzero, so they
do not step on each other.

The implementation above may be correct, but it is expensive. If the sender
sends rarely, the receiver will spend most of its time spinning in the while loop hop-
ing for a pointer. The receiver’s CPU could find more productive work if there were a
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Figure 4-2. Example lost wakeup problem

way for the receiver to be notified when the send had delivered a pointer.
Let’s imagine a pair of calls, sleep and wakeup, that work as follows.

Sleep(chan) sleeps on the arbitrary value chan, called the wait channel. Sleep puts
the calling process to sleep, releasing the CPU for other work. Wakeup(chan) wakes
all processes sleeping on chan (if any), causing their sleep calls to return. If no pro-
cesses are waiting on chan, wakeup does nothing. We can change the queue imple-
mentation to use sleep and wakeup:

201 void*

202 send(struct q *q, void *p)

203 {

204 while(q->ptr != 0)

205 ;

206 q->ptr = p;

207 wakeup(q); /* wake recv */

208 }

209

210 void*

211 recv(struct q *q)

212 {

213 void *p;

214

215 while((p = q->ptr) == 0)

216 sleep(q);

217 q->ptr = 0;

218 return p;

219 }

Recv now gives up the CPU instead of spinning, which is nice. However, it turns
out not to be straightforward to design sleep and wakeup with this interface without
suffering from what is known as the ‘‘lost wake up’’ problem (see Figure 4-2). Suppose
that recv finds that q->ptr == 0 on line 215 and decides to call sleep. Before recv
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can sleep, send runs on another CPU: it changes q->ptr to be nonzero and calls
wakeup, which finds no processes sleeping and thus does nothing. Now recv contin-
ues executing at line 216: it calls sleep and goes to sleep. This causes a problem:
recv is asleep waiting for a pointer that has already arrived. The next send will sleep
waiting for recv to consume the pointer in the queue, at which point the system will
be deadlocked.

The root of this problem is that the invariant that recv only sleeps when q->ptr

== 0 is violated by send running at just the wrong moment. To protect this invariant,
we introduce a lock, which sleep releases only after the calling process is asleep; this
avoids the missed wakeup in the example above. Once the calling process is awake
again sleep reacquires the lock before returning. We would like to be able to have
the following code:

300 struct q {

301 struct spinlock lock;

302 void *ptr;

303 };

304

305 void*

306 send(struct q *q, void *p)

307 {

308 acquire(&q->lock);

309 while(q->ptr != 0)

310 ;

311 q->ptr = p;

312 wakeup(q);

313 release(&q->lock);

314 }

315

316 void*

317 recv(struct q *q)

318 {

319 void *p;

320

321 acquire(&q->lock);

322 while((p = q->ptr) == 0)

323 sleep(q, &q->lock);

324 q->ptr = 0;

325 release(&q->lock);

326 return p;

327 }

The fact that recv holds q->lock prevents send from trying to wake it up be-
tween recv’s check of q->ptr and its call to sleep. Of course, the receiving process
had better not hold q->lock while it is sleeping, since that would prevent the sender
from waking it up, and lead to deadlock. So what we want is for sleep to atomically
release q->lock and put the receiving process to sleep.

A complete sender/receiver implementation would also sleep in send when wait-
ing for a receiver to consume the value from a previous send.
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Code: Sleep and wakeup

Let’s look at the implementation of sleep and wakeup in xv6. The basic idea is
to have sleep mark the current process as SLEEPING and then call sched to release
the processor; wakeup looks for a process sleeping on the given pointer and marks it
as RUNNABLE.

Sleep (2503) begins with a few sanity checks: there must be a current process
(2505) and sleep must have been passed a lock (2508-2509). Then sleep acquires pt-

able.lock (2518). Now the process going to sleep holds both ptable.lock and lk.
Holding lk was necessary in the caller (in the example, recv): it ensured that no other
process (in the example, one running send) could start a call wakeup(chan). Now that
sleep holds ptable.lock, it is safe to release lk: some other process may start a call
to wakeup(chan), but wakeup will not run until it can acquire ptable.lock, so it
must wait until sleep has finished putting the process to sleep, keeping the wakeup

from missing the sleep.
There is a minor complication: if lk is equal to &ptable.lock, then sleep would

deadlock trying to acquire it as &ptable.lock and then release it as lk. In this case,
sleep considers the acquire and release to cancel each other out and skips them en-
tirely (2517).

Now that sleep holds ptable.lock and no others, it can put the process to sleep
by recording the sleep channel, changing the process state, and calling sched (2523-2525).

At some point later, a process will call wakeup(chan). Wakeup (2553) acquires pt-

able.lock and calls wakeup1, which does the real work. It is important that wakeup

hold the ptable.lock both because it is manipulating process states and because, as
we just saw, ptable.lock makes sure that sleep and wakeup do not miss each other.
Wakeup1 is a separate function because sometimes the scheduler needs to execute a
wakeup when it already holds the ptable.lock; we will see an example of this later.
Wakeup1 (2553) loops over the process table. When it finds a process in state SLEEPING

with a matching chan, it changes that process’s state to RUNNABLE. The next time the
scheduler runs, it will see that the process is ready to be run.

Wakeup must always be called while holding a lock that prevents observation of
whatever the wakeup condition is; in the example above that lock is q->lock. The
complete argument for why the sleeping process won’t miss a wakeup is that at all
times from before it checks the condition until after it is asleep, it holds either the lock
on the condition or the ptable.lock or both. Since wakeup executes while holding
both of those locks, the wakeup must execute either before the potential sleeper checks
the condition, or after the potential sleeper has completed putting itself to sleep.

It is sometimes the case that multiple processes are sleeping on the same channel;
for example, more than one process trying to read from a pipe. A single call to wake-

up will wake them all up. One of them will run first and acquire the lock that sleep
was called with, and (in the case of pipes) read whatever data is waiting in the pipe.
The other processes will find that, despite being woken up, there is no data to be read.
From their point of view the wakeup was ‘‘spurious,’’ and they must sleep again. For
this reason sleep is always called inside a loop that checks the condition.

Callers of sleep and wakeup can use any mutually convenient number as the
channel; in practice xv6 often uses the address of a kernel data structure involved in
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the waiting, such as a disk buffer. No harm is done if two uses of sleep/wakeup acci-
dentally choose the same channel: they will see spurious wakeups, but looping as de-
scribed above will tolerate this problem. Much of the charm of sleep/wakeup is that it
is both lightweight (no need to create special data structures to act as sleep channels)
and provides a layer of indirection (callers need not know what specific process they
are interacting with).

Code: Pipes

The simple queue we used earlier in this chapter was a toy, but xv6 contains two real
queues that uses sleep and wakeup to synchronize readers and writers. One is in the
IDE driver: processes add a disk requests to a queue and then calls sleep. The inter-
rupt handler uses wakeup to alert the process that its request has completed.

An more complex example is the implementation of pipes. We saw the interface
for pipes in Chapter 0: bytes written to one end of a pipe are copied in an in-kernel
buffer and then can be read out of the other end of the pipe. Future chapters will ex-
amine the file system support surrounding pipes, but let’s look now at the implementa-
tions of pipewrite and piperead.

Each pipe is represented by a struct pipe, which contains a lock and a data

buffer. The fields nread and nwrite count the number of bytes read from and written
to the buffer. The buffer wraps around: the next byte written after buf[PIPESIZE-1]

is buf[0], but the counts do not wrap. This convention lets the implementation dis-
tinguish a full buffer (nwrite == nread+PIPESIZE) from an empty buffer nwrite ==

nread), but it means that indexing into the buffer must use buf[nread % PIPESIZE]

instead of just buf[nread] (and similarly for nwrite). Let’s suppose that calls to
piperead and pipewrite happen simultaneously on two different CPUs.

Pipewrite (5880) begins by acquiring the pipe’s lock, which protects the counts,
the data, and their associated invariants. Piperead (5901) then tries to acquire the lock
too, but cannot. It spins in acquire (1474) waiting for the lock. While piperead waits,
pipewrite loops over the bytes being written—addr[0], addr[1], ..., addr[n-1]—
adding each to the pipe in turn (5894). During this loop, it could happen that the
buffer fills (5886). In this case, pipewrite calls wakeup to alert any sleeping readers to
the fact that there is data waiting in the buffer and then sleeps on &p->nwrite to wait
for a reader to take some bytes out of the buffer. Sleep releases p->lock as part of
putting pipewrite’s process to sleep.

