intel.

Intel® 64 and IA-32 Architectures
Software Developer’'s Manual

Volume 2A:
Instruction Set Reference, A-M

NOTE: The Intel 64 and IA-32 Architectures Software Developer’s Manual
consists of five volumes: Basic Architecture, Order Number 253665;
Instruction Set Reference A-M, Order Number 253666; Instruction Set
Reference N-Z, Order Number 253667; System Programming Guide,
Part 1, Order Number 253668; System Programming Guide, Part 2,
Order Number 253669. Refer to all five volumes when evaluating your
design needs.

Order Number: 253666-023US
May 2007

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL PRODUCTS. NO LICENSE,
EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANT-
ED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL'S TERMS AND CONDITIONS OF SALE FOR SUCH
PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER, AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED
WARRANTY, RELATING TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY OR WARRANTIES
RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY
PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. INTEL PRODUCTS ARE NOT INTENDED
FOR USE IN MEDICAL, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS.

Intel may make changes to specifications and product descriptions at any time, without notice.

Developers must not rely on the absence or characteristics of any features or instructions marked “reserved”
or “undefined.” Improper use of reserved or undefined features or instructions may cause unpredictable be-
havior or failure in developer's software code when running on an Intel processor. Intel reserves these fea-
tures or instructions for future definition and shall have no responsibility whatsoever for conflicts or
incompatibilities arising from their unauthorized use.

The Intel® 64 architecture processors may contain design defects or errors known as errata. Current char-
acterized errata are available on request.

Hyper-Threading Technology requires a computer system with an Intel® processor supporting Hyper-
Threading Technology and an HT Technology enabled chipset, BIOS and operating system. Performance will
vary depending on the specific hardware and software you use. For more information, see http://www.in-
tel.com/technology/hyperthread/index.ntm; including details on which processors support HT Technology.

Intel® Virtualization Technology requires a computer system with an enabled Intel® processor, BIOS, virtual
machine monitor (VMM) and for some uses, certain platform software enabled for it. Functionality, perfor-
mance or other benefits will_vary depending on hardware and software configurations. Intel® Virtualization
Technology-enabled BIOS and VMM applications are currently in development.

64-bit computing on Intel architecture requires a computer system with a processor, chipset, BIOS, oper-
ating system, device drivers and applications enabled for Intel™ 64 architecture. Processors will not operate
(including 32-bit operation) without an Intel® 64 architecture-enabled BIOS. Performance will vary de-
pending on your hardware and software configurations. Consult with your system vendor for more infor-
mation.

Enabling Execute Disable Bit functionality requires a PC with a processor with Execute Disable Bit capability
and a supporting operating system. Check with your PC manufacturer on whether your system delivers Ex-
ecute Disable Bit functionality.

Intel, Pentium, Intel Xeon, Intel NetBurst, Intel Core Solo, Intel Core Duo, Intel Core 2 Duo, Intel Core 2
Extreme, Intel Pentium D, Itanium, Intel SpeedStep, MMX, and VTune are trademarks or registered trade-
marks of Intel Corporation or its subsidiaries in the United States and other countries.

*QOther names and brands may be claimed as the property of others.

Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing
your product order.

Copies of documents which have an ordering number and are referenced in this document, or other Intel
literature, may be obtained from:

Intel Corporation
P.O. Box 5937
Denver, CO 80217-9808

or call 1-800-548-4725
or visit Intel’s website at http://www.intel.com

Copyright © 1997-2007 Intel Corporation

i Vol.2A

CONTENTS

PAGE

CHAPTER 1
ABOUT THIS MANUAL
1.1 IA-32 PROCESSORS COVERED IN THISMANUAL ... vi it 1-1
1.2 OVERVIEW OF VOLUME 2A AND 2B: INSTRUCTION SET REFERENCE 1-2
13 NOTATIONAL CONVENTIONS ..ottt 1-3
1.3.1 Bit and Byte Order.v ittt e 1-3
1.3.2 Reserved Bits and Software Compatibility..............cooviiiiiiii i, 1-4
133 INSTrUCTION OPEIaNdS . . o\ttt vttt ettt e e 1-5
134 Hexadecimal and Binary NUMDErS.vii e 1-5
135 Segmented AddresSiNg. . ..o ovit i e e 1-5
136 EXCBPTIONS L\ttt ittt e e e 1-6
137 A New Syntax for CPUID, CR,and MSR Valuescooviiiiiiiiiiiiiinenenns, 1-6
14 RELATED LITERATURE . ..ottt 1-7
CHAPTER 2
INSTRUCTION FORMAT
2.1 INSTRUCTION FORMAT FOR PROTECTED MODE, REAL-ADDRESS MODE, AND

VIRTUAL-8086 MODE 2-1
2.1.1 INStrUCHION PrefiXes . ..ot 2-1
2.1.2 8] Tlo T [T 2-3
213 MOAR/M and SIB BYteS ..o v ittt 2-4
214 Displacement and Immediate Bytescoooiiiiii i 2-4
215 Addressing-Mode Encoding of ModR/MandSIBBytes..............covevvivennn... 2-4
2.2 JA-32E MODE ..\ttt e 2-9
2.2.1 REX P iXES ottt 2-9
2.2.1.1 ENCOING vttt 2-10
2.2.1.2 More on REX Prefix Fieldso v 2-10
2213 DiSPIatEMENt . e e 2-13
2214 Direct Memory-0Offset MOVS.ot e 2-13
2215 IMMEdIateS . e 2-14
22.1.6 RIP-Relative AddresSing. .. v.ve vt e ettt et 2-14
2217 Default 64-Bit Operand Size.o.vviiii i e 2-15
2.2.2 Additional Encodings for Control and Debug Registerscccvvvvivnnnn.. 2-15
CHAPTER 3
INSTRUCTION SET REFERENCE, A-M
3.1 INTERPRETING THE INSTRUCTION REFERENCEPAGES ..o 3-1
3.1.1 INStIUCHION FOMMIat . . oot 3-1
3.1.1.1 Opcode Column in the Instruction Summary Tablecooviats. 3-2
3.1.1.2 Instruction Column in the Opcode Summary Tablecovvvivviiinnns,. 3-3
3.1.1.3 64-bit Mode Column in the Instruction Summary Table......................... 3-6
3.1.1.4 Compatibility/Legacy Mode Column in the Instruction Summary Table........... 3-7
3.1.1.5 Description Column in the Instruction Summary Table..................... ..., 3-7
3.1.1.6 DesCription SECHiON ... vt e 3-7

Vol. 2A i

CONTENTS

PAGE

3.1.1.7 OPEration SECHION. ...\ttt e 3-7
3.1.1.8 Intel® C/C++ Compiler Intrinsics Equivalents Section.............coovviiiininnn 3-11
3.1.19 Flags Affected SECtioN 3-14
3.1.1.10 FPU Flags Affected Section.ovvii i e 3-14
3.1.1.11 Protected Mode EXceptions Section.ccovviiiii i 3-14
3.1.1.12 Real-Address Mode Exceptions Sectionccviiiiiiiiiiii i 3-16
3.1.1.13 Virtual-8086 Mode Exceptions Section.vvveviiiiii it 3-16
3.1.1.14 Floating-Point Exceptions Section.ot 3-16
3.1.1.15 SIMD Floating-Point Exceptions Sectioncovv i 3-17
3.1.1.16 Compatibility Mode Exceptions SECtioN.ovvvi i 3-17
3.1.1.17 64-Bit Mode EXceptions Sectionot 3-17
3.2 INSTRUCTIONS (A-M) . ettt e e e e e e 3-18
AAA—ASCII Adjust After Addition. ..ot e 3-19

AAD—ASCII Adjust AX Before Division.ovvuviiiii i e 3-21

AAM—ASCII Adjust AX After MUItplY. . ..o 3-23

AAS—ASCII Adjust AL After Subtraction. ..o 3-25

ADC—Add WIth Cammy . ot e et it e e e e i 3-27

ADD— A .. ettt e 3-30
ADDPD—Add Packed Double-Precision Floating-Point Values 3-33
ADDPS—Add Packed Single-Precision Floating-Point Values 3-36
ADDSD—Add Scalar Double-Precision Floating-Point Values 3-39
ADDSS—Add Scalar Single-Precision Floating-Point Values 3-42
ADDSUBPD—Packed Double-FP Add/Subtractccoovvviiiiii i 3-45
ADDSUBPS—Packed Single-FP Add/Subtract. ... 3-49
AND—LOGICAI AND ...ttt e e 3-53

iv Vol. 2A

ANDPD—Bitwise Logical AND of Packed Double-Precision Floating-Point Values. .. 3-56
ANDPS—Bitwise Logical AND of Packed Single-Precision Floating-Point Values.... 3-58
ANDNPD—Bitwise Logical AND NOT of Packed Double-Precision

Floating-Point Values e e 3-60
ANDNPS—Bitwise Logical AND NOT of Packed Single-Precision

Floating-Point Valuesot e 3-62
ARPL—Adjust RPL Field of Segment Selector...........cooovviviiiiiiiiinnnnns 3-64
BOUND—Check Array Index Against Bounds.covviiiinininiiiiananns 3-66
BSF—Bit SCan FOrWard.vvv ettt 3-69
BSR—BIt SCaN REVEISE . ..ttt 3-71
BS W AP — Byt S, .ttt e 3-73
o = 1= 3-75
BTC—Bit Test and Complementvv i eaaas 3-78
BTR—Bit Testand ReSetoiii i e 3-81
BTS—Bit Test and ST, ...ttt e 3-84
CALL—Call ProCeAUIe. . . . et et e aenes 3-87
CBW/CWDE/CDQE—Convert Byte to Word/Convert Word to

Doubleword/Convert Doubleword to Quadwordcoovvvvn. 3-105
CLC—Clear Cammy Flag.o v et e 3-106
CLD—Clear Direction FIag. ... vvvve ettt 3-107
CLFLUSH—FIush Cache Linevuv it 3-108
CLI—Clear INterrupt FIag. . ..o 3-110

CONTENTS

PAGE

CLTS—Clear Task-Switched FIaginCRO. ..ot 3-113
CMC—Complement Carry FIagvvveiee e 3-115
CMOVcc—Conditional MOVE ... vvii e 3-116
CMP—Compare TWO Operandscuveriiiiinireiiiiiii e, 3-123
CMPPD—Compare Packed Double-Precision Floating-Point Values............... 3-126
CMPPS—Compare Packed Single-Precision Floating-Point Values................ 3-131
CMPS/CMPSB/CMPSW/CMPSD/CMPSQ—Compare String Operands............... 3-136
CMPSD—Compare Scalar Double-Precision Floating-Point Values 3-142
CMPSS—Compare Scalar Single-Precision Floating-Point Values 3-146
CMPXCHG—Compare and EXChaNge.vviriiiii e 3-150
CMPXCHG8B/CMPXCHG16B—Compare and ExchangeBytes 3-153
COMISD—Compare Scalar Ordered Double-Precision Floating-Point

Values and Set EFLAGSottt 3-156
COMISS—Compare Scalar Ordered Single-Precision Floating-Point Values and Set

B AGS . o 3-159
CPUID—CPU Identification.vv ettt 3-162
CVTDQ2PD—Convert Packed Doubleword Integers to Packed

Double-Precision Floating-Point Valuescoviiiiiciiiinnnne, 3-190
CVTDQ2PS—Convert Packed Doubleword Integers to Packed

Single-Precision Floating-Point Values................cocoiiiiiiinnne 3-192
CVTPD2DQ—Convert Packed Double-Precision Floating-Point Values to

Packed Doubleword INtegers.oviiiiiiii e 3-195
CVTPD2PI—Convert Packed Double-Precision Floating-Point Values to

Packed Doubleword Integers.c.oviiii i e 3-198
CVTPD2PS—Convert Packed Double-Precision Floating-Point Values to