Now that p->lock is available, piperead manages to acquire it and start running
in earnest: it finds that p->nread != p->nwrite (5906) (pipewrite went to sleep be-
cause p->nwrite == p->nread+PIPESIZE (5886)) so it falls through to the for loop,
copies data out of the pipe (5913-5917), and increments nread by the number of bytes
copied. That many bytes are now available for writing, so piperead calls wakeup (5918)

to wake any sleeping writers before it returns to its caller. Wakeup finds a process
sleeping on &p->nwrite, the process that was running pipewrite but stopped when
the buffer filled. It marks that process as RUNNABLE.

The pipe code uses separate sleep channels for reader and writer ( p->nread and
p->nwrite); this might make the system more efficient in the unlikely event that there
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are lots of readers and writers waiting for the same pipe. The pipe code sleeps inside
a loop checking the sleep condition; if there are multiple readers or writers, all but the
first process to wake up will see the condition is still false and sleep again.

Code: Wait and exit

Sleep and wakeup can be used in many kinds of situations involving a condition that
can be checked needs to be waited for. As we saw in Chapter 0, a parent process can
call wait to wait for a child to exit. In xv6, when a child exits, it does not die imme-
diately. Instead, it switches to the ZOMBIE process state until the parent calls wait to
learn of the exit. The parent is then responsible for freeing the memory associated
with the process and preparing the struct proc for reuse. Each process structure
keeps a pointer to its parent in p->parent. If the parent exits before the child, the ini-
tial process init adopts the child and waits for it. This step is necessary to make sure
that some process cleans up after the child when it exits. All the process structures are
protected by ptable.lock.

Wait begins by acquiring ptable.lock. Then it scans the process table looking
for children. If wait finds that the current process has children but that none of them
have exited, it calls sleep to wait for one of the children to exit (2389) and loops.
Here, the lock being released in sleep is ptable.lock, the special case we saw above.

Exit acquires ptable.lock and then wakes the current process’s parent (2326).
This may look premature, since exit has not marked the current process as a ZOMBIE

yet, but it is safe: although the parent is now marked as RUNNABLE, the loop in wait

cannot run until exit releases ptable.lock by calling sched to enter the scheduler,
so wait can’t look at the exiting process until after the state has been set to ZOMBIE

(2338). Before exit reschedules, it reparents all of the exiting process’s children, passing
them to the initproc (2328-2335). Finally, exit calls sched to relinquish the CPU.

Now the scheduler can choose to run the exiting process’s parent, which is asleep
in wait (2389). The call to sleep returns holding ptable.lock; wait rescans the pro-
cess table and finds the exited child with state == ZOMBIE. (2332). It records the child’s
pid and then cleans up the struct proc, freeing the memory associated with the pro-
cess (2368-2376).

The child process could have done most of the cleanup during exit, but it is im-
portant that the parent process be the one to free p->kstack and p->pgdir: when the
child runs exit, its stack sits in the memory allocated as p->kstack and it uses its
own pagetable. They can only be freed after the child process has finished running for
the last time by calling swtch (via sched). This is one reason that the scheduler proce-
dure runs on its own stack rather than on the stack of the thread that called sched.

Real world

The xv6 scheduler implements a simple scheduling policy, which runs each pro-
cess in turn. This policy is called round robin. Real operating systems implement
more sophisticated policies that, for example, allow processes to have priorities. The
idea is that a runnable high-priority process will be preferred by the scheduler over a
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runnable low-priority thread. These policies can become complex quickly because
there are often competing goals: for example, the operating might also want to guaran-
tee fairness and high-throughput. In addition, complex policies may lead to unintend-
ed interactions such as priority inversion and convoys. Priority inversion can
happen when a low-priority and high-priority process share a lock, which when ac-
quired by the low-priority process can cause the high-priority process to not run. A
long convoy can form when many high-priority processes are waiting for a low-priori-
ty process that acquires a shared lock; once a convoy has formed they can persist for
long period of time. To avoid these kinds of problems additional mechanisms are nec-
essary in sophisticated schedulers.

Sleep and wakeup are a simple and effective synchronization method, but there
are many others. The first challenge in all of them is to avoid the ‘‘missed wakeups’’
problem we saw at the beginning of the chapter. The original Unix kernel’s sleep

simply disabled interrupts, which sufficed because Unix ran on a single-CPU system.
Because xv6 runs on multiprocessors, it adds an explicit lock to sleep. FreeBSD’s
msleep takes the same approach. Plan 9’s sleep uses a callback function that runs
with the scheduling lock held just before going to sleep; the function serves as a last
minute check of the sleep condition, to avoid missed wakeups. The Linux kernel’s
sleep uses an explicit process queue instead of a wait channel; the queue has its own
internal lock.

Scanning the entire process list in wakeup for processes with a matching chan is
inefficient. A better solution is to replace the chan in both sleep and wakeup with a
data structure that holds a list of processes sleeping on that structure. Plan 9’s sleep

and wakeup call that structure a rendezvous point or Rendez. Many thread libraries re-
fer to the same structure as a condition variable; in that context, the operations sleep

and wakeup are called wait and signal. All of these mechanisms share the same fla-
vor: the sleep condition is protected by some kind of lock dropped atomically during
sleep.

The implementation of wakeup wakes up all processes that are waiting on a par-
ticular channel, and it might be the case that many processes are waiting for that par-
ticular channel. The operating system will schedules all these processes and they will
race to check the sleep condition. Processes that behave in this way are sometimes
called a thundering herd, and it is best avoided. Most condition variables have two
primitives for wakeup: signal, which wakes up one process, and broadcast, which
wakes up all processes waiting.

Semaphores are another common coordination mechanism. A semaphore is an
integer value with two operations, increment and decrement (or up and down). It is
aways possible to increment a semaphore, but the semaphore value is not allowed to
drop below zero: a decrement of a zero semaphore sleeps until another process incre-
ments the semaphore, and then those two operations cancel out. The integer value
typically corresponds to a real count, such as the number of bytes available in a pipe
buffer or the number of zombie children that a process has. Using an explicit count as
part of the abstraction avoids the ‘‘missed wakeup’’ problem: there is an explicit count
of the number of wakeups that have occurred. The count also avoids the spurious
wakeup and thundering herd problems.
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Exercises

1. Sleep has to check lk != &ptable.lock to avoid a deadlock (2517-2520). It could elimi-
nate the special case by replacing

if(lk != &ptable.lock){

acquire(&ptable.lock);

release(lk);

}

with

release(lk);

acquire(&ptable.lock);

Doing this would break sleep. How?

2. Most process cleanup could be done by either exit or wait, but we saw above that
exit must not free p->stack. It turns out that exit must be the one to close the
open files. Why? The answer involves pipes.

3. Implement semaphores in xv6. You can use mutexes but do not use sleep and
wakeup. Replace the uses of sleep and wakeup in xv6 with semaphores. Judge the re-
sult.
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Chapter 5

File system

The purpose of a file system is to organize and store data. File systems typically
support sharing of data among users and applications, as well persistence so that
data is still available after a reboot.

The xv6 file system provides Unix-like files, directories, and pathnames (see Chap-
ter 0), and stores its data on an IDE disk for persistence (see Chapter 2). The file sys-
tem addresses several challenges:

• The file system needs on-disk data structures to represent the tree of named di-
rectories and files, to record the identities of the blocks that hold each file’s con-
tent, and to record which areas of the disk are free.

• The file system must support crash recovery. That is, if a crash (e.g., power
failure) occurs, the file system must still work correctly after a restart. The risk is
that a crash might interrupt a sequence of updates and leave inconsistent on-disk
data structures (e.g., a block that is both used in a file and marked free).

• Different processes may operate on the file system at the same time, and must co-
ordinate to maintain invariants.

• Accessing a disk is orders of magnitude slower than accessing memory, so the file
system must maintain an in-memory cache of popular blocks.

The rest of this chapter explains how xv6 addresses these challenges.

Overview

The xv6 file system implementation is organized in 6 layers, as shown in Figure
5-1. The lowest layer reads and writes blocks on the IDE disk through the buffer
cache, which synchronizes access to disk blocks, making sure that only one kernel pro-
cess at a time can edit the file system data stored in any particular block. The second
layer allows higher layers to wrap updates to several blocks in a transaction, to en-
sure that the blocks are updated atomically (i.e., all of them are updated or none).
The third layer provides unnamed files, each represented using an inode and a se-
quence of blocks holding the file’s data. The fourth layer implements directories as a
special kind of inode whose content is a sequence of directory entries, each of which
contains a name and a reference to the named file’s inode. The fifth layer provides hi-
erarchical path names like /usr/rtm/xv6/fs.c, using recursive lookup. The final lay-
er abstracts many Unix resources (e.g., pipes, devices, files, etc.) using the file system
interface, simplifying the lives of application programmers.

The file system must have a plan for where it stores inodes and content blocks on
the disk. To do so, xv6 divides the disk into several sections, as shown in Figure 5-2.
The file system does not use block 0 (it holds the boot sector). Block 1 is called the
superblock; it contains metadata about the file system (the file system size in blocks,
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Figure 5-1. Layers of the xv6 file system.

the number of data blocks, the number of inodes, and the number of blocks in the
log). Blocks starting at 2 hold inodes, with multiple inodes per block. After those
come bitmap blocks tracking which data blocks are in use (i.e., which are used in of
some file). Most of the remaining blocks are data blocks, which hold file and directory
contents. The blocks at the very end of the disk hold the log for transactions.

The rest of this chapter discusses each layer, starting from the bottom. Look out
for situations where well-chosen abstractions at lower layers ease the design of higher
ones. The file system is a good example of how well-designed abstractions lead to sur-
prising generality.

Buffer cache Layer

The buffer cache has two jobs: (1) synchronize access to disk blocks to ensure
that only one copy of a block is in memory and that only one kernel thread at a time
uses that copy; (2) cache popular blocks so that they don’t to be re-read from the slow
disk. The code is in bio.c.

The main interface exported by the buffer cache consists of bread and bwrite;
the former obtains a buffer containing a copy of a block which can be read or modi-
fied in memory, and the latter writes a modified buffer to the appropriate block on the
disk. A kernel thread must release a buffer by calling brelse when it is done with it.

The buffer cache synchronizes access to each block by allowing at most one ker-
nel thread to have a reference to the block’s buffer. If one kernel thread has obtained a
reference to a buffer but hasn’t yet released it, other threads’ calls to bread for the
same block will wait. Higher file system layers rely on the buffer cache’s block sychro-
nization to help them maintain invariants.

The buffer cache has a fixed number of buffers to hold disk blocks, which means
that if the file system asks for a block that is not already in the cache, the buffer cache
must recycle a buffer currently holding some other block. The buffer cache recycles the
least recently used buffer for the new block. The assumption is that the least recently
used buffer is the one least likely to be used again soon.
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Figure 5-2. Structure of the xv6 file system. The header fs.h (3550) contains constants and data struc-

tures describing the exact layout of the file system.

Code: Buffer cache

The buffer cache is a doubly-linked list of buffers. The function binit, called by
main (1229), initializes the list with the NBUF buffers in the static array buf (3900-3909).
All other access to the buffer cache refers to the linked list via bcache.head, not the
buf array.

A buffer has three state bits associated with it. B_VALID indicates that the buffer
contains a valid copy of the block. B_DIRTY indicates that the buffer content has been
modified and needs to be written to the disk. B_BUSY indicates that some kernel
thread has a reference to this buffer and has not yet released it.

Bread (3952) calls bget to get a buffer for the given sector (3956). If the buffer
needs to be read from disk, bread calls iderw to do that before returning the buffer.

Bget (3916) scans the buffer list for a buffer with the given device and sector num-
bers (3923-3934). If there is such a buffer, and the buffer is not busy, bget sets the
B_BUSY flag and returns (3926-3933). If the buffer is already in use, bget sleeps on the
buffer to wait for its release. When sleep returns, bget cannot assume that the buffer
is now available. In fact, since sleep released and reacquired buf_table_lock, there
is no guarantee that b is still the right buffer: maybe it has been reused for a different
disk sector. Bget has no choice but to start over (3932), hoping that the outcome will
be different this time.

If bget didn’t have the goto statement, then the race in Figure 5-3 could occur.
The first process has a buffer and has loaded sector 3 in it. Now two other processes
come along. The first one does a get for buffer 3 and sleeps in the loop for cached
blocks. The second one does a get for buffer 4, and could sleep on the same buffer
but in the loop for freshly allocated blocks because there are no free buffers and the
buffer that holds 3 is the one at the front of the list and is selected for reuse. The
first process releases the buffer and wakeup happens to schedule process 3 first, and it
will grab the buffer and load sector 4 in it. When it is done it will release the buffer
(containing sector 4) and wakeup process 2. Without the goto statement process 2
will mark the buffer BUSY, and return from bget, but the buffer contains sector 4, in-
stead of 3. This error could result in all kinds of havoc, because sectors 3 and 4 have
different content; xv6 uses them for storing inodes.

If there is no buffer for the given sector, bget must make one, possibly reusing a
buffer that held a different sector. It scans the buffer list a second time, looking for a
block that is not busy: any such block can be used (3936-3938). Bget edits the block
metadata to record the new device and sector number and mark the block busy before
returning the block (3941-3943). Note that the assignment to flags not only sets the
B_BUSY bit but also clears the B_VALID and B_DIRTY bits, making sure that bread will
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Figure 5-3. A race resulting in process 3 receiving a buffer containing block 4, even though it asked for

block 3.

refresh the buffer data from disk rather than use the previous block’s contents.
Because the buffer cache is used for synchronization, it is important that there is

only ever one buffer for a particular disk sector. The assignments (3939-3941) are only
safe because bget’s first loop determined that no buffer already existed for that sector,
and bget has not given up buf_table_lock since then.

If all the buffers are busy, something has gone wrong: bget panics. A more
graceful response might be to sleep until a buffer became free, though there would
then be a possibility of deadlock.

Once bread has returned a buffer to its caller, the caller has exclusive use of the
buffer and can read or write the data bytes. If the caller does write to the data, it must
call bwrite to write the changed data to disk before releasing the buffer. Bwrite (3964)

sets the B_DIRTY flag and calls iderw to write the buffer to disk.
When the caller is done with a buffer, it must call brelse to release it. (The name

brelse, a shortening of b-release, is cryptic but worth learning: it originated in Unix
and is used in BSD, Linux, and Solaris too.) Brelse (3974) moves the buffer from its
position in the linked list to the front of the list (3981-3986), clears the B_BUSY bit, and
wakes any processes sleeping on the buffer. Moving the buffer has the effect that the
buffers are ordered by how recently they were used (meaning released): the first buffer
in the list is the most recently used, and the last is the least recently used. The two
loops in bget take advantage of this: the scan for an existing buffer must process the
entire list in the worst case, but checking the most recently used buffers first (starting
at bcache.head and following next pointers) will reduce scan time when there is
good locality of reference. The scan to pick a buffer to reuse picks the least recently
used block by scanning backward (following prev pointers).
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Logging layer

One of the most interesting aspects of file system design is crash recovery. The
problem arises because many file system operations involve multiple writes to the disk,
and a crash after a subset of the writes may leave the on-disk file system in an incon-
sistent state. For example, depending on the order of the disk writes, a crash during file
deletion may either leave a directory entry pointing to a free inode, or it may leave an
allocated but unreferenced inode. The latter is relatively benign, but a directory entry
that refers to a freed inode is likely to cause serious problems after a reboot.

Xv6 solves the problem of crashes during file system operations with a simple ver-
sion of logging. An xv6 system call does not directly write the on-disk file system data
structures. Instead, it places a description of all the disk writes it wishes to make in a
log on the disk. Once the system call has logged its writes, it writes a special commit
record to the disk indicating the the log contains a complete operation. At that point
the system call copies the writes to the on-disk file system data structures. After those
writes have completed, the system call erases the log on disk.

If the system should crash and reboot, the file system code recovers from the
crash as follows, before running any processes. If the log is marked as containing a
complete operation, then the recovery code copies the writes to where they belong in
the on-disk file system. If the log is not marked as containing a complete operation,
the recovery code ignores it. In either case, the recovery code finishes by erasing the
log.

Why does xv6’s log solve the problem of crashes during file system operations? If
the crash occurs before the operation commits, then the log on disk will not be
marked as complete, the recovery code will ignore it, and the state of the disk will be
as if the operation had not even started. If the crash occurs after the operation com-
mits, then recovery will replay all of the operation’s writes, perhaps repeating them if
the operation had started to write them to the on-disk data structure. In either case,
the log makes operations atomic with respect to crashes: after recovery, either all of the
operation’s writes appear on the disk, or none of them appear.