Packed Single-Precision Floating-Point Values0. 3-201
CVTPI2PD—Convert Packed Doubleword Integers to Packed Double-Precision

Floating-Point Values. ..o 3-204
CVTPI2PS—Convert Packed Doubleword Integers to Packed Single-Precision

Floating-Point Values. ... e e 3-207
CVTPS2DQ—Convert Packed Single-Precision Floating-Point Values to Packed

Doubleword INtEGETS ...\ttt e e 3-210
CVTPS2PD—Convert Packed Single-Precision Floating-Point Values to

Packed Double-Precision Floating-Point Values.covvnte 3-213
CVTPS2PI—Convert Packed Single-Precision Floating-Point Values to Packed

Doubleword INtegersovv i e e 3-216
CVTSD2SI—Convert Scalar Double-Precision Floating-Point Value to

Doubleword INtegET . ..o v vt 3-219
CVTSD2SS—Convert Scalar Double-Precision Floating-Point Value to Scalar

Single-Precision Floating-Point Value...............cooiiiiii it 3-222
CVTSI2SD—Convert Doubleword Integer to Scalar Double-Precision

Floating-Point Value. e 3-225
CVTSI2SS—Convert Doubleword Integer to Scalar Single-Precision

Floating-Point Value.o 3-228

Vol.2A v

CONTENTS

vi Vol.2A

PAGE

CVTSS2SD—Convert Scalar Single-Precision Floating-Point Value to Scalar

Double-Precision Floating-Point Value. ..o 3-231
CVTSS2SI—Convert Scalar Single-Precision Floating-Point Value to Doubleword

1= = 3-234
CVTTPD2PI—Convert with Truncation Packed Double-Precision

Floating-Point Values to Packed Doubleword Integers 3-237
CVTTPD2DQ—Convert with Truncation Packed Double-Precision

Floating-Point Values to Packed Doubleword Integers 3-240
CVTTPS2DQ—Convert with Truncation Packed Single-Precision

Floating-Point Values to Packed Doubleword Integers 3-243
CVTTPS2PI—Convert with Truncation Packed Single-Precision Floating-Point

Values to Packed Doubleword Integers.ooivviiiiiiiiiiinnnnns. 3-246
CVTTSD2SI—Convert with Truncation Scalar Double-Precision Floating-Point

Value to Signed Doubleword Integer..........cvvvviiiiiiiiiiiiiininenn, 3-249
CVTTSS2SI—Convert with Truncation Scalar Single-Precision Floating-Point

Value to Doubleword Integer...........covvviiviiiiii i 3-252
CwD/CDQ/CQO0—Convert Word to Doubleword/Convert Doubleword to

T Ta 17) 3-255
DAA—Decimal Adjust AL after Addition. ... 3-257
DAS—Decimal Adjust AL after Subtraction.............c.coiiiiiiiiiiiiii s, 3-259
DEC—Decrement DY 1. .. ittt 3-261
DIV—=UNSIgNed Divideouiii e 3-264
DIVPD—Divide Packed Double-Precision Floating-Point Values................... 3-268
DIVPS—Divide Packed Single-Precision Floating-Point Values.................... 3-271
DIVSD—Divide Scalar Double-Precision Floating-Point Values.................... 3-274
DIVSS—Divide Scalar Single-Precision Floating-Point Values..................... 3-277
EMMS—Empty MMX Technology Stateovviiiii i e 3-280
ENTER—Make Stack Frame for Procedure Parametersc..oovvnen.. 3-282
F2XMT—C0mMPULE 2X-T oottt e i e e e e 3-286
FABS—ADSOIUTE VAIUE . ..o e 3-288
FADD/FADDP/FIADD—AAA. . . .\ttt e 3-290
FBLD—Load Binary Coded Decimalc.cooviiii it 3-294
FBSTP—Store BCD Integer and POp ... vv v e 3-296
FCHS—Change Sign ... cve e e 3-299
FCLEX/FNCLEX—Clear EXCEPtiONS. .. v it i vt e ettt i e 3-301
FCMOVcc—Floating-Point Conditional Move. ... 3-303
FCOMI/FCOMIP/ FUCOMI/FUCOMIP—Compare Floating Point Values and

St EFLAGS. .. e 3-309
010 R 001 T 3-312
FDECSTP—Decrement Stack-Top Pointer.........coovvvviiiiiiii e 3-314
FDIV/EDIVP/EIDIV=DIVIdeot 3-316
FDIVR/FDIVRP/FIDIVR—Reverse Divideovvvviiiiiiiii e 3-320
FFREE—Free Floating-Point Register. ..o 3-324
FICOM/FICOMP—Compare INTEgerttt 3-325
FILD—L0ad INtEQET. . . vttt ettt 3-328
FINCSTP—Increment Stack-Top Pointerc.ooovviiiiiii e 3-330
FINIT/ENINIT—Initialize Floating-Point Unit...........covviiiiii e 3-332

CONTENTS

PAGE
FIST/FISTP—Store INteger ..o vttt e e e e e e 3-334
FISTTP—Store Integer with Truncation............coiii i 3-338
FLD—Load Floating Point Valueovve i 3-341
FLD1/FLDL2T/FLDL2E/FLDPI/FLDLG2/FLDLN2/FLDZ—Load Constant........... 3-344
FLDCW—Load x87 FPU ControlWordovii i 3-346
FLDENV—Load x87 FPU Environmentooviiiii i 3-348
FMUL/FMULP/FIMUL—MURIPIY « v 3-351
FNOP—NO OPeration ... ovvvtttete et 3-355
FPATAN—Partial Arctangent.oovuiiiini i e 3-356
FPREM—Partial Remainder.vvi i e 3-359
FPREMT—Partial Remainderc.vuiiiii e 3-362
FPTAN—Partial Tangentov i i et et e i aaas 3-365
FRNDINT—RoUN t0 INTEQET. .. .ot v ettt e i aeas 3-368
FRSTOR—Restore X87 FPUSTate ... v 3-370
FSAVE/FNSAVE—Store x87 FPUState ... 3-373
FSCALE—SCalE ..ottt e 3-377
FSIN SN ettt e 3-379
FSINCOS—SINE and COSINE .. vt e e ettt e enenas 3-381
FSQRT—SQUare ROOT . ..ttt e et 3-384
FST/FSTP—Store Floating Point Value..........ccoi i 3-386
FSTCW/FNSTCW—Store x87 FPU ControlWordc.covviiiiiiininnns 3-389
FSTENV/FNSTENV—Store x87 FPU Environmentcoovviiiininnnnnnns 3-392
FSTSW/FNSTSW—Store x87 FPU StatusWordcovoviiviiiiiiiiieins 3-395
FSUB/FSUBP/FISUB—SUDTIACt ..\ vt v et 3-398
FSUBR/FSUBRP/FISUBR—Reverse Subtract..........coovvvvviiniiiniininnnnn, 3-402
F ST TS T e e 3-406
FUCOM/FUCOMP/FUCOMPP—Unordered Compare Floating Point Values......... 3-408
FXAM—EXamIiNeModR/M. ... ot 3-411
FXCH—Exchange Register ContentSccovvriiii it ine e 3-413
FXRSTOR—Restore x87 FPU, MMX Technology, SSE, SSE2, and SSE3 State 3-415
FXSAVE—Save x87 FPU, MMX Technology, SSE, and SSE2 State................ 3-418
FXTRACT—Extract Exponent and Significandccoiiiiiiiiiininn, 3-429
FYL2X—ComPULE ¥ ¥ l002X .+ vttt ettt 3-431
FYL2XPT—Compute Y * 10G2(X +T1) « vt viie it i 3-433
HADDPD—Packed Double-FP Horizontal Addccovviiiii e 3-435
HADDPS—Packed Single-FP Horizontal Addoiiiiii e 3-439
HUT—Halt . e 3-443
HSUBPD—Packed Double-FP Horizontal Subtract...............coovvviiinnt 3-445
HSUBPS—Packed Single-FP Horizontal Subtract...............cooviviiiinnns, 3-449
IDIV=SIgned Divide.o ovi e 3-453
IMUL—Signed MURIPIY . ..ot e i e e e e 3-457
IN—INPUL frOm POrt. ..o e e 3-462
INC—INCrement DY T ..o i e e e e 3-464
INS/INSB/INSW/INSD—Input from Port to String...........cocv i 3-467
INT n/INTO/INT 3—Call to Interrupt Procedureovviiiiii i 3-471
INVD—Invalidate Internal Cachesovviii e 3-486
INVLPG—Invalidate TLB ENtryovvir it 3-488

Vol. 2A Vi

CONTENTS

viii Vol. 2A

PAGE
IRET/IRETD—INterrupt ReTUMN .. oo e 3-490
Jec—Jump if Condition IS Met. ..ot 3-501
J P UMD e 3-508
LAHF—Load Status Flags into AHRegistercovviiiiiiiiiiiiii e 3-518
LAR—Load Access Rights Byte.ot e 3-520
LDDQU—Load Unaligned Integer 128 BitS........covvviiiii e 3-524
LDMXCSR—L0ad MXCSR REGISTOr . .\t ve vttt ettt 3-527
LDS/LES/LFS/LGS/LSS—Load Far Pointer.ovovvviii i 3-529
LEA—Load Effective Addressovvvi i 3-535
LEAVE—High Level Procedure EXit...........oviiiii e 3-538
LFENCE—LOAd FBNCE. .. v vttt et 3-540
LGDT/UIDT—Load Global/Interrupt Descriptor Table Register.................... 3-541
LLDT—Load Local Descriptor Table Register...........cccovvviviviiiniiienanns. 3-544
LMSW—Load Machine Status Word.oooviiii e 3-547
LOCK—Assert LOCK# Signal PrefiX.ov i it 3-549
LODS/LODSB/LODSW/LODSD/LODSQ—L0oad String......vvvviviieiiniinnnann, 3-551
LOOP/LOOPcc—Loop Accordingto ECX Counter.......vvvvviiviiiiiiiienennns. 3-555
LSL—Load Segment Limit.ou i e i e 3-558
LTR—Load Task RegiSter. ... ov ittt e 3-562
MASKMOVDQU—Store Selected Bytes of Double Quadword..................... 3-565
MASKMOVQ—Store Selected Bytes of Quadword...........covvvviiiiiinanns, 3-568
MAXPD—Return Maximum Packed Double-Precision Floating-Point Values....... 3-571
MAXPS—Return Maximum Packed Single-Precision Floating-Point Values 3-574
MAXSD—Return Maximum Scalar Double-Precision Floating-Point Value 3-577
MAXSS—Return Maximum Scalar Single-Precision Floating-Point Value 3-580
MFENCE—MEMOTY FEMCE . vttt ettt e 3-583
MINPD—Return Minimum Packed Double-Precision Floating-Point Values......... 3-584
MINPS—Return Minimum Packed Single-Precision Floating-Point Values.......... 3-587
MINSD—Return Minimum Scalar Double-Precision Floating-Point Value........... 3-590
MINSS—Return Minimum Scalar Single-Precision Floating-Point Value............ 3-593
MONITOR—Set Up Monitor Addressvvvv it e it ieeaes 3-596
MOV MOV et e e 3-599
MOV—Move to/from Control Registers........oovvvviiiiii it 3-605
MOV—Move to/from Debug Registers.oovviiiiiiiiiii i 3-608
MOVAPD—Move Aligned Packed Double-Precision Floating-Point Values.......... 3-610
MOVAPS—Move Aligned Packed Single-Precision Floating-Point Values 3-613
MOVD/MOVQ—Move Doubleword/Move Quadwordc.ovvvviiniiniinns 3-616
MOVDDUP—Move One Double-FP and Duplicatecovvviviviiiniinnnnns, 3-620
MOVDQA—Move Aligned Double Quadword.cocoviiiiiiiiiiii e, 3-623
MOVDQU—Move Unaligned Double Quadwordccoovviiiiiiiannn.. 3-625
MOVDQ2Q—Move Quadword from XMM to MMX Technology Register........... 3-628
MOVHLPS— Move Packed Single-Precision Floating-Point Values High to Low....3-630
MOVHPD—Move High Packed Double-Precision Floating-Point Value............. 3-632
MOVHPS—Move High Packed Single-Precision Floating-Point Values............. 3-635
MOVLHPS—Move Packed Single-Precision Floating-Point Values Low to High..... 3-638
MOVLPD—Move Low Packed Double-Precision Floating-Point Value.............. 3-640
MOVLPS—Move Low Packed Single-Precision Floating-Point Values.............. 3-642