Log design

The log resides at a known fixed location at the very end of the disk. It consists
of a header block followed by a sequence of data blocks. The header block contains an
array of sector number, one for each of the logged data blocks. The header block also
contains the count of logged blocks. Xv6 writes the header block when a transaction
commits, but not before, and sets the count to zero after copying the logged blocks to
the file system. Thus a crash midway through a transaction will result in a count of
zero in the log’s header block; a crash after a commit will result in a non-zero count.

Each system call’s code indicates the start and end of the sequence of writes that
must be atomic; we’ll call such a sequence a transaction, though it is much simpler
than a database transaction. Only one system call can be in a transaction at any one
time: other processes must wait until any ongoing transaction has finished. Thus the
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log holds at most one transaction at a time.
Xv6 only allows a single transaction at a time in order to avoid the following kind

of race that could occur if concurrent transactions were allowed. Suppose transaction
X has written a modification to an inode into the log. Concurrent transaction Y then
reads a different inode in the same block, updates that inode, writes the inode block to
the log, and commits. It would be a disaster if the commit of Y write X’s modified in-
ode to the file system, since X has not yet committed. There are sophisticated ways to
solve this problem; xv6 solves it by outlawing concurrent transactions.

Xv6 allows read-only system calls to execute concurrently with a transaction. In-
ode locks cause the transaction to appear atomic to the read-only system call.

Xv6 dedicates a fixed amount of space on the disk to hold the log. No system
call can be allowed to write more distinct blocks than there is space in the log. This is
not a problem for most system calls, but two of them can potentially write many
blocks: write and unlink. A large file write may write many data blocks and many
bitmap blocks as well as an inode block; unlinking a large file might write many
bitmap blocks and an inode. Xv6’s write system call breaks up large writes into multi-
ple smaller writes that fit in the log, and unlink doesn’t cause problems because in
practice the xv6 file system uses only one bitmap block.

Code: logging

A typical use of the log in a system call looks like this:

begin_trans();

...

bp = bread(...);

bp->data[...] = ...;

log_write(bp);

...

commit_trans();

begin_trans (4125) waits until it obtains exclusive use of the log and then returns.
log_write (4159) acts as a proxy for bwrite; it appends the block’s new content to

the log and records the block’s sector number. log_write leaves the modified block in
the in-memory buffer cache, so that subsequent reads of the block during the transac-
tion will yield the modified block. log_write notices when a block is written multiple
times during a single transaction, and overwrites the block’s previous copy in the log.

commit_trans (4136) first write’s the log’s header block to disk, so that a crash af-
ter this point will cause recovery to re-write the blocks in the log. commit_trans then
calls install_trans (4071) to read each block from the log and write it to the proper
place in the file system. Finally commit_trans writes the log header with a count of
zero, so that a crash after the next transaction starts will result in the recovery code ig-
noring the log.

recover_from_log (4116) is called from initlog (4055), which is called during
boot before the first user process runs. (2494) It reads the log header, and mimics the
actions of commit_trans if the header indicates that the log contains a committed
transaction.
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An example use of the log occurs in filewrite (5152). The transaction looks like
this:

begin_trans();

ilock(f->ip);

r = writei(f->ip, ...);

iunlock(f->ip);

commit_trans();

This code is wrapped in a loop that breaks up large writes into individual transactions
of just a few sectors at a time, to avoid overflowing the log. The call to writei writes
many blocks as part of this transaction: the file’s inode, one or more bitmap blocks,
and some data blocks. The call to ilock occurs after the begin_trans as part of an
overall strategy to avoid deadlock: since there is effectively a lock around each trans-
action, the deadlock-avoiding lock ordering rule is transaction before inode.

Inodes

The term inode can have one of two related meanings. It might refer to the on-
disk data structure containing a file’s size and list of data block numbers. Or ‘‘inode’’
might refer to an in-memory inode, which contains a copy of the on-disk inode as
well as extra information needed within the kernel.

All of the on-disk inodes are packed into a contiguous area of disk called the in-
ode blocks. Every inode is the same size, so it is easy, given a number n, to find the
nth inode on the disk. In fact, this number n, called the inode number or i-number, is
how inodes are identified in the implementation.

The on-disk inode is defined by a struct dinode (3572). The type field distin-
guishes between files, directories, and special files (devices). A type of zero indicates
that an on-disk inode is free.

The kernel keeps the set of active inodes in memory; its struct inode (3613) is
the in-memory copy of a struct dinode on disk. The kernel stores an inode in
memory only if there are C pointers referring to that inode. The ref field counts the
number of C pointers referring to the in-memory inode, and the kernel discards the
inode from memory if the reference count drops to zero. The iget and iput func-
tions acquire and release pointers to an inode, modifying the reference count. Pointers
to an inode can come from file descriptors, current working directories, and transient
kernel code such as exec.

The struct inode that iget returns may not have any useful content. In order
to ensure it holds a copy of the on-disk inode, code must call ilock. This locks the
inode (so that no other process can ilock it) and reads the inode from the disk, if it
has not already been read. iunlock releases the lock on the inode. Separating acqui-
sition of inode pointers from locking helps avoid deadlock in some situations, for ex-
ample during directory lookup. Multiple processes can hold a C pointer to an inode
returned by iget, but only one process can lock the inode at a time.

The inode cache only caches inodes to which kernel code or data structures hold
C pointers. Its main job is really synchronizing access by multiple processes, not
caching. If an inode is used frequently, the buffer cache will probably keep it in mem-
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ory if it isn’t kept by the inode cache.

Code: Block allocator

Inodes points to blocks that must be allocated. xv6’s block allocator maintains a
free bitmap on disk, with one bit per block. A zero bit indicates that the corresponding
block is free; a one bit indicates that it is in use. The bits corresponding to the boot
sector, superblock, inode blocks, and bitmap blocks are always set.

The block allocator provides two functions: balloc allocates a new disk block,
and bfree frees a block. Balloc (4304) starts by calling readsb to read the superblock
from the disk (or buffer cache) into sb. balloc decides which blocks hold the data
block free bitmap by calculating how many blocks are consumed by the boot sector,
the superblock, and the inodes (using BBLOCK). The loop (4312) considers every block,
starting at block 0 up to sb.size, the number of blocks in the file system. It looks for
a block whose bitmap bit is zero, indicating that it is free. If balloc finds such a
block, it updates the bitmap and returns the block. For efficiency, the loop is split into
two pieces. The outer loop reads each block of bitmap bits. The inner loop checks all
BPB bits in a single bitmap block. The race that might occur if two processes try to
allocate a block at the same time is prevented by the fact that the buffer cache only
lets one process use a block at a time.

Bfree (4331) finds the right bitmap block and clears the right bit. Again the exclu-
sive use implied by bread and brelse avoids the need for explicit locking.

Code: Inodes

To allocate a new inode (for example, when creating a file), xv6 calls ialloc

(4402). Ialloc is similar to balloc: it loops over the inode structures on the disk, one
block at a time, looking for one that is marked free. When it finds one, it claims it by
writing the new type to the disk and then returns an entry from the inode cache with
the tail call to iget (4418). Like in balloc, the correct operation of ialloc depends
on the fact that only one process at a time can be holding a reference to bp: ialloc
can be sure that some other process does not simultaneously see that the inode is
available and try to claim it.

Iget (4453) looks through the inode cache for an active entry (ip->ref > 0) with
the desired device and inode number. If it finds one, it returns a new reference to that
inode. (4462-4466). As iget scans, it records the position of the first empty slot (4467-

4468), which it uses if it needs to allocate a new cache entry. In both cases, iget re-
turns one reference to the caller: it is the caller’s responsibility to call iput to release
the inode. It can be convenient for some callers to arrange to call iput multiple times.
The function idup (4488) increments the reference count so that an additional iput call
is required before the inode can be dropped from the cache.

Callers must lock the inode using ilock before reading or writing its metadata or
content. Ilock (4502) uses a now-familiar sleep loop to wait for ip->flag’s I_BUSY bit
to be clear and then sets it (4511-4513). Once ilock has exclusive access to the inode, it
can load the inode metadata from the disk (more likely, the buffer cache) if needed.
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The function iunlock (4534) clears the I_BUSY bit and wakes any processes sleeping in
ilock.

Iput (4552) releases a C pointer to an inode by decrementing the reference count
(4568). If this is the last reference, the inode’s slot in the inode cache is now free and
can be re-used for a different inode.

If iput sees that there are no C pointer references to an inode and that the inode
has no links to it (occurs in no directory), then the inode and its data blocks must be
freed. Iput relocks the inode; calls itrunc to truncate the file to zero bytes, freeing
the data blocks; sets the inode type to 0 (unallocated); writes the change to disk; and
finally unlocks the inode (4555-4567).

The locking protocol in iput deserves a closer look. The first part worth exam-
ining is that when locking ip, iput simply assumed that it would be unlocked, instead
of using a sleep loop. This must be the case, because the caller is required to unlock
ip before calling iput, and the caller has the only reference to it (ip->ref == 1). The
second part worth examining is that iput temporarily releases (4560) and reacquires
(4564) the cache lock. This is necessary because itrunc and iupdate will sleep during
disk i/o, but we must consider what might happen while the lock is not held. Specifi-
cally, once iupdate finishes, the on-disk structure is marked as available for use, and a
concurrent call to ialloc might find it and reallocate it before iput can finish. Ial-

loc will return a reference to the block by calling iget, which will find ip in the
cache, see that its I_BUSY flag is set, and sleep. Now the in-core inode is out of sync
compared to the disk: ialloc reinitialized the disk version but relies on the caller to
load it into memory during ilock. In order to make sure that this happens, iput
must clear not only I_BUSY but also I_VALID before releasing the inode lock. It does
this by zeroing flags (4565).

Code: Inode contents

The on-disk inode structure, struct dinode, contains a size and an array of
block numbers (see Figure 5-4). The inode data is found in the blocks listed in the
dinode’s addrs array. The first NDIRECT blocks of data are listed in the first NDIRECT
entries in the array; these blocks are called direct blocks. The next NINDIRECT

blocks of data are listed not in the inode but in a data block called the indirect

block. The last entry in the addrs array gives the address of the indirect block. Thus
the first 6 kB (NDIRECT×BSIZE) bytes of a file can be loaded from blocks listed in the
inode, while the next 64kB (NINDIRECT×BSIZE) bytes can only be loaded after consult-
ing the indirect block. This is a good on-disk representation but a complex one for
clients. The function bmap manages the representation so that higher-level routines
such as readi and writei, which we will see shortly. Bmap returns the disk block
number of the bn’th data block for the inode ip. If ip does not have such a block yet,
bmap allocates one.

The function bmap (4610) begins by picking off the easy case: the first NDIRECT

blocks are listed in the inode itself (4615-4619). The next NINDIRECT blocks are listed in
the indirect block at ip->addrs[NDIRECT]. Bmap reads the indirect block (4626) and
then reads a block number from the right position within the block (4627). If the block
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Figure 5-4. The representation of a file on disk.

number exceeds NDIRECT+NINDIRECT, bmap panics: callers are responsible for not ask-
ing about out-of-range block numbers.

Bmap allocates block as needed. Unallocated blocks are denoted by a block num-
ber of zero. As bmap encounters zeros, it replaces them with the numbers of fresh
blocks, allocated on demand. (4616-4617, 4624-4625).

Bmap allocates blocks on demand as the inode grows; itrunc frees them, resetting
the inode’s size to zero. Itrunc (4654) starts by freeing the direct blocks (4660-4665) and
then the ones listed in the indirect block (4670-4673), and finally the indirect block itself
(4675-4676).

Bmap makes it easy to write functions to access the inode’s data stream, like readi

and writei. Readi (4702) reads data from the inode. It starts making sure that the off-
set and count are not reading beyond the end of the file. Reads that start beyond the
end of the file return an error (4713-4714) while reads that start at or cross the end of
the file return fewer bytes than requested (4715-4716). The main loop processes each
block of the file, copying data from the buffer into dst (4718-4723). The function
writei (4752) is identical to readi, with three exceptions: writes that start at or cross
the end of the file grow the file, up to the maximum file size (4765-4766); the loop copies
data into the buffers instead of out (4771); and if the write has extended the file, writei
must update its size (4776-4779).

Both readi and writei begin by checking for ip->type == T_DEV. This case
handles special devices whose data does not live in the file system; we will return to
this case in the file descriptor layer.
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The function stati (4274) copies inode metadata into the stat structure, which is
exposed to user programs via the stat system call.

Code: directory layer

The directory layer is simple, because a directory is nothing more that a special
kind of file. Its inode has type T_DIR and its data is a sequence of directory entries.
Each entry is a struct dirent (3596), which contains a name and an inode number.
The name is at most DIRSIZ (14) characters; if shorter, it is terminated by a NUL (0)
byte. Directory entries with inode number zero are free.

The function dirlookup (4812) searches a directory for an entry with the given
name. If it finds one, it returns a pointer to the corresponding inode, unlocked, and
sets *poff to the byte offset of the entry within the directory, in case the caller wishes
to edit it. If dirlookup finds an entry with the right name, it updates *poff, releases
the block, and returns an unlocked inode obtained via iget. Dirlookup is the reason
that iget returns unlocked inodes. The caller has locked dp, so if the lookup was for
., an alias for the current directory, attempting to lock the inode before returning
would try to re-lock dp and deadlock. (There are more complicated deadlock scenar-
ios involving multiple processes and .., an alias for the parent directory; . is not the
only problem.) The caller can unlock dp and then lock ip, ensuring that it only holds
one lock at a time.

The function dirlink (4852) writes a new directory entry with the given name
and inode number into the directory dp. If the name already exists, dirlink returns
an error (4858-4862). The main loop reads directory entries looking for an unallocated
entry. When it finds one, it stops the loop early (4823-4824), with off set to the offset of
the available entry. Otherwise, the loop ends with off set to dp->size. Either way,
dirlink then adds a new entry to the directory by writing at offset off (4872-4875).

Code: Path names

Like directories, path names require little extra code, because they just call dir-
lookup recursively, using namei and related functions. Namei (4989) evaluates path as a
hierarchical path name and returns the corresponding inode. The function nameipar-

ent is a variant: it stops before the last element, returning the inode of the parent di-
rectory and copying the final element into name. Both call the generalized function
namex to do the real work.

Namex (4954) starts by deciding where the path evaluation begins. If the path be-
gins with a slash, evaluation begins at the root; otherwise, the current directory (4958-

4961). Then it uses skipelem to consider each element of the path in turn (4963). Each
iteration of the loop must look up name in the current inode ip. The iteration begins
by locking ip and checking that it is a directory. If not, the lookup fails (4964-4968).
(Locking ip is necessary not because ip->type can change underfoot—it can’t—but
because until ilock runs, ip->type is not guaranteed to have been loaded from disk.)
If the call is nameiparent and this is the last path element, the loop stops early, as per
the definition of nameiparent; the final path element has already been copied into
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name, so namex need only return the unlocked ip (4969-4973). Finally, the loop looks for
the path element using dirlookup and prepares for the next iteration by setting
ip.=.next (4974-4979). When the loop runs out of path elements, it returns ip.

File descriptor layer

One of the cool aspect of the Unix interface is that most resources in Unix are
represented as a file, including devices such as the console, pipes, and of course, real
files. The file descriptor layer is the layer that achieves this uniformity.

Xv6 gives each process its own table of open files, or file descriptors, as we saw in
Chapter 0. Each open file is represented by a struct file (3600), which is a wrapper
around either an inode or a pipe, plus an i/o offset. Each call to open creates a new
open file (a new struct file): if multiple processes open the same file independently,
the different instances will have different i/o offsets. On the other hand, a single open
file (the same struct file) can appear multiple times in one process’s file table and
also in the file tables of multiple processes. This would happen if one process used
open to open the file and then created aliases using dup or shared it with a child using
fork. A reference count tracks the number of references to a particular open file. A
file can be open for reading or writing or both. The readable and writable fields
track this.

All the open files in the system are kept in a global file table, the ftable. The file
table has a function to allocate a file (filealloc), create a duplicate reference
(filedup), release a reference (fileclose), and read and write data (fileread and
filewrite).

The first three follow the now-familiar form. Filealloc (5021) scans the file table
for an unreferenced file (f->ref == 0) and returns a new reference; filedup (5039) in-
crements the reference count; and fileclose (5052) decrements it. When a file’s refer-
ence count reaches zero, fileclose releases the underlying pipe or inode, according to
the type.

The functions filestat, fileread, and filewrite implement the stat, read,
and write operations on files. Filestat (5079) is only allowed on inodes and calls
stati. Fileread and filewrite check that the operation is allowed by the open
mode and then pass the call through to either the pipe or inode implementation. If
the file represents an inode, fileread and filewrite use the i/o offset as the offset
for the operation and then advance it (5112-5113, 5165-5166). Pipes have no concept of off-
set. Recall that the inode functions require the caller to handle locking (5082-5084, 5111-

5114, 5164-5178). The inode locking has the convenient side effect that the read and write
offsets are updated atomically, so that multiple writing to the same file simultaneously
cannot overwrite each other’s data, though their writes may end up interlaced.