CONTENTS

PAGE
MOVMSKPD—Extract Packed Double-Precision Floating-Point Sign Mask.......... 3-645
MOVMSKPS—Extract Packed Single-Precision Floating-Point Sign Mask. 3-647
MOVNTDQ—Store Double Quadword Using Non-Temporal Hint 3-649
MOVNTI—Store Doubleword Using Non-Temporal Hint 3-652
MOVNTPD—Store Packed Double-Precision Floating-Point Values Using
Non-Temporal Hint e 3-654
MOVNTPS—Store Packed Single-Precision Floating-Point Values Using
Non-Temporal Hintooui e 3-657
MOVNTQ—Store of Quadword Using Non-Temporal Hint........................ 3-660
MOVQ—Move QUadWOI. ... o. ettt et 3-663
MOVQ2DQ—Move Quadword from MMX Technology to XMM Register........... 3-666
MOVS/MOVSB/MOVSW/MOVSD/MOVSQ—Move Data from String to String. 3-668
MOVSD—Move Scalar Double-Precision Floating-Point Value.................... 3-673
MOVSHDUP—Move Packed Single-FP High and Duplicate 3-676
MOVSLDUP—Move Packed Single-FP Low and Duplicatecoveut 3-679
MOVSS—Move Scalar Single-Precision Floating-Point Values 3-682
MOVSX/MOVSXD—Move with Sign-Extension............cccvoiiiiiiiiiiinnnn 3-685
MOVUPD—Move Unaligned Packed Double-Precision Floating-Point Values 3-687
MOVUPS—Move Unaligned Packed Single-Precision Floating-Point Values 3-690
MOVZX—Move with Zero-Extend.c.oooiviiiiiii 3-693
MUL—Unsigned MUItIPIY ... ooi 3-695
MULPD—Muiltiply Packed Double-Precision Floating-Point Values................ 3-698
MULPS—Multiply Packed Single-Precision Floating-Point Values................. 3-701
MULSD—Multiply Scalar Double-Precision Floating-Point Values................. 3-704
MULSS—Multiply Scalar Single-Precision Floating-Point Values 3-707
MWAIT—MoNItor Wait. . ..o s 3-710
CHAPTER 4
INSTRUCTION SET REFERENCE, N-Z
4.1 INSTRUCTIONS (N=Z). .+ et e ettt e et ettt e e e e e e e 4-1
NEG—Two's Complement Negationoovriiiiii i i 4-2
NOP—NO Operation. ...\ttt vttt e e 4-5
NOT—O0ne's Complement Negationovvviiiii i 4-7
OR—L0gIcal INCIUSIVE DRttt e 4-9
ORPD—Bitwise Logical OR of Double-Precision Floating-Point Values.............. 4-12
ORPS—Bitwise Logical OR of Single-Precision Floating-Point Values............... 4-14
OUT—0UTPUL 10 POt ..ot e e e e e 4-16
OUTS/OUTSB/OUTSW/OUTSD—Output StringtoPortcovvvvviivnnnns, 4-18
PABSB/PABSW/PABSD — Packed Absolute Valuecoocvviiiiinnnninnn 4-23
PACKSSWB/PACKSSDW—Pack with Signed Saturation................cocovvinint 4-27
PACKUSWB—Pack with Unsigned Saturation..............ccoooviiiiiiiiiininnns 4-32
PADDB/PADDW/PADDD—Add Packed INtegersvvvvviiiiiiiiinienianns 4-36
PADDQ—Add Packed Quadword INtEGErS vvvv et 4-40
PADDSB/PADDSW—Add Packed Signed Integers with Signed Saturation........... 4-43
PADDUSB/PADDUSW—Add Packed Unsigned Integers with Unsigned Saturation. . .4-47
PALIGNR — Packed Align Righto e 4-51
PAND—LOGICAI AND. ..ottt et e 4-54

Vol. 2A ix

CONTENTS

X Vol.2A

PANDN—LOGICAl AND NOT . .ttt ettt et enas
PAUSE—SPIN Loop HiNt. .. v et
PAVGB/PAVGW—Average Packed INtEgersvvvviiiiiiiiiiniiiiieannns
PCMPEQB/PCMPEQW/PCMPEQD— Compare Packed Data for Equal...............
PCMPGTB/PCMPGTW/PCMPGTD—Compare Packed Signed Integers for

Greater THaN .o e
PEXTRW—EXTract Word oot
PHADDW/PHADDD — Packed Horizontal Addcoooviiviiiiiii e
PHADDSW — Packed Horizontal Addand Saturatecoovviiiiiennn.
PHSUBW/PHSUBD — Packed Horizontal Subtract............cccovviviiiinnns,
PHSUBSW — Packed Horizontal Subtract and Saturate....................oves
PINSRW—INSErt Wordovie e
PMADDUBSW — Multiply and Add Packed Signed and Unsigned Bytes............
PMADDWD—Multiply and Add Packed Integers.ccoovvvrvivininiiinanannn.
PMAXSW—Maximum of Packed Signed Word Integerscocvvvvvnnn,
PMAXUB—Maximum of Packed Unsigned Byte Integers.........................
PMINSW—Minimum of Packed Signed Word Integersoovvvnnts.
PMINUB—Minimum of Packed Unsigned Byte Integers
PMOVMSKB—MoVE BYte MasK.ovieiiiiiii ittt ieeeiea
PMULHRSW — Packed Multiply High with Roundand Scale
PMULHUW—Multiply Packed Unsigned Integers and Store High Result...........
PMULHW—Multiply Packed Signed Integers and Store High Result...............
PMULLW—Multiply Packed Signed Integers and Store Low Result................
PMULUDQ—Multiply Packed Unsigned Doubleword Integers.....................
POP—Pop aValue fromthe Stack...........coiiiiiii e
POPA/POPAD—Pop All General-Purpose Registers.........coovviviviviniiinannn.
POPF/POPFD/POPFQ—Pop Stack into EFLAGS Registercovvvvvnvnnns,
POR—Bitwise Logical ORoouiii e

PREFETCHh—Prefetch DataInto Cachescov vt -

PSADBW—Compute Sum of Absolute Differences..............ccoovviiviinn.s.
PSHUFB — Packed Shuffle BYtesoviiiiiii i
PSHUFD—Shuffle Packed Doublewordsooviviiiiiiiiiiiiiiii e,
PSHUFHW—Shuffle Packed HighWords ...
PSHUFLW—Shuffle Packed Low WOrds.covviiiiiiii i
PSHUFW—Shuffle Packed WOrds.ovviini i
PSIGNB/PSIGNW/PSIGND — Packed SIGNcovii i
PSLLDQ—Shift Double Quadword Left Logicalc.covviviiiiiiiiiinen,
PSLLW/PSLLD/PSLLQ—Shift Packed Data Left Logical...............ccovvnnat
PSRAW/PSRAD—Shift Packed Data Right Arithmetic......................ooo0l
PSRLDQ—Shift Double Quadword Right Logicalcoviiiiiiiintn
PSUBB/PSUBW/PSUBD—Subtract Packed Integers..............cooviiiiininnnt,
PSUBQ—Subtract Packed Quadword INtegers.vvvvviiiniiieniniannns
PSUBSB/PSUBSW—Subtract Packed Signed Integers with Signed Saturation.....
PSUBUSB/PSUBUSW—Subtract Packed Unsigned Integers with Unsigned
SaTUMAION. . et
PUNPCKHBW/PUNPCKHWD/PUNPCKHDQ/PUNPCKHQDQ— Unpack High Data

CONTENTS

PAGE
PUNPCKLBW/PUNPCKLWD/PUNPCKLDQ/PUNPCKLQDQ—

UNPack LOW Data. .. .ovv et e 4-212
PUSH—Push Word, Doubleword or Quadword Onto the Stack 4-217
PUSHA/PUSHAD—Push All General-Purpose Registers...............cooovvnts. 4-222
PUSHF/PUSHFD—Push EFLAGS Register onto the Stack........................ 4-225
PXOR—Logical EXclusive OR.t e e e 4-228
RCL/RCR/ROL/ROR-—ROTAtE . . ot vttt et it 4-231

RCPPS—Compute Reciprocals of Packed Single-Precision Floating-Point Values .. 4-238
RCPSS—Compute Reciprocal of Scalar Single-Precision Floating-Point Values 4-241

RDMSR—Read from Model Specific Register..............covviiiiiiiiiininnes. 4-244
RDPMC—Read Performance-Monitoring Counterscovvviinenennnn.. 4-246
RDTSC—Read Time-Stamp Counter.ovvrii it 4-251
REP/REPE/REPZ/REPNE/REPNZ—Repeat String Operation Prefix 4-253
RET—Return from Procedureovirvi e 4-258
RSM—Resume from System ManagementMode.............cocvviiiiiininnnnns 4-270
RSQRTPS—Compute Reciprocals of Square Roots of Packed Single-Precision

Floating-Point Values. ... it e e 4-272
RSQRTSS—Compute Reciprocal of Square Root of Scalar Single-Precision

Floating-Point Value. ... i 4-275
SAHF—=Store AHINTO Flags.ot e 4-278
SAL/SAR/SHU/SHR—ShIft . . oot 4-280
SBB—Integer Subtraction With BOFTOWvvvviiii i 4-287
SCAS/SCASB/SCASW/SCASD—Scan STrNG .. .vvvvvei i i 4-291
SETcc—Set Byte on Condition.ot e 4-296
SFENCE—STOrE FONCE. . .ttt et 4-301
SGDT—Store Global Descriptor Table Register.cooovviiiiiiiiiiiienns. 4-302
SHLD—Double Precision Shift Left.o 4-305
SHRD—Double Precision Shift Right ... 4-308
SHUFPD—Shuffle Packed Double-Precision Floating-Point Values 4-311
SHUFPS—Shuffle Packed Single-Precision Floating-Point Values 4-314
SIDT—Store Interrupt Descriptor Table Registerccoovviiiiiiiinnn.. 4-317
SLDT—Store Local Descriptor Table Register..........coovvvviviiiiiiiiinnnnns 4-320
SMSW—Store Machine Status Wordoviiiiii i 4-322
SQRTPS—Compute Square Roots of Packed Single-Precision Floating-Point

ValUBS . 4-328

SQRTSD—Compute Square Root of Scalar Double-Precision Floating-Point Value. 4-331
SQRTSS—Compute Square Root of Scalar Single-Precision Floating-Point Value. . 4-334

STC—Set Carmy Flag . ..ottt e e 4-337
STD—Set Direction FIag.ovivii i e 4-338
STI=Set INterrupt FIag. oot 4-339
STMXCSR—Store MXCSR Register State. ..ot 4-342
STOS/STOSB/STOSW/STOSD/STOSQ—Store String. . ..vvvvvvvviiniiiiinennn. 4-344
STR—St0re Task REGISTer. ...\ vv it i e 4-348
SUB—SUDTrACT ..ottt 4-350
SUBPD—Subtract Packed Double-Precision Floating-Point Values 4-353
SUBPS—Subtract Packed Single-Precision Floating-Point Values 4-356
SUBSD—Subtract Scalar Double-Precision Floating-Point Values 4-359

Vol. 2A Xi

CONTENTS

PAGE
SUBSS—Subtract Scalar Single-Precision Floating-Point Values 4-362
SWAPGS—Swap GS Base Registervvvviiiiii it e 4-365
SYSCALL—Fast System Call.coviri e 4-367
SYSENTER—Fast System Call . ..o e 4-369
SYSEXIT—Fast Return from Fast System Call. ..., 4-373
SYSRET—Return From FastSystem Call...........coiiiii i 4-377
B S e o Tu o= o T 4-379
UCOMISD—Unordered Compare Scalar Double-Precision Floating-Point Values
ANd SEt EFLAGS ..ot e 4-382
UCOMISS—Unordered Compare Scalar Single-Precision Floating-Point Values
AN SEt EFLAGS L.ttt 4-385
UD2—Undefined INSTructionvvvvi e 4-388
UNPCKHPD—Unpack and Interleave High Packed Double-Precision
Floating-Point Valueso e 4-389
UNPCKHPS—Unpack and Interleave High Packed Single-Precision
Floating-Point Values e 4-392
UNPCKLPD—Unpack and Interleave Low Packed Double-Precision
Floating-Point Values e 4-395
UNPCKLPS—Unpack and Interleave Low Packed Single-Precision
Floating-Point Valueso e 4-398
VERR/VERW—Verify a Segment for Reading or Writing 4-401
WAIT/FWAIT—Wait. . et e 4-404
WBINVD—Write Back and Invalidate Cacheccoviiiiiii i, 4-406
WRMSR—Write to Model Specific Register................oiiiiiiiiiiin., 4-408
XADD—Exchange and Add.ccovriiii i e 4-410
XCHG—Exchange Register/Memory with Registercocviiiiiiinen. 4-413
XLAT/XLATB—Table Look-up Translationcccoviiiiiiiiiiiiinnen, 4-416
XOR—Logical EXCIUSIVE OR ... ettt 4-418
XORPD—Bitwise Logical XOR for Double-Precision Floating-Point Values......... 4-421
XORPS—Bitwise Logical XOR for Single-Precision Floating-Point Values.......... 4-423
CHAPTER 5
VMX INSTRUCTION REFERENCE
5.1 OVERVIEW. . .ttt e 5-1
52 CONVENTIONS . ottt e e e e e e e 5-2
53 VMX INSTRUCTIONS ..ottt ettt e 5-3
VMCALL—Call t0 VM MONITOT. . .o v et e e et e aenens 5-4
VMCLEAR—Clear Virtual-Machine Control Structure.........cooovviivi i, 5-7
VMLAUNCH/VMRESUME—Launch/Resume Virtual Machine....................... 5-10
VMPTRLD—Load Pointer to Virtual-Machine Control Structure.................... 5-13
VMPTRST—Store Pointer to Virtual-Machine Control Structure................... 5-16
VMREAD—Read Field from Virtual-Machine Control Structure 5-18
VMRESUME—Resume Virtual Machine.o 5-21
VMWRITE—Write Field to Virtual-Machine Control Structure...................... 5-22
VMXOFF—Leave VMX Operation.ouvuvrir it ieieenanes 5-25
VMXON—ENter VMX Operationvuvr ettt ii i eeeaens 5-27

xii Vol. 2A

CONTENTS

PAGE

APPENDIX A
OPCODE MAP
A1 USING OPCODE TABLESottt ettt et e A-1
A2 KEY TO ABBREVIATIONS . . .ttt e e A-2
A21 Codes for AddressingMethod ... e A-2
A2.2 Codes for Operand Ty P ... v vttt ettt et et ettt A-3
A23 REGISTEN COOBS . ot ottt ettt e e e A-4
A24 Opcode Look-up Examples for One, Two, and Three-Byte Opcodes................. A-4
A2.4.1 One-Byte Opcode INStrUCTIONS. ... v vt A-4
A24.2 Two-Byte Opcode INStrUCtioNS vv i A-5
A243 Three-Byte Opcode INStructions.o e A-6
A25 Superscripts Utilized in Opcode Tables. ..o i A-7
A3 ONE, TWO, AND THREE-BYTE OPCODE MAPS.ottt A-8
A4 OPCODE EXTENSIONS FOR ONE-BYTE AND TWO-BYTEOPCODEScvtnnt A-20
A4 Opcode Look-up Examples Using Opcode EXTEeNSIONSvvvvivninvininininanns A-20
A4z Opcode Extension Tables ..ot A-21
A5 ESCAPE OPCODE INSTRUCTIONS ..ottt et A-23
A51 Opcode Look-up Examples for Escape Instruction Opcodes.................cc..ee A-23
A5.2 Escape Opcode Instruction Tablesovvii it e A-23
A5.2.1 Escape Opcodes with DB as First Byte.......ovvvviiiiii i A-24
A5.2.2 Escape Opcodes with D9 as First Byte.......ovvvi it A-25
A5.23 Escape Opcodes With DA as First Byte.vvvvvii i A-26
A524 Escape Opcodes withDBas First Byte.......ovvviiiiiii i A-27
A5.25 Escape Opcodes withDCas FirstByte......ccovvv i A-28
A5.2.6 Escape Opcodes with DD as First Byte.ovvvviiii it cii e A-29
A5.2.7 Escape Opcodes with DEas First Byteoovvvvii it A-30
A5.2.8 Escape Opcodes with DF As First Byte. ..o i e A-31
APPENDIX B
INSTRUCTION FORMATS AND ENCODINGS
B.1 MACHINE INSTRUCTION FORMAT . ..ottt ettt ettt et B-1
B.1.1 LEgaCY PrefiXeS . ot e B-2
B.1.2 REX PrefiXeS . ottt e B-2
B.1.3 0PCOde FIElds . vt e e B-2
B.1.4 Special Fields. . ..o v e B-2
B.1.4.1 Reg Field (reg) for Non-64-BitModes...........oviiiiii i B-3
B.14.2 Reg Field (reg) for 64-Bit Mode.vvvvi i B-4
B.1.4.3 Encoding of Operand Size (W) Bit........covviiiii i B-5
B.144 SIgN-EXtend (S) Bit . ..ot B-5
B.145 Segment Register (sreg) Field. e B-6
B.1.4.6 Special-Purpose Register (eee) Fieldc.cooviiiiiii i B-6
B.14.7 Condition Test (tttn) Field. . ..o v e B-7
B.1.4.8 Direction () Bitoovi B-8
B.1.5 Other NOTES. . vttt e e e B-9
B.2 GENERAL-PURPOSE INSTRUCTION FORMATS AND ENCODINGS FOR

NON-B4-BITMODES ... ottt e B-9
B.2.1 General Purpose Instruction Formats and Encodings for 64-Bit Mode.............. B-24

Vol. 2A xiii

CONTENTS

PAGE
B3 PENTIUM® PROCESSOR FAMILY INSTRUCTION FORMATS AND ENCODINGS B-53
B4 64-BIT MODE INSTRUCTION ENCODINGS FOR SIMD INSTRUCTION EXTENSIONS B-54
B.5 MMX INSTRUCTION FORMATS AND ENCODINGS ..o B-54
B.5.1 Granularity Field (G) . ..o B-54
B.5.2 MMX Technology and General-Purpose Register Fields (mmxreg and reg)......... B-55
B.5.3 MMX Instruction Formats and Encodings Table ..., B-55
B.6 P6 FAMILY INSTRUCTION FORMATS AND ENCODINGS. ..o B-58
B.7 SSE INSTRUCTION FORMATS AND ENCODINGS.o B-59
B.8 SSE2 INSTRUCTION FORMATS AND ENCODINGS ... oo B-68
B.8.1 Granularity Field (G) . ..o B-68
B9 SSE3 FORMATS AND ENCODINGS TABLEttt vi et B-85
B.10 SSSE3 FORMATS AND ENCODING TABLE . .. oot e B-87
B.11 SPECIAL ENCODINGS FOR 64-BITMODE ...\ vv vttt ieee e B-91
B.12 FLOATING-POINT INSTRUCTION FORMATS AND ENCODINGSovivieeieeene B-95
B.13 VMX INSTRUCTIONS ..ottt e e e eens B-101
APPENDIX C
INTEL® C/C++ COMPILER INTRINSICS AND FUNCTIONAL EQUIVALENTS
C1 SIMPLE INTRINSICS. . ottt e e e c-2
C2 COMPOSITE INTRINSICS .ot C-14
FIGURES
Figure 1-1. Bit and Byte Order.oviii i 1-4
Figure 1-2. Syntax for CPUID, CR, and MSR Data Presentation.............covvvvvivininns. 1-7
Figure 2-1. Intel 64 and IA-32 Architectures Instruction Formatcoovennn. 2-1
Figure 2-2. Table Interpretation of ModR/MByte (CBH)cvvviiii i 2-5
Figure 2-3. Prefix Orderingin 64-bitMode. ...ttt e 2-9
Figure 2-4. Memory Addressing Without an SIB Byte; REXX NotUsed 2-11
Figure 2-5. Register-Register Addressing (No Memory Operand); REX.X Not Used 2-11
Figure 2-6. Memory Addressing WithaSIBBYtecoviviii it 2-12
Figure 2-7. Register Operand Coded in Opcode Byte; REX.X & REXR NotUsed 2-12
Figure 3-1. Bit Offset for BIT[RAX, 21 . .ottt et 3-10
Figure 3-2. Memory Bit INdeXingot e 3-11
Figure 3-3. ADDSUBPD—Packed Double-FP Add/Subtractcoooviiiiiinnnnnns. 3-45
Figure 3-4. ADDSUBPS—Packed Single-FP Add/Subtractcooviiiiiiiiiiinnnn, 3-49
Figure 3-5. Version Information Returned by CPUIDIN EAX. ..o 3-170
Figure 3-6. Extended Feature Information Returned in the ECX Register................. 3-172
Figure 3-7. Feature Information Returned in the EDX Registerco..s. 3-174
Figure 3-8. Determination of Support for the Processor Brand String.................... 3-182
Figure 3-9. Algorithm for Extracting Maximum Processor Frequency..............ovvuen.. 3-184
Figure 3-10. HADDPD—Packed Double-FP Horizontal Addcovviiiiinininnnn, 3-435
Figure 3-11. HADDPS—Packed Single-FP Horizontal Add.coiiiiiiiiiiiinn, 3-439
Figure 3-12. HSUBPD—Packed Double-FP Horizontal Subtractcoovinht 3-445
Figure 3-13. HSUBPS—Packed Single-FP Horizontal Subtractcooiiintt, 3-450

Xiv Vol. 2A

Figure 3-14.
Figure 3-15.
Figure 3-16.
Figure 4-1.
Figure 4-2.
Figure 4-3.
Figure 4-4.
Figure 4-5.
Figure 4-6.
Figure 4-7.
Figure 4-8.
Figure 4-9.
Figure 4-10.
Figure 4-11.
Figure 4-12.
Figure 4-13.
Figure 4-14.
Figure 4-15.
Figure 4-16.
Figure 4-17.
Figure 4-18.
Figure A-1.
Figure B-1.

TABLES

Table 2-1.
Table 2-2.
Table 2-3.
Table 2-4.
Table 2-5.
Table 2-6.
Table 2-7.
Table 3-1.
Table 3-2.
Table 3-3.
Table 3-5.
Table 3-4.
Table 3-6.
Table 3-7.
Table 3-8.
Table 3-9.
Table 3-10.
Table 3-11.
Table 3-12.
Table 3-13.