Code: System calls

With the functions that the lower layers provide the implementation of most sys-
tem calls is trivial (see sysfile.c). There are a few calls that deserve a closer look.

The functions sys_link and sys_unlink edit directories, creating or removing
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references to inodes. They are another good example of the power of using transac-
tions. Sys_link (5313) begins by fetching its arguments, two strings old and new (5318).
Assuming old exists and is not a directory (5320-5330), sys_link increments its ip-

>nlink count. Then sys_link calls nameiparent to find the parent directory and
final path element of new (5336) and creates a new directory entry pointing at old’s in-
ode (5339). The new parent directory must exist and be on the same device as the ex-
isting inode: inode numbers only have a unique meaning on a single disk. If an error
like this occurs, sys_link must go back and decrement ip->nlink.

Transactions simplify the implementation because it requires updating multiple
disk blocks, but we don’t have to worry about the order in which we do them. They ei-
ther will all succeed or none. For example, without transactions, updating ip->nlink

before creating a link, would put the file system temporarily in an unsafe state, and a
crash in between could result in havoc. With transactions we don’t have to worry
about this.

Sys_link creates a new name for an existing inode. The function create (5457)

creates a new name for a new inode. It is a generalization of the three file creation
system calls: open with the O_CREATE flag makes a new ordinary file, mkdir makes a
new directoryy, and mkdev makes a new device file. Like sys_link, create starts by
caling nameiparent to get the inode of the parent directory. It then calls dirlookup

to check whether the name already exists (5467). If the name does exist, create’s be-
havior depends on which system call it is being used for: open has different semantics
from mkdir and mkdev. If create is being used on behalf of open (type == T_FILE)
and the name that exists is itself a regular file, then open treats that as a success, so
create does too (5471). Otherwise, it is an error (5472-5473). If the name does not al-
ready exist, create now allocates a new inode with ialloc (5476). If the new inode is
a directory, create initializes it with . and .. entries. Finally, now that the data is
initialized properly, create can link it into the parent directory (5489). Create, like
sys_link, holds two inode locks simultaneously: ip and dp. There is no possibility of
deadlock because the inode ip is freshly allocated: no other process in the system will
hold ip’s lock and then try to lock dp.

Using create, it is easy to implement sys_open, sys_mkdir, and sys_mknod.
Sys_open (5501) is the most complex, because creating a new file is only a small part of
what it can do. If open is passed the O_CREATE flag, it calls create (5512). Otherwise,
it calls namei (5517). Create returns a locked inode, but namei does not, so sys_open

must lock the inode itself. This provides a convenient place to check that directories
are only opened for reading, not writing. Assuming the inode was obtained one way
or the other, sys_open allocates a file and a file descriptor (5526) and then fills in the
file (5534-5538). Note that no other process can access the partially initialized file since it
is only in the current process’s table.

Chapter 4 examined the implementation of pipes before we even had a file sys-
tem. The function sys_pipe connects that implementation to the file system by pro-
viding a way to create a pipe pair. Its argument is a pointer to space for two integers,
where it will record the two new file descriptors. Then it allocates the pipe and in-
stalls the file descriptors.
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Real world

The buffer cache in a real-world operating system is significantly more complex
than xv6’s, but it serves the same two purposes: caching and synchronizing access to
the disk. Xv6’s buffer cache, like V6’s, uses a simple least recently used (LRU) eviction
policy; there are many more complex policies that can be implemented, each good for
some workloads and not as good for others. A more efficient LRU cache would elimi-
nate the linked list, instead using a hash table for lookups and a heap for LRU evic-
tions. Modern buffer caches are typically integrated with the virtual memory system
to support memory-mapped files.

Xv6’s logging system is woefully inefficient. It does not allow concurrent updating
system calls, even when the system calls operate on entirely different parts of the file
system. It logs entire blocks, even if only a few bytes in a block are changed. It per-
forms synchronous log writes, a block at a time, each of which is likely to require an
entire disk rotation time. Real logging systems address all of these problems.

Logging is not the only way to provide crash recovery. Early file systems used a
scavenger during reboot (for example, the UNIX fsck program) to examine every file
and directory and the block and inode free lists, looking for and resolving inconsisten-
cies. Scavenging can take hours for large file systems, and there are situations where it
is not possible to guess the correct resolution of an inconsistency. Recovery from a log
is much faster and is correct.

Xv6 uses the same basic on-disk layout of inodes and directories as early UNIX;
this scheme has been remarkably persistent over the years. BSD’s UFS/FFS and Linux’s
ext2/ext3 use essentially the same data structures. The most inefficient part of the file
system layout is the directory, which requires a linear scan over all the disk blocks dur-
ing each lookup. This is reasonable when directories are only a few disk blocks, but is
expensive for directories holding many files. Microsoft Windows’s NTFS, Mac OS X’s
HFS, and Solaris’s ZFS, just to name a few, implement a directory as an on-disk bal-
anced tree of blocks. This complicated but guarantees logarithmic-time directory
lookups.

Xv6 is naive about disk failures: if a disk operation fails, xv6 panics. Whether this
is reasonable depends on the hardware: if an operating systems sits atop special hard-
ware that uses redundancy to mask disk failures, perhaps the operating system sees
failures so infrequently that panicking is okay. On the other hand, operating systems
using plain disks should expect failures and handle them more gracefully, so that the
loss of a block in one file doesn’t affect the use of the rest of the files system.

Xv6 requires that the file system fit on one disk device and not change in size. As
large databases and multimedia files drive storage requirements ever higher, operating
systems are developing ways to eliminate the ‘‘one disk per file system’’ bottleneck. The
basic approach is to combine many disks into a single logical disk. Hardware solutions
such as RAID are still the most popular, but the current trend is moving toward im-
plementing as much of this logic in software as possible. These software implementa-
tions typically allowing rich functionality like growing or shrinking the logical device
by adding or removing disks on the fly. Of course, a storage layer that can grow or
shrink on the fly requires a file system that can do the same: the fixed-size array of in-
ode blocks used by Unix file systems does not work well in such environments. Sepa-
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rating disk management from the file system may be the cleanest design, but the com-
plex interface between the two has led some systems, like Sun’s ZFS, to combine them.

Xv6’s file system lacks many other features in today file systems; for example, it
lacks support for snapshots and incremental backup.

Xv6 has two different file implementations: pipes and inodes. Modern Unix sys-
tems have many: pipes, network connections, and inodes from many different types of
file systems, including network file systems. Instead of the if statements in fileread

and filewrite, these systems typically give each open file a table of function pointers,
one per operation, and call the function pointer to invoke that inode’s implementation
of the call. Network file systems and user-level file systems provide functions that turn
those calls into network RPCs and wait for the response before returning.

Exercises

1. why panic in balloc? Can we recover?
2. why panic in ialloc? Can we recover?
3. inode generation numbers.
4. Why doesn’t filealloc panic when it runs out of files? Why is this more com-

mon and therefore worth handling?
5. Suppose the file corresponding to ip gets unlinked by another process between

sys_link’s calls to iunlock(ip) and dirlink. Will the link be created correctly?
Why or why not?

6. create makes four function calls (one to ialloc and three to dirlink) that
it requires to succeed. If any doesn’t, create calls panic. Why is this acceptable?
Why can’t any of those four calls fail?

7. sys_chdir calls iunlock(ip) before iput(cp->cwd), which might try to lock
cp->cwd, yet postponing iunlock(ip) until after the iput would not cause deadlocks.
Why not?
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Appendix A

PC hardware

This appendix describes personal computer (PC) hardware, the platform on which
xv6 runs.

A PC is a computer that adheres to several industry standards, with the goal that
a given piece of software can run on PCs sold by multiple vendors. These standards
evolve over time and a PC from 1990s doesn’t look like a PC now.

From the outside a PC is a box with a keyboard, a screen, and various devices
(e.g., CD-rom, etc.). Inside the box is a circuit board (the ‘‘motherboard’’) with CPU
chips, memory chips, graphic chips, I/O controller chips, and busses through which the
chips communicate. The busses adhere to standard protocols (e.g., PCI and USB) so
that devices will work with PCs from multiple vendors.