CONTENTS

PAGE
MOVDDUP—Move One Double-FP and Duplicate..............covvevvninn.n. 3-620
MOVSHDUP—Move Packed Single-FP High and Duplicate 3-676
MOVSLDUP—Move Packed Single-FP Low and Duplicate..................... 3-679
Operation of the PACKSSDW Instruction Using 64-bit Operands................ 4-27
PMADDWD Execution Model Using 64-bit Operandsccovvvivnn. 4-95
PMULHUW and PMULHW Instruction Operation Using 64-bit Operands 4-116
PMULLU Instruction Operation Using 64-bit Operands....................... 4-123
PSADBW Instruction Operation Using 64-bit Operands.ovue 4-149
PSHUB with 64-Bit Operandsovuiriiiiiiiiii i 4-153
PSHUFD Instruction Operationo.vvuviviiiiiiiiii e 4-156
PSLLW, PSLLD, and PSLLQ Instruction Operation Using 64-bit Operand....... 4-176
PSRAW and PSRAD Instruction Operation Using a 64-bit Operand............ 4-181
PSRLW, PSRLD, and PSRLQ Instruction Operation Using 64-bit Operand 4-188
PUNPCKHBW Instruction Operation Using 64-bit Operands 4-208
PUNPCKLBW Instruction Operation Using 64-bit Operands................... 4-212
SHUFPD Shuffle Operation.ovviiii e 4-311
SHUFPS Shuffle Operation.........ccooiiii e 4-314
UNPCKHPD Instruction High Unpack and Interleave Operation 4-389
UNPCKHPS Instruction High Unpack and Interleave Operation 4-392
UNPCKLPD Instruction Low Unpack and Interleave Operation................ 4-395
UNPCKLPS Instruction Low Unpack and Interleave Operation................ 4-398
ModR/M Byte nnn Field (Bits 5,4, and 3)........ccoviiiiiiii e A-20
General Machine Instruction Formatovii i B-1
16-Bit Addressing Forms with the ModR/MByte...........oiiiiiiii e 2-6
32-Bit Addressing Forms with the ModR/MByte..........coovviviiiiiiiinnn, 2-7
32-Bit Addressing Forms with the SIBByte..........ccovviiiiiiiiiiiii i 2-8
REX Prefix Fields [BITS: OTOOWRXB] vvvveiiieiei i 2-11
Special Cases 0f REX ENCOAINGS vvvvviv e 2-13
Direct Memory Offset Formof MOV ... e 2-14
RIP-Relative Addressingviir it e 2-15
Register Codes Associated With +rb, +rw, +rd, +ro...................ccocoiiit, 3-2
Range of Bit Positions Specified by Bit Offset Operands....................... 3-11
Intel 64 and IA-32 General EXCePLioNS. vvvv i 3-15
SIMD Floating-Point EXCEPLioNSoviiii i 3-17
x87 FPU Floating-Point EXCEPLiONS. ..ot 3-17
Decision Table for CLIRESUIS v v vt 3-110
Comparison Predicate for CMPPD and CMPPS Instructions 3-126
Pseudo-Op and CMPPD Implementation.coviiiiiiiiiiiininnennn, 3-127
Pseudo-0ps and CMPPS. ... o 3-132
Pseudo-0ps and CMPSD.o v 3-142
Pseudo-0Ops and CMPSS.o e 3-147
Information Returned by CPUID Instructioncoovvviiivinnnns. 3-163
Highest CPUID Source Operand for Intel 64 and IA-32 Processors............ 3-169

Vol. 2A Xv

CONTENTS

Table 3-14.
Table 3-15.
Table 3-16.
Table 3-17.
Table 3-18.
Table 3-19.
Table 3-20.
Table 3-21.
Table 3-22.
Table 3-23.
Table 3-24.
Table 3-25.
Table 3-26.
Table 3-27.
Table 3-28.
Table 3-29.
Table 3-30.
Table 3-31.
Table 3-32.
Table 3-33.
Table 3-34.
Table 3-35.
Table 3-36.
Table 3-37.
Table 3-38.
Table 3-39.
Table 3-40.
Table 3-41.
Table 3-42.
Table 3-43.
Table 3-44.
Table 3-45.
Table 3-46.
Table 3-47.
Table 3-48.
Table 3-49.
Table 3-50.
Table 3-51.
Table 3-52.
Table 3-53.
Table 3-54.
Table 3-55.
Table 3-56.
Table 3-57.
Table 3-58.
Table 3-59.
Table 3-60.

XVi Vol. 2A

PAGE
Processor Type Field.o e 3-170
More on Extended Feature Information Returned in the ECX Register 3-173
More on Feature Information Returned in the EDX Register.................. 3-175
Encoding of Cache and TLB DesCriptorsoovvviiiiiiiiiiiiainnnnnn, 3-178
Processor Brand String Returned with Pentium 4 Processor.................. 3-183
Mapping of Brand Indices; and Intel 64 and IA-32 Processor Brand Strings3-185
DIV A ON . e 3-265
Results Obtained from F2XMTt 3-286
Results Obtained from FABS.t 3-288
FADD/FADDP/FIADD RESUIS. .« vt vttt e et 3-291
FBS TP RESUIS . .\ vttt t ettt 3-296
FCHS RESURS . ..o e 3-299
FCOM/FCOMP/FCOMPP RESUIS . ..ot 3-305
FCOMI/FCOMIP/ FUCOMI/FUCOMIP ReSUItS. . ..o v v e 3-309
FCOS RESUIS vttt 3-312
FDIV/EDIVP/FIDIV RESUIS . . vt e ettt 3-317
FDIVR/FDIVRP/FIDIVR RESUIS . .. vttt e et 3-321
FICOM/FICOMP RESUIS . o v vt e ettt e e 3-325
FIST/FISTP RESURS. . . v vttt e 3-334
FISTTP RESUIS .ttt e 3-338
FMUL/FMULP/FIMUL RESUIES ... 3-352
FPATAN RESUIS « vttt ettt 3-357
FPREM RESUIS. . v vt ettt e e 3-359
FPREMT RESURS . vttt 3-362
FPTAN RESURS. . .ottt 3-365
FSCALE RESURS . . vt e 3-377
FSIN RESURS . . vt e 3-379
FSINCOS RESURS . . v vttt e 3-381
FSQRT RESUIS. . vttt ettt e e 3-384
FSUB/FSUBP/FISUB RESUIS . ..ottt 3-399
FSUBR/FSUBRP/FISUBR RESUIS . . vttt 3-403
FT ST RESUNS vt 3-406
FUCOM/FUCOMP/FUCOMPP RESUIS. ..o vt 3-408
FXAM RESUNS. vttt 3-411
Non-64-bit-Mode Layout of FXSAVE and FXRSTOR Memory Region 3-418
Field Definitionsov et e 3-420
Recreating FSAVE FOrmat.ovi i 3-422
Layout of the 64-bit-mode FXSAVE Map with Promoted OperandSize 3-423
Layout of the 64-bit-mode FXSAVE Map with Default OperandSize........... 3-424
FY L2 RESUNS .+ vttt ettt e 3-431
FYL2XPT RESUIS v vttt ettt e e 3-433
IDIV RESUITS . e 3-454
DECISION TablE v\ttt 3-472
Segment and Gate TYPES. . vttt e e 3-521
Non-64-bit Mode LEA Operation with Address and Operand Size Attributes...3-535
64-bit Mode LEA Operation with Address and Operand Size Attributes........ 3-536
Segment and Gate Descriptor TYPeSovvvvi i 3-559

Table 3-61.
Table 3-62.
Table 3-63.
Table 4-1.
Table 4-2.
Table 4-3.
Table 4-4.
Table 4-5.
Table 4-6.
Table A-1.
Table A-2.
Table A-3.
Table A-4.
Table A-5.
Table A-6.
Table A-7.
Table A-8.
Table A-S.

Table A-10.
Table A-11.

Table A-12.

Table A-13.
Table A-14.
Table A-15.
Table A-16.

Table A-17.
Table A-18.

Table A-19.
Table A-20.
Table A-21.
Table A-22.

Table B-1.
Table B-2.
Table B-4.
Table B-3.
Table B-5.
Table B-6.
Table B-7.
Table B-8.
Table B-9.
Table B-11.
Table B-10.
Table B-12.
Table B-13.
Table B-14.
Table B-15.

CONTENTS

PAGE
MUL RESURS. .« ettt e e 3-695
MWAIT Extension Register (ECX)vvvuvriiii it 3-711
MWAIT Hints Register (EAX)vuiri it 3-712
Recommended Multi-Byte Sequence of NOP Instruction 4-5
Valid Performance Counter Index Range for RDPMC.......................s. 4-246
REPEAT PrefiXeS . . v e 4-256
Decision Table for STIRESUIS.vvvvi i 4-339
SWAPGS Operation Parametersovvvviiii i 4-365
MSRs Used By the SYSENTER and SYSEXIT Instructions..................... 4-369
Superscripts Utilized in Opcode Tables. A-7
One-byte Opcode Map: (O0H — F7H) * ..o A-10
Two-byte Opcode Map: 00H — 77H (First ByteisOFH) *....................... A-12
Three-byte Opcode Map: 00H — F7H (First Two Bytes are OF 38H) *........... A-16
Three-byte Opcode Map: 00H — F7H (First two bytes are OF 3AH) *........... A-18
Opcode Extensions for One- and Two-byte Opcodes by Group Number * A-21
D8 Opcode Map When ModR/M Byte is WithinOOHto BFH* A-24
D8 Opcode Map When ModR/M Byte is Outside OOHto BFH *.................. A-24
D9 Opcode Map When ModR/M Byte is Within OOHto BFH* A-25
D9 Opcode Map When ModR/M Byte is Outside OOHto BFH *.................. A-25
DA Opcode Map When ModR/M Byte is Within OOHto BFH™* A-26
DA Opcode Map When ModR/M Byte is Outside OOHtoBFH*.................. A-26
DB Opcode Map When ModR/M Byte is Within OOHtoBFH* A-27
DB Opcode Map When ModR/M Byte is Outside OOHto BFH *.................. A-27
DC Opcode Map When ModR/M Byte is WithinOOHto BFH*.................... A-28
DC Opcode Map When ModR/M Byte is Outside OOHto BFH * A-28
DD Opcode Map When ModR/M Byte is Within OOHto BFH™* A-29
DD Opcode Map When ModR/M Byte is Outside OOHtoBFH*.................. A-29
DE Opcode Map When ModR/M Byte is Within OOHto BFH *.................... A-30
DE Opcode Map When ModR/M Byte is Outside OOHtoBFH* A-30
DF Opcode Map When ModR/M Byte is WithinOOHto BFH*.................... A-31
DF Opcode Map When ModR/M Byte is Outside OOHto BFH * A-31
Special Fields Within Instruction Encodings.covviiviiiiii i B-3
Encoding of reg Field When w Field is Not Present in Instruction................ B-3
Encoding of reg Field When w Field is Not Present in Instruction................ B-4
Encoding of reg Field When w Field is Present in Instruction B-4
Encoding of reg Field When w Field is Present in Instruction B-5
Encoding of Operand Size (W) Bit........coviiiiiii B-5
Encoding of Sign-Extend (S) Bit.coviii B-6
Encoding of the Segment Register (sreg) Fieldcccoviiiiiiiiii i, B-6
Encoding of Special-Purpose Register (eee) Field...............cocovviiiintt, B-7
Encoding of Operation Direction (d) Bit ..o B-8
Encoding of Conditional Test (tttn) Fieldooviivi i B-8
Notes on Instruction ENCOdiNgcvvvvirir i e B-9
General Purpose Instruction Formats and Encodings for Non-64-Bit Modes....... B-9
SPECial SYMDOIS . . v B-24
General Purpose Instruction Formats and Encodings for 64-Bit Mode........... B-24

Vol. 2A xvii

CONTENTS

Table B-16.

Table B-17.
Table B-18.
Table B-19.
Table B-20.
Table B-21.
Table B-22.
Table B-23.
Table B-24.
Table B-25.
Table B-26.
Table B-27.
Table B-28.
Table B-29.
Table B-30.
Table B-31.
Table B-32.
Table B-33.
Table B-34.
Table B-35.
Table C-1.

Table C-2.

xviii Vol. 2A

PAGE
Pentium Processor Family Instruction Formats and Encodings,
NON-64-Bit MOES e B-53
Pentium Processor Family Instruction Formats and Encodings, 64-Bit Mode.. ... B-53
Encoding of Granularity of Data Field (gg)ovvvvvveii i B-54
MMX Instruction Formats and ENcodingscovvvi i B-55
Formats and Encodings of P6 Family Instructions............................. B-58
Formats and Encodings of SSE Floating-Point Instructions..................... B-60
Formats and Encodings of SSE Integer Instructionscoovviiiininnn B-66
Format and Encoding of SSE Cacheability & Memory Ordering Instructions B-67
Encoding of Granularity of Data Field (gg)ovvvvrvii i B-68
Formats and Encodings of SSE2 Floating-Point Instructions B-69
Formats and Encodings of SSE2 Integer Instructions B-77
Format and Encoding of SSE2 Cacheability Instructions B-84
Formats and Encodings of SSE3 Floating-Point Instructions B-85
Formats and Encodings for SSE3 Event Management Instructions B-86
Formats and Encodings for SSE3 Integer and Move Instructions B-86
Formats and Encodings for SSSE3 Instructionsccovviiiiiinnn, B-87
Special Case Instructions Promoted UsingREXW ...t B-91
General Floating-Point Instruction Formats..........ccoovviiii i iennnnnns B-95
Floating-Point Instruction Formats and Encodingscvoviviiiiininnnn, B-96
Encodings for VMX INSTructions.ovvv it B-101
SIMPIE INTFINSICS .« e C-3
Composite INTMNSICS. . .\ttt e C-14

CHAPTER 1
ABOUT THIS MANUAL

The Intel® 64 and 1A-32 Architectures Software Developer’s Manual, Volumes

2A & 2B: Instruction Set Reference (order numbers 253666 and 253667) are part of
a set that describes the architecture and programming environment of all Intel 64
and 1A-32 architecture processors. Other volumes in this set are:

® The Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1:
Basic Architecture (Order Number 253665).

® The Intel® 64 and 1A-32 Architectures Software Developer’s Manual, Volumes
3A & 3B: System Programming Guide (order numbers 253668 and 253669).

The Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1,
describes the basic architecture and programming environment of Intel 64 and 1A-32
processors. The Intel® 64 and 1A-32 Architectures Software Developer’s Manual,
Volumes 2A & 2B, describe the instruction set of the processor and the opcode struc-
ture. These volumes apply to application programmers and to programmers who
write operating systems or executives. The Intel® 64 and I1A-32 Architectures Soft-
ware Developer’s Manual, Volumes 3A & 3B, describe the operating-system support
environment of Intel 64 and I1A-32 processors. These volumes target operating-
system and BIOS designers. In addition, the Intel® 64 and 1A-32 Architectures Soft-
ware Developer’s Manual, Volume 3B, addresses the programming environment for
classes of software that host operating systems.

1.1 IA-32 PROCESSORS COVERED IN THIS MANUAL

This manual set includes information pertaining primarily to the most recent Intel 64
and 1A-32 processors, which include:

* pentium® processors

® P6 family processors

* pentium® 4 processors

* pentium® M processors

* Intel® Xeon® processors

* pentium®D processors

® pentium® processor Extreme Editions
® 64-bit Intel® Xeon® processors

®* Intel® Core™ Duo processor

* Intel® Core™ Solo processor

® Dual-Core Intel® Xeon® processor LV

Vol.2A 1-1

ABOUT THIS MANUAL

* Intel® Core™2 Duo processor

* Intel® Core™2 Quad processor

* Intel® Xeon® processor 3000 series

* Intel® Xeon® processor 5100 series

* Intel® Xeon® processor 5300 series

® Intel® Core™2 Extreme processor

® Intel® Core™2 Extreme Quad-core processor
* Intel® Xeon® processor 7100 series

P6 family processors are 1A-32 processors based on the P6 family microarchitecture.
This includes the Pentium® Pro, Pentium® 11, Pentium® IIl, and Pentium® Il Xeon®
processors.

The Pentium® 4, Pentium® D, and Pentium® processor Extreme Editions are based
on the Intel NetBurst® microarchitecture. Most early Intel® Xeon® processors are
based on the Intel NetBurst® microarchitecture.

The Intel® Core™ Duo, Intel® Core™ Solo and dual-core Intel® Xeon® processor LV
are based on an improved Pentium® M processor microarchitecture.

The Intel® Xeon® processor 3000, 5100, and 5300 series, Intel® Core™2 Duo, and
Intel® Core™2 Extreme processors are based on Intel® Core™ microarchitecture.

P6 family, Pentium® M, Intel® Core™ Solo, Intel® Core™ Duo processors, dual-core
Intel® Xeon® processor LV, and early generations of Pentium 4 and Intel Xeon
processors support 1A-32 architecture.

The Intel® Xeon® processor 3000, 5100, 5300 series, Intel® Core™2 Duo, Intel®
Core™2 Extreme processors, newer generations of Pentium 4 and Intel Xeon
processor family support Intel® 64 architecture.

IA-32 architecture is the instruction set architecture and programming environment
for Intel's 32-bit microprocessors.

Intel® 64 architecture is the instruction set architecture and programming environ-
ment which is the superset of Intel’'s 32-bit and 64-bit architectures. It is compatible
with the 1A-32 architecture.

1.2 OVERVIEW OF VOLUME 2A AND 2B: INSTRUCTION
SET REFERENCE

A description of Intel® 64 and 1A-32 Architectures Software Developer’s Manual,
Volumes 2A & 2B, content follows:

Chapter 1 — About This Manual. Gives an overview of all five volumes of the
Intel® 64 and 1A-32 Architectures Software Developer’s Manual. It also describes
the notational conventions in these manuals and lists related Intel® manuals and
documentation of interest to programmers and hardware designers.

1-2 Vol. 2A

ABOUT THIS MANUAL

Chapter 2 — Instruction Format. Describes the machine-level instruction format
used for all IA-32 instructions and gives the allowable encodings of prefixes, the
operand-identifier byte (ModR/M byte), the addressing-mode specifier byte (SIB
byte), and the displacement and immediate bytes.

Chapter 3 — Instruction Set Reference, A-M. Describes 1A-32 instructions in
detail, including an algorithmic description of operations, the effect on flags, the
effect of operand- and address-size attributes, and the exceptions that may be
generated. The instructions are arranged in alphabetical order. General-purpose, x87
FPU, Intel MMX™ technology, SSE/SSE2/SSE3 extensions, and system instructions
are included.

Chapter 4 — Instruction Set Reference, N-Z. Continues the description of 1A-32
instructions started in Chapter 3. It provides the balance of the alphabetized list of
instructions and starts Intel® 64 and 1A-32 Architectures Software Developer’s
Manual, Volume 2B.

Chapter 5 — VMX Instruction Reference. Describes the virtual-machine exten-
sions (VMX) of 1A-32 instructions. VMX is intended to support virtualization of
processor hardware and a system software layer acting as a host to multiple guest
software environments.

Appendix A — Opcode Map. Gives an opcode map for the 1A-32 instruction set.

Appendix B — Instruction Formats and Encodings. Gives the binary encoding of
each form of each 1A-32 instruction.

Appendix C — Intel® C/C++ Compiler Intrinsics and Functional Equivalents.
Lists the Intel® C/C++ compiler intrinsics and their assembly code equivalents for
each of the 1A-32 MMX and SSE/SSE2/SSE3 instructions.

1.3 NOTATIONAL CONVENTIONS

This manual uses specific notation for data-structure formats, for symbolic represen-
tation of instructions, and for hexadecimal and binary numbers. A review of this
notation makes the manual easier to read.

1.3.1 Bit and Byte Order

In illustrations of data structures in memory, smaller addresses appear toward the
bottom of the figure; addresses increase toward the top. Bit positions are numbered
from right to left. The numerical value of a set bit is equal to two raised to the power
of the bit position. 1A-32 processors are “little endian” machines; this means the
bytes of a word are numbered starting from the least significant byte. Figure 1-1
illustrates these conventions.

Vol.2A 1-3

ABOUT THIS MANUAL

Highest Data Structure

Address 31 24 23 16 15 8 7 0 <« Bit offset
28

24

20

16

12

8

Lowest

4
Byte 3 Byte 2 Byte 1 ByteO | O Address

A

Byte Offset

Figure 1-1. Bit and Byte Order

1.3.2 Reserved Bits and Software Compatibility

In many register and memory layout descriptions, certain bits are marked as
reserved. When bits are marked as reserved, it is essential for compatibility with
future processors that software treat these bits as having a future, though unknown,
effect. The behavior of reserved bits should be regarded as not only undefined, but
unpredictable. Software should follow these guidelines in dealing with reserved bits:

¢ Do not depend on the states of any reserved bits when testing the values of
registers which contain such bits. Mask out the reserved bits before testing.

® Do not depend on the states of any reserved bits when storing to memory or to a
register.

® Do not depend on the ability to retain information written into any reserved bits.

® When loading a register, always load the reserved bits with the values indicated
in the documentation, if any, or reload them with values previously read from the
same register.

NOTE

Avoid any software dependence upon the state of reserved bits in
I1A-32 registers. Depending upon the values of reserved register bits
will make software dependent upon the unspecified manner in which
the processor handles these bits. Programs that depend upon
reserved values risk incompatibility with future processors.

1-4 Vol. 2A

ABOUT THIS MANUAL

1.3.3 Instruction Operands

When instructions are represented symbolically, a subset of the 1A-32 assembly
language is used. In this subset, an instruction has the following format:

label: mnemonic argument1, argument2, argument3
where:
® A label is an identifier which is followed by a colon.

® A mnemonic is a reserved name for a class of instruction opcodes which have
the same function.

® The operands argumentl, argument2, and argument3 are optional. There may
be from zero to three operands, depending on the opcode. When present, they
take the form of either literals or identifiers for data items. Operand identifiers
are either reserved names of registers or are assumed to be assigned to data
items declared in another part of the program (which may not be shown in the
example).

When two operands are present in an arithmetic or logical instruction, the right
operand is the source and the left operand is the destination.

For example:

LOADREG: MOV EAX, SUBTOTAL

In this example, LOADREG is a label, MOV is the mnemonic identifier of an opcode,
EAX is the destination operand, and SUBTOTAL is the source operand. Some
assembly languages put the source and destination in reverse order.

1.3.4 Hexadecimal and Binary Numbers

Base 16 (hexadecimal) numbers are represented by a string of hexadecimal digits
followed by the character H (for example, F82EH). A hexadecimal digit is a character
from the following set: O, 1, 2, 3,4,5,6,7,8,9,A,B,C,D, E,and k.

Base 2 (binary) numbers are represented by a string of 1s and Os, sometimes
followed by the character B (for example, 1010B). The “B” designation is only used in
situations where confusion as to the type of number might arise.

1.3.5 Segmented Addressing

The processor uses byte addressing. This means memory is organized and accessed
as a sequence of bytes. Whether one or more bytes are being accessed, a byte
address is used to locate the byte or bytes in memory. The range of memory that can
be addressed is called an address space.

The processor also supports segmented addressing. This is a form of addressing
where a program may have many independent address spaces, called segments.