From our point of view, we can abstract the PC into three components: CPU,
memory, and input/output (I/O) devices. The CPU performs computation, the memo-
ry contains instructions and data for that computation, and devices allow the CPU to
interact with hardware for storage, communication, and other functions.

You can think of main memory as connected to the CPU with a set of wires, or
lines, some for address bits, some for data bits, and some for control flags. To read a
value from main memory, the CPU sends high or low voltages representing 1 or 0 bits
on the address lines and a 1 on the ‘‘read’’ line for a prescribed amount of time and
then reads back the value by interpreting the voltages on the data lines. To write a
value to main memory, the CPU sends appropriate bits on the address and data lines
and a 1 on the ‘‘write’’ line for a prescribed amount of time. Real memory interfaces
are more complex than this, but the details are only important if you need to achieve
high performance.

Processor and memory

A computer’s CPU (central processing unit, or processor) runs a conceptually sim-
ple loop: it consults an address in a register called the program counter, reads a ma-
chine instruction from that address in memory, advances the program counter past the
instruction, and executes the instruction. Repeat. If the execution of the instruction
does not modify the program counter, this loop will interpret the memory pointed at
by the program counter as a sequence of machine instructions to run one after the
other. Instructions that do change the program counter include branches and function
calls.

The execution engine is useless without the ability to store and modify program
data. The fastest storage for data is provided by the processor’s register set. A register
is a storage cell inside the processor itself, capable of holding a machine word-sized
value (typically 16, 32, or 64 bits). Data stored in registers can typically be read or
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written quickly, in a single CPU cycle.
PCs have a processor that implements the x86 instruction set, which was original-

ly defined by Intel and has become a standard. Several manufacturers produce proces-
sors that implement the instruction set. Like all other PC standards, this standard is
also evolving but newer standards are backwards compatible with past standards. The
boot loader has to deal with some of this evolution because every PC processor starts
simulating an Intel 8088, the CPU chip in the original IBM PC released in 1981.
However, for most of xv6 you will be concerned with the modern x86 instruction set.

The modern x86 provides eight general purpose 32-bit registers—%eax, %ebx,
%ecx, %edx, %edi, %esi, %ebp, and %esp—and a program counter %eip (the ‘ in-

struction pointer). The common e prefix stands for extended, as these are 32-bit
extensions of the 16-bit registers %ax, %bx, %cx, %dx, %di, %si, %bp, %sp, and %ip. The
two register sets are aliased so that, for example, %ax is the bottom half of %eax: writ-
ing to %ax changes the value stored in %eax and vice versa. The first four registers
also have names for the bottom two 8-bit bytes: %al and %ah denote the low and high
8 bits of %ax; %bl, %bh, %cl, %ch, %dl, and %dh continue the pattern. In addition to
these registers, the x86 has eight 80-bit floating-point registers as well as a handful of
special-purpose registers like the control registers %cr0, %cr2, %cr3, and %cr4; the
debug registers %dr0, %dr1, %dr2, and %dr3; the segment registers %cs, %ds, %es,
%fs, %gs, and %ss; and the global and local descriptor table pseudo-registers %gdtr

and %ldtr. The control registers and segment registers are important to any operating
system. The floating-point and debug registers are less interesting and not used by
xv6.

Registers are fast but expensive. Most processors provide at most a few tens of
general-purpose registers. The next conceptual level of storage is the main random-ac-
cess memory (RAM). Main memory is 10-100x slower than a register, but it is much
cheaper, so there can be more of it. One reason main memory is relatively slow is that
it is physically separate from the processor chip. An x86 processor has a few dozen
registers, but a typical PC today has gigabytes of main memory. Because of the enor-
mous differences in both access speed and size between registers and main memory,
most processors, including the x86, store copies of recently-accessed sections of main
memory in on-chip cache memory. The cache memory serves as a middle ground be-
tween registers and memory both in access time and in size. Today’s x86 processors
typically have two levels of cache, a small first-level cache with access times relatively
close to the processor’s clock rate and a larger second-level cache with access times in
between the first-level cache and main memory. This table shows actual numbers for
an Intel Core 2 Duo system:

Intel Core 2 Duo E7200 at 2.53 GHz

TODO: Plug in non-made-up numbers!
storage access time size

register 0.6 ns 64 bytes
L1 cache 0.5 ns 64 kilobytes
L2 cache 10 ns 4 megabytes

main memory 100 ns 4 gigabytes
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For the most part, x86 processors hide the cache from the operating system, so we
can think of the processor as having just two kinds of storage—registers and memo-
ry—and not worry about the distinctions between the different levels of the memory
hierarchy.

I/O

Processors must communicate with devices as well as memory. The x86 processor
provides special in and out instructions that read and write values from device ad-
dresses called I/O ports. The hardware implementation of these instructions is essen-
tially the same as reading and writing memory. Early x86 processors had an extra ad-
dress line: 0 meant read/write from an I/O port and 1 meant read/write from main
memory. Each hardware device monitors these lines for reads and writes to its as-
signed range of I/O ports. A device’s ports let the software configure the device, exam-
ine its status, and cause the device to take actions; for example, software can use I/O
port reads and writes to cause the disk interface hardware to read and write sectors on
the disk.

Many computer architectures have no separate device access instructions. Instead
the devices have fixed memory addresses and the processor communicates with the
device (at the operating system’s behest) by reading and writing values at those ad-
dresses. In fact, modern x86 architectures use this technique, called memory-mapped

I/O, for most high-speed devices such as network, disk, and graphics controllers. For
reasons of backwards compatibility, though, the old in and out instructions linger, as
do legacy hardware devices that use them, such as the IDE disk controller, which xv6
uses.
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Appendix B

The boot loader

When an x86 PC boots, it starts executing a program called the BIOS, which is
stored in non-volatile memory on the motherboard. The BIOS’s job is to prepare the
hardware and then transfer control to the operating system. Specifically, it transfers
control to code loaded from the boot sector, the first 512-byte sector of the boot disk.
The boot sector contains the boot loader: instructions that load the kernel into mem-
ory. The BIOS loads the boot sector at memory address 0x7c00 and then jumps (sets
the processor’s %ip) to that address. When the boot loader begins executing, the pro-
cessor is simulating an Intel 8088, and the loader’s job is to put the processor in a
more modern operating mode, to load the xv6 kernel from disk into memory, and
then to transfer control to the kernel. The xv6 boot loader comprises two source files,
one written in a combination of 16-bit and 32-bit x86 assembly (bootasm.S; (8200))
and one written in C (bootmain.c; (8300)).

Code: Assembly bootstrap

The first instruction in the boot loader is cli (8212), which disables processor in-
terrupts. Interrupts are a way for hardware devices to invoke operating system func-
tions called interrupt handlers. The BIOS is a tiny operating system, and it might have
set up its own interrupt handlers as part of the initializing the hardware. But the
BIOS isn’t running anymore—the boot loader is—so it is no longer appropriate or safe
to handle interrupts from hardware devices. When xv6 is ready (in Chapter 2), it will
re-enable interrupts.

The processor is in real mode, in which it simulates an Intel 8088. In real mode
there are eight 16-bit general-purpose registers, but the processor sends 20 bits of ad-
dress to memory. The segment registers %cs, %ds, %es, and %ss provide the additional
bits necessary to generate 20-bit memory addresses from 16-bit registers. When a pro-
gram refers to a memory address, the processor automatically adds 16 times the value
of one of the segment registers; these registers are 16 bits wide. Which segment regis-
ter is usually implicit in the kind of memory reference: instruction fetches use %cs,
data reads and writes use %ds, and stack reads and writes use %ss.
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Xv6 pretends that an x86 instruction uses a virtual address for its memory
operands, but an x86 instruction actually uses a logical address (see Figure B-1). A
logical address consists of a segment selector and an offset, and is sometimes written
as segment:offset. More often, the segment is implicit and the program only directly
manipulates the offset. The segmentation hardware performs the translation described
above to generate a linear address. If the paging hardware is enabled (see Chapter
1), it translates linear addresses to physical addresses; otherwise the processor uses lin-
ear addresses as physical addresses.

The boot loader does not enable the paging hardware; the logical addresses that it
uses are translated to linear addresses by the segmentation harware, and then used di-
rectly as physical addresses. Xv6 configures the segmentation hardware to translate
logical to linear addresses without change, so that they are always equal. For historical
reasons we have used the term virtual address to refer to addresses manipulated by
programs; an xv6 virtual address is the same as an x86 logical address, and is equal to
the linear address to which the segmentation hardware maps it. Once paging is en-
abled, the only interesting address mapping in the system will be linear to physical.