Vol.2A 1-5

ABOUT THIS MANUAL

For example, a program can keep its code (instructions) and stack in separate
segments. Code addresses would always refer to the code space, and stack
addresses would always refer to the stack space. The following notation is used to
specify a byte address within a segment:

Segment-register:Byte-address
For example, the following segment address identifies the byte at address FF79H in
the segment pointed by the DS register:

DS:FF7SH

The following segment address identifies an instruction address in the code segment.
The CS register points to the code segment and the EIP register contains the address
of the instruction.

CS:ElP

1.3.6 Exceptions

An exception is an event that typically occurs when an instruction causes an error.
For example, an attempt to divide by zero generates an exception. However, some
exceptions, such as breakpoints, occur under other conditions. Some types of excep-
tions may provide error codes. An error code reports additional information about the
error. An example of the notation used to show an exception and error code is shown
below:

#PF(fault code)

This example refers to a page-fault exception under conditions where an error code
naming a type of fault is reported. Under some conditions, exceptions which produce
error codes may not be able to report an accurate code. In this case, the error code
is zero, as shown below for a general-protection exception:

#GP(0)

1.3.7 A New Syntax for CPUID, CR, and MSR Values

Obtain feature flags, status, and system information by using the CPUID instruction,
by checking control register bits, and by reading model-specific registers. We are
moving toward a new syntax to represent this information. See Figure 1-2.

1-6 Vol. 2A

ABOUT THIS MANUAL

CPUID Input and Output
CPUID.01H:ECX.SSE [bit 25] = 1

Some inputs require values in EAX and ECX.
This is represented as CPUID.(EAX=n, ECX=n).
If only one value is present, EAX is implied.

Output register and feature flag or field
name with bit position(s)

Value (or range) of output

Control Register Values
CR4.0SFXSRIbit 9] = 1

Example CR name i

Feature flag or field name
with bit position(s)

Value (or range) of output
Model-Specific Register Values

IA32_MISC_ENABLES.ENABLEFOPCODEbit 2] = 1

Example MSR name i
Feature flag or field name with bit position(s)
Value (or range) of output

OM17732

Figure 1-2. Syntax for CPUID, CR, and MSR Data Presentation

1.4 RELATED LITERATURE

Literature related to Intel 64 and 1A-32 processors is listed on-line at:
http://developer.intel.com/products/processor/manuals/index.htm

Some of the documents listed at this web site can be viewed on-line; others can be
ordered. The literature available is listed by Intel processor and then by the following

Vol.2A 1-7

http://developer.intel.com/products/processor/manuals/index.htm

ABOUT THIS MANUAL

literature types: applications notes, data sheets, manuals, papers, and specification
updates.

See also:

The data sheet for a particular Intel 64 or 1A-32 processor
The specification update for a particular Intel 64 or 1A-32 processor

Intel® C++ Compiler documentation and online help
http://www.intel.com/cd/software/products/asmo-na/eng/index.htm

Intel® Fortran Compiler documentation and online help
http://www.intel.com/cd/software/products/asmo-na/eng/index.htm

Intel® VTune™ Performance Analyzer documentation and online help
http://www.intel.com/cd/software/products/asmo-na/eng/index.htm

Intel® 64 and 1A-32 Architectures Software Developer’s Manual (in five volumes)
http://developer.intel.com/products/processor/manuals/index.htm

Intel® 64 and 1A-32 Architectures Optimization Reference Manual
http://developer.intel.com/products/processor/manuals/index.htm

Intel® Processor Identification with the CPUID Instruction, AP-485
http://www.intel.com/support/processors/sb/cs-009861.htm

Developing Multi-threaded Applications: A Platform Consistent Approach
http://cache-
www.intel.com/cd/00/00/05/15/51534 _developing_multithreaded_applications.pdf

Using Spin-Loops on Intel Pentium 4 Processor and Intel Xeon Processor MP
http://www3.intel.com/cd/ids/developer/asmo-
na/eng/dc/threading/knowledgebase/19083.htm

More relevant links are:

Software network link:
http://softwarecommunity.intel.com/isn/home/

Developer centers:
http://www.intel.com/cd/ids/developer/asmo-na/eng/dc/index.htm
Processor support general link:
http://www.intel.com/support/processors/

Software products and packages:
http://www.intel.com/cd/software/products/asmo-na/eng/index.htm
Intel 64 and 1A-32 processor manuals (printed or PDF downloads):
http://developer.intel.com/products/processor/manuals/index.htm
Intel® Multi-Core Technology:
http://developer.intel.com/multi-core/index.htm

Hyper-Threading Technology (HT Technology):
http://developer.intel.com/technology/hyperthread/

1-8 Vol. 2A

http://www.intel.com/cd/software/products/asmo-na/eng/index.htm
http://www.intel.com/cd/software/products/asmo-na/eng/index.htm
http://www.intel.com/cd/software/products/asmo-na/eng/index.htm
http://developer.intel.com/products/processor/manuals/index.htm
http://developer.intel.com/products/processor/manuals/index.htm

http://developer.intel.com/products/processor/manuals/index.htm
http://www.intel.com/support/processors/sb/cs-009861.htm
http://www3.intel.com/cd/ids/developer/asmo-na/eng/dc/threading/knowledgebase/19083.htm
http://softwarecommunity.intel.com/isn/home/
http://www.intel.com/cd/ids/developer/asmo-na/eng/dc/index.htm
http://www.intel.com/support/processors/
http://www.intel.com/cd/software/products/asmo-na/eng/index.htm
http://developer.intel.com/products/processor/manuals/index.htm
http://developer.intel.com/multi-core/index.htm
http://developer.intel.com/technology/hyperthread/

CHAPTER 2
INSTRUCTION FORMAT

This chapter describes the instruction format for all Intel 64 and 1A-32 processors.
The instruction format for protected mode, real-address mode and virtual-8086
mode is described in Section 2.1. Increments provided for 1A-32e mode and its sub-
modes are described in Section 2.2.

2.1 INSTRUCTION FORMAT FOR PROTECTED MODE,

REAL-ADDRESS MODE, AND VIRTUAL-8086 MODE

The Intel 64 and 1A-32 architectures instruction encodings are subsets of the format
shown in Figure 2-1. Instructions consist of optional instruction prefixes (in any
order), primary opcode bytes (up to three bytes), an addressing-form specifier (if
required) consisting of the ModR/M byte and sometimes the SIB (Scale-Index-Base)
byte, a displacement (if required), and an immediate data field (if required).

InPsrter]LCJig:(teign Opcode ModR/M SIB Displacement Immediate
Up to four 1-, 2-, or 3-byte 1 byte 1 byte Address Immediate
prefixes of opcode (if required) (if required) displacement data of
1 byte each of1,2,0r4 1,2,0r4
(optional) / \ bytes or none bytes or none

7 6 5 32 0 7 65 32 0
Mod ODRS%E R/M Scale | Index Base

Figure 2-1. Intel 64 and IA-32 Architectures Instruction Format

2.1.1

Instruction prefixes are divided into four groups, each with a set of allowable prefix
codes. For each instruction, one prefix may be used from each of four groups (Groups
1, 2, 3, 4) and be placed in any order.

Instruction Prefixes

® Groupl

Lock and repeat prefixes:
®* FOH—LOCK

Vol.2A 2-1

INSTRUCTION FORMAT

® F2H—REPNE/REPNZ (used only with string instructions; when used with
the escape opcode OFH, this prefix is treated as a mandatory prefix for
some SIMD instructions)

® F3H—REP or REPE/REPZ (used only with string instructions; when used
with the escape opcode OFH, this prefix is treated as an mandatory prefix
for some SIMD instructions)

® Group 2
— Segment override prefixes:
* 2EH—CS segment override (use with any branch instruction is reserved)

* 36H—SS segment override prefix (use with any branch instruction is
reserved)

* 3EH—DS segment override prefix (use with any branch instruction is
reserved)

® 26H—ES segment override prefix (use with any branch instruction is
reserved)

®* 64H—FS segment override prefix (use with any branch instruction is
reserved)

®* 65H—GS segment override prefix (use with any branch instruction is
reserved)

— Branch hints:
® 2EH—Branch not taken (used only with Jcc instructions)
® 3EH—Branch taken (used only with Jcc instructions)
® Group 3

®* 66H—Operand-size override prefix (when used with the escape opcode
OFH, this is treated as a mandatory prefix for some SIMD instructions)

® Group4
® 67H—Address-size override prefix

The LOCK prefix (FOH) forces an operation that ensures exclusive use of shared
memory in a multiprocessor environment. See “LOCK—Assert LOCK# Signal Prefix”
in Chapter 3, “Instruction Set Reference, A-M,” for a description of this prefix.

Repeat prefixes (F2H, F3H) cause an instruction to be repeated for each element of a
string. Use these prefixes only with string instructions (MOVS, CMPS, SCAS, LODS,
STOS, INS, and OUTS). Their use, followed by OFH, is treated as a mandatory prefix
by a number of SSE/SSE2/SSE3 instructions. Use of repeat prefixes and/or unde-
fined opcodes with other Intel 64 or 1A-32 instructions is reserved; such use may
cause unpredictable behavior.

Branch hint prefixes (2EH, 3EH) allow a program to give a hint to the processor about
the most likely code path for a branch. Use these prefixes only with conditional
branch instructions (Jcc). Other use of branch hint prefixes and/or other undefined

2-2 Vol.2A

INSTRUCTION FORMAT

opcodes with Intel 64 or 1A-32 instructions is reserved; such use may cause unpre-
dictable behavior.

The operand-size override prefix allows a program to switch between 16- and 32-bit
operand sizes. Either size can be the default; use of the prefix selects the non-default
size. Use of 66H followed by OFH is treated as a mandatory prefix by some
SSE/SSE2/SSES3 instructions. Other use of the 66H prefix with MMX/SSE/SSE2/SSE3
instructions is reserved; such use may cause unpredictable behavior.

The address-size override prefix (67H) allows programs to switch between 16- and
32-bit addressing. Either size can be the default; the prefix selects the non-default
size. Using this prefix and/or other undefined opcodes when operands for the instruc-
tion do not reside in memory is reserved; such use may cause unpredictable
behavior.

2.1.2 Opcodes

A primary opcode can be 1, 2, or 3 bytes in length. An additional 3-bit opcode field is
sometimes encoded in the ModR/M byte. Smaller fields can be defined within the
primary opcode. Such fields define the direction of operation, size of displacements,
register encoding, condition codes, or sign extension. Encoding fields used by an
opcode vary depending on the class of operation.

Two-byte opcode formats for general-purpose and SIMD instructions consist of:
® An escape opcode byte OFH as the primary opcode and a second opcode byte, or

® A mandatory prefix (66H, F2H, or F3H), an escape opcode byte, and a second
opcode byte (same as previous bullet)

For example, CVTDQ2PD consists of the following sequence: F3 OF E6. The first byte
is a mandatory prefix for SSE/SSE2/SSE3 instructions (it is not considered as a
repeat prefix).

Three-byte opcode formats for general-purpose and SIMD instructions consist of:

® An escape opcode byte OFH as the primary opcode, plus two additional opcode
bytes, or

® A mandatory prefix (66H), an escape opcode byte, plus two additional opcode
bytes (same as previous bullet)

For example, PHADDW for XMM registers consists of the following sequence: 66 OF
38 01. The first byte is the mandatory prefix.

Valid opcode expressions are defined in Appendix A and Appendix B.

Vol.2A 2-3

INSTRUCTION FORMAT

2.1.3 ModR/M and SIB Bytes

Many instructions that refer to an operand in memory have an addressing-form spec-
ifier byte (called the ModR/M byte) following the primary opcode. The ModR/M byte
contains three fields of information:

® The mod field combines with the r/m field to form 32 possible values: eight
registers and 24 addressing modes.

® The reg/opcode field specifies either a register number or three more bits of
opcode information. The purpose of the reg/opcode field is specified in the
primary opcode.