The BIOS does not guarantee anything about the contents of %ds, %es, %ss, so
first order of business after disabling interrupts is to set %ax to zero and then copy
that zero into %ds, %es, and %ss (8215-8218).

A virtual segment:offset can yield a 21-bit physical address, but the Intel 8088
could only address 20 bits of memory, so it discarded the top bit: 0xffff0+0xffff =
0x10ffef, but virtual address 0xffff:0xffff on the 8088 referred to physical address
0x0ffef. Some early software relied on the hardware ignoring the 21st address bit, so
when Intel introduced processors with more than 20 bits of physical address, IBM pro-
vided a compatibility hack that is a requirement for PC-compatible hardware. If the
second bit of the keyboard controller’s output port is low, the 21st physical address bit
is always cleared; if high, the 21st bit acts normally. The boot loader must enable the
21st address bit using I/O to the keyboard controller on ports 0x64 and 0x60 (8220-

8236).
Real mode’s 16-bit general-purpose and segment registers make it awkward for a

program to use more than 65,536 bytes of memory, and impossible to use more than a
megabyte. x86 processors since the 80286 have a protected mode, which allows phys-
ical addresses to have many more bits, and (since the 80386) a ‘‘32-bit’’ mode that
causes registers, virtual addresses, and most integer arithmetic to be carried out with
32 bits rather than 16. The xv6 boot sequence enables protected mode and 32-bit
mode as follows.

In protected mode, a segment register is an index into a segment descriptor

table (see Figure B-2). Each table entry specifies a base physical address, a maximum
virtual address called the limit, and permission bits for the segment. These permis-
sions are the protection in protected mode: the kernel can use them to ensure that a
program uses only its own memory.

xv6 makes almost no use of segments; it uses the paging hardware instead, as
Chapter 1 describes. The boot loader sets up the segment descriptor table gdt (8282-

8285) so that all segments have a base address of zero and the maximum possible limit
(four gigabytes). The table has a null entry, one entry for executable code, and one en-
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try to data. The code segment descriptor has a flag set that indicates that the code
should run in 32-bit mode (0660). With this setup, when the boot loader enters protect-
ed mode, logical addresses map one-to-one to physical addresses.

The boot loader executes an lgdt instruction (8241) to load the processor’s global
descriptor table (GDT) register with the value gdtdesc (8287-8289), which points to the
table gdt.

Once it has loaded the GDT register, the boot loader enables protected mode by
setting the 1 bit (CR0_PE) in register %cr0 (8242-8244). Enabling protected mode does
not immediately change how the processor translates logical to physical addresses; it is
only when one loads a new value into a segment register that the processor reads the
GDT and changes its internal segmentation settings. One cannot directly modify %cs,
so instead the code executes an ljmp (far jump) instruction (8253), which allows a code
segment selector to be specified. The jump continues execution at the next line (8256)

but in doing so sets %cs to refer to the code descriptor entry in gdt. That descriptor
describes a 32-bit code segment, so the processor switches into 32-bit mode. The boot
loader has nursed the processor through an evolution from 8088 through 80286 to
80386.

The boot loader’s first action in 32-bit mode is to initialize the data segment reg-
isters with SEG_KDATA (8258-8261). Logical address now map directly to physical ad-
dresses. The only step left before executing C code is to set up a stack in an unused
region of memory. The memory from 0xa0000 to 0x100000 is typically littered with
device memory regions, and the xv6 kernel expects to be placed at 0x100000. The
boot loader itself is at 0x7c00 through 0x7d00. Essentially any other section of memo-
ry would be a fine location for the stack. The boot loader chooses 0x7c00 (known in
this file as $start) as the top of the stack; the stack will grow down from there, to-
ward 0x0000, away from the boot loader.

Finally the boot loader calls the C function bootmain (8268). Bootmain’s job is to
load and run the kernel. It only returns if something has gone wrong. In that case,
the code sends a few output words on port 0x8a00 (8270-8276). On real hardware, there
is no device connected to that port, so this code does nothing. If the boot loader is
running inside a PC simulator, port 0x8a00 is connected to the simulator itself and
can transfer control back to the simulator. Simulator or not, the code then executes an
infinite loop (8277-8278). A real boot loader might attempt to print an error message
first.
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Code: C bootstrap

The C part of the boot loader, bootmain.c (8300), expects to find a copy of the
kernel executable on the disk starting at the second sector. The kernel is an ELF for-
mat binary, as we have seen in Chapter 1. To get access to the ELF headers, bootmain
loads the first 4096 bytes of the ELF binary (8314). It places the in-memory copy at ad-
dress 0x10000.

The next step is a quick check that this probably is an ELF binary, and not an
uninitialized disk. Bootmain reads the section’s content starting from the disk location
off bytes after the start of the ELF header, and writes to memory starting at address
paddr. Bootmain calls readseg to load data from disk (8338) and calls stosb to zero
the remainder of the segment (8340). Stosb (0492) uses the x86 instruction rep stosb

to initialize every byte of a block of memory.
The kernel has been compiled and linked so that it expects to find itself at virtual

addresses starting at 0x80100000. That is, function call instructions mention destina-
tion addresses that look like 0xf01xxxxx; you can see examples in kernel.asm. This
address is configured in kernel.ld. 0x80100000 is a relatively high address, towards
the end of the 32-bit address space; Chapter 1 explains the reasons for this choice.
There may not be any physical memory at such a high address. Once the kernel starts
executing, it will set up the paging hardware to map virtual addresses starting at
0x80100000 to physical addresses starting at 0x00100000; the kernel assumes that
there is physical memory at this lower address. At this point in the boot process, how-
ever, paging is not enabled. Instead, kernel.ld specifies that the ELF paddr start at
0x00100000, which causes the boot loader to copy the kernel to the low physical ad-
dresses to which the paging hardware will eventually point.

The boot loader’s final step is to call the kernel’s entry point, which is the instruc-
tion at which the kernel expects to start executing. For xv6 the entry address is
0x10000c:

# objdump -f kernel

kernel: file format elf32-i386

architecture: i386, flags 0x00000112:

EXEC_P, HAS_SYMS, D_PAGED

start address 0x0010000c

By convention, the _start symbol specifies the ELF entry point, which is defined in
the file entry.S (1036). Since xv6 hasn’t set up virtual memory yet, xv6’s entry point is
the physical address of entry (1040).

Real world

The boot loader described in this appendix compiles to around 470 bytes of ma-
chine code, depending on the optimizations used when compiling the C code. In or-
der to fit in that small amount of space, the xv6 boot loader makes a major simplify-
ing assumption, that the kernel has been written to the boot disk contiguously starting
at sector 1. More commonly, kernels are stored in ordinary file systems, where they
may not be contiguous, or are loaded over a network. These complications require the
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boot loader to be able to drive a variety of disk and network controllers and under-
stand various file systems and network protocols. In other words, the boot loader itself
must be a small operating system. Since such complicated boot loaders certainly won’t
fit in 512 bytes, most PC operating systems use a two-step boot process. First, a sim-
ple boot loader like the one in this appendix loads a full-featured boot-loader from a
known disk location, often relying on the less space-constrained BIOS for disk access
rather than trying to drive the disk itself. Then the full loader, relieved of the 512-byte
limit, can implement the complexity needed to locate, load, and execute the desired
kernel. Perhaps a more modern design would have the BIOS directly read a larger
boot loader from the disk (and start it in protected and 32-bit mode).

This appendix is written as if the only thing that happens between power on and
the execution of the boot loader is that the BIOS loads the boot sector. In fact the
BIOS does a huge amount of initialization in order to make the complex hardware of
a modern computer look like a traditional standard PC.

Exercises

1. Due to sector granularity, the call to readseg in the text is equivalent to read-

seg((uchar*)0x100000, 0xb500, 0x1000). In practice, this sloppy behavior turns
out not to be a problem Why doesn’t the sloppy readsect cause problems?
2. something about BIOS lasting longer + security problems
3. Suppose you wanted bootmain() to load the kernel at 0x200000 instead of
0x100000, and you did so by modifying bootmain() to add 0x100000 to the va of each
ELF section. Something would go wrong. What?
4. It seems potentially dangerous for the boot loader to copy the ELF header to mem-
ory at the arbitrary location 0x10000. Why doesn’t it call malloc to obtain the memo-
ry it needs?
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