® The r/m field can specify a register as an operand or it can be combined with the
mod field to encode an addressing mode. Sometimes, certain combinations of
the mod field and the r/m field is used to express opcode information for some
instructions.

Certain encodings of the ModR/M byte require a second addressing byte (the SIB
byte). The base-plus-index and scale-plus-index forms of 32-bit addressing require
the SIB byte. The SIB byte includes the following fields:

® The scale field specifies the scale factor.
® The index field specifies the register number of the index register.
® The base field specifies the register number of the base register.

See Section 2.1.5 for the encodings of the ModR/M and SIB bytes.

2.14 Displacement and Immediate Bytes

Some addressing forms include a displacement immediately following the ModR/M
byte (or the SIB byte if one is present). If a displacement is required; it be 1, 2, or 4
bytes.

If an instruction specifies an immediate operand, the operand always follows any
displacement bytes. An immediate operand can be 1, 2 or 4 bytes.

2.1.5 Addressing-Mode Encoding of ModR/M and SIB Bytes

The values and corresponding addressing forms of the ModR/M and SIB bytes are
shown in Table 2-1 through Table 2-3: 16-bit addressing forms specified by the
ModR/M byte are in Table 2-1 and 32-bit addressing forms are in Table 2-2. Table 2-3
shows 32-bit addressing forms specified by the SIB byte. In cases where the
reg/opcode field in the ModR/M byte represents an extended opcode, valid encodings
are shown in Appendix B.

In Table 2-1 and Table 2-2, the Effective Address column lists 32 effective addresses
that can be assigned to the first operand of an instruction by using the Mod and R/M
fields of the ModR/M byte. The first 24 options provide ways of specifying a memory

2-4 \Vol.2A

INSTRUCTION FORMAT

location; the last eight (Mod = 11B) provide ways of specifying general-purpose,
MMX technology and XMM registers.

The Mod and R/M columns in Table 2-1 and Table 2-2 give the binary encodings of the
Mod and R/M fields required to obtain the effective address listed in the first column.
For example: see the row indicated by Mod = 11B, R/M = 000B. The row identifies
the general-purpose registers EAX, AX or AL; MMX technology register MMO; or XMM
register XMMO. The register used is determined by the opcode byte and the operand-
size attribute.

Now look at the seventh row in either table (labeled “REG ="). This row specifies the
use of the 3-bit Reg/Opcode field when the field is used to give the location of a
second operand. The second operand must be a general-purpose, MMX technology,
or XMM register. Rows one through five list the registers that may correspond to the
value in the table. Again, the register used is determined by the opcode byte along
with the operand-size attribute.

If the instruction does not require a second operand, then the Reg/Opcode field may
be used as an opcode extension. This use is represented by the sixth row in the
tables (labeled “/digit (Opcode)”). Note that values in row six are represented in
decimal form.

The body of Table 2-1 and Table 2-2 (under the label “Value of ModR/M Byte (in Hexa-
decimal)”) contains a 32 by 8 array that presents all of 256 values of the ModR/M
byte (in hexadecimal). Bits 3, 4 and 5 are specified by the column of the table in
which a byte resides. The row specifies bits 0, 1 and 2; and bits 6 and 7. The figure
below demonstrates interpretation of one table value.

Mod 11

RM 000
/digit (Opcode); REG= 001

C8H 11001000

Figure 2-2. Table Interpretation of ModR/M Byte (C8H)

Vol.2A 2-5

INSTRUCTION FORMAT

Table 2-1. 16-Bit Addressing Forms with the ModR/M Byte

r8(/r) AL L DL BL AH CH DH BH
r16(/r) AX X DX BX SP BP1 S| DI
r32(/r) EAX ECX |EDX |EBX |ESP |€BP |ESI €Dl
mm(/r) MMO |MM1 |[MM2 |MM3 |MM4 |[MM5 |MMe | MM7
xmm(/r) XMMO | XMM1 | XMM2 | XMM3 | XMM4 | XMM5 | XMM6 | XMM7
(In decimal) /digit (Opcode) 0 1 2 3 4 5 6 7
(In binary) REG = 000 001 010 | 011 100 | 101 170 |1
Effective Address Mod | R/M Value of ModR/M Byte (in Hexadecimal)
BX+SI] 00 000 |00 08 10 18 20 28 30 38
BX+DI] 001 |01 09 11 19 21 29 31 39
BP+SlI] 010 |02 0A 12 1A 22 2A 32 3A
BP+DI] 011 |03 0B 13 1B 23 2B 33 3B
SI] 100 |04 0C 14 1C 24 2C 34 3C
DI 101 |05 oD 15 1D 25 2D 35 3D
disp162 110 |06 0€E 16 1€ 26 2E 36 3€
[BX] 111 |07 OF 17 1F 27 2F 37 3F
BX+SI]+disp83 01 000 |40 48 50 58 60 68 70 78
BX-+DI]+disp8 001 |41 49 51 59 61 69 71 79
BP+SI]+disp8 010 |42 4A 52 5A 62 6A 72 7A
BP+DI]+disp8 011 |43 4B 53 5B 63 6B 73 7B
Sl]+disp8 100 |44 4C 54 5C 64 6C 74 7C
DI]+disp8 101 |45 4D 55 5D 65 6D 75 7D
BP]+disp8 110 |46 4€ 56 5€ 66 6€ 76 7€
BX]+disp8 111 |47 4F 57 5F 67 6F 77 7F
BX+SI]+disp16 10 000 |80 88 90 98 AO A8 BO B8
BX+DI]+disp16 001 |81 89 91 99 Al A9 B1 B9
BP+SI]+disp16 010 |82 8A 92 9A A2 AA | B2 BA
BP+DI]+disp16 011 |83 8B 93 9B A3 AB B3 BB
SI]+disp16 100 |84 8C 94 9C A4 AC B4 BC
DI]+disp16 101 |85 8D 95 9D A5 AD B5 BD
BP]+disp16 110 |86 8€E 96 9€ A6 AE B6 BE
BX]+disp16 111 |87 8F 97 9F A7 AF B7 BF
EAX/AX/AL/MMO/XMMO | 11 000 |Co c8 DO D8 €0 €8 FO F8
ECX/CX/CL/IMM1/XMM1 001 | C1 C9 D1 D9 €EQ €9 F1 F9
EDX/DX/DL/MM2/XMM2 010 | C2 CA D2 DA €2 EA F2 FA
EBX/BX/BL/MM3/XMM3 011 | C3 CB D3 DB €3 EB F3 FB
ESP/SP/AHMM4/XMM4 100 |C4 CC D4 DC €4 €C F4 FC
€BP/BP/CH/MM5/XMM5 101 | C5 CD D5 DD €5 €D F5 FD
€SI/SI/DH/MM6/XMM6 110 | C6 CE D6 DE €6 EE F6 FE
€DI/DI/BH/MM7/XMM7 11 | C7 CF D7 DF €7 EF F7 FF
NOTES:

1. The default segment register is SS for the effective addresses containing a BP index, DS for other
effective addresses.

2. The disp16 nomenclature denotes a 16-bit displacement that follows the ModR/M byte and that is
added to the index.

3. The disp8 nomenclature denotes an 8-bit displacement that follows the ModR/M byte and that is
sign-extended and added to the index.

2-6 Vol.2A

Table 2-2. 32-Bit Addressin

INSTRUCTION FORMAT

g Forms with the ModR/M Byte

r8(/r) AL cL DL BL AH CH DH BH
r16(/r) AX X DX BX SP BP S| DI
r32(/r) EAX | ECX |EDX |EBX |ESP |EBP | ESI epl
mm(/r) MMO |MM1 |MM2 |MM3 |MM4 |MM5 |MM6 | MM7
xmm(/r) XMMO | XMM1 | XMM2 | XMM3 | XMM4 | XMM5 | XMM6 | XMM7
(In decimal) /digit (Opcode) 0 1 2 3 4 5 6 7
(In binary) REG = 000 |001 |010 |011 |100 |7101 |110 |111
Effective Address Mod | R/M Value of ModR/M Byte (in Hexadecimal)
EAX] 00 |000 |oo |08 10 18 |20 |28 30 38
ECX] 001 |01 09 11 19 |21 29 31 39
€DX] 010 |02 OA |12 1A |22 2A |32 3A
EBX] 011 |03 0B 13 1B |23 2B |33 3B
11 100 |04 |OC 14 1C 24 | 2C 34 |3C
disp322 101 |05 oD 15 1D |25 2D |35 3D
[ESN] 110 |06 |OE 16 1€ 26 | 2E 36 3E
[EDI] 111 |07 OF 17 1F 27 2F 37 3F
EAX]+disp83 01 |000 |40 (48 |50 58 |60 |68 |70 |78
ECX]+disp8 001 |41 (49 |2} 59 |61 |69 |71 |79
EDX]+disp8 010 |42 |4A |53 5A |62 6A |72 7A
EBX]+disp8 011 |43 |4B |54 5B |63 6B |73 7B
--][--]+disp8 100 |44 |4C gg 5C 64 |6C 74 | 7C
EBP]+disp8 101 |45 (4D |37 50 |65 6D |75 7D
€SI]+disp8 110 |46 |4E 5€ 66 | 6E 76 | 7€
EDI]+disp8 111 |47 | 4F 5F 67 6F 77 7F
EAX]+disp32 10 |[000 |80 |88 |90 |98 |A0O |A8 |BO |B8
ECX]+disp32 001 |81 89 |91 99 | Al A9 |B1 B9
EDX]+disp32 010 |82 |BA |92 9A |A2 |AA |B2 BA
EBX]+disp32 011 |83 (8B |93 9B |A3 |AB |B3 BB
--][--]+disp32 100 |84 |8C 94 | 9C A4 | AC B4 |BC
EBP]+disp32 101 |85 |8D |95 9D |A5 |AD |B5 |BD
ESI]+disp32 110 |86 |8E 96 |9€ A6 | AE B6 |BE
EDI]+disp32 111 |87 |8F 97 9F A7 | AF B7 |BF
EAX/AX/AL/MMO/XMMO | 11 | 000 |CO 8 DO |D8 |EO €8 FO F8
ECX/CX/CL/MM/XMM1 001 |C1 9 D1 D9 |E1 €9 F1 F9
EDX/DX/DL/MM2/XMM2 010 |cC2 CA |D2 |DA |E2 EA |F2 FA
EBX/BX/BL/MM3/XMM3 011 |C3 CB D3 |DB |E3 €B F3 FB
ESP/SP/AH/MM4/XMM4 100 |C4 cC D4 | DC €4 €C F4 FC
€BP/BP/CH/MM5/XMM5 101 | C5 CD D5 |DD |E5 €D F5 FD
ESI/SI/DH/MM6/XMM6 110 |C6 CE D6 | DE €6 EE F6 FE
€DI/DI/BH/MM7/XMM7 11 | C7 CF D7 |DF €7 EF F7 FF
NOTES:

1. The [--][--] nomenclature means a SIB follows the ModR/M byte.

2. The disp32 nomenclature denotes a 32-bit displacement that follows the ModR/M byte (or the SIB
byte if one is present) and that is added to the index.

3. The disp8 nomenclature denotes an 8-bit displacement that follows the ModR/M byte (or the SIB
byte if one is present) and that is sign-extended and added to the index.

Table 2-3 is organized to give 256 possible values of the SIB byte (in hexadecimal).
General purpose registers used as a base are indicated across the top of the table,
along with corresponding values for the SIB byte’s base field. Table rows in the body

Vol.2A 2-7

INSTRUCTION FORMAT

of the table indicate the register used as the index (SIB byte bits 3, 4 and 5) and the
scaling factor (determined by SIB byte bits 6 and 7).

Table 2-3. 32-Bit Addressing Forms with the SIB Byte

r32 EAX ECX EDX EBX €SP] €sl]
(In decimal) Base = 0 1 2 3 4 5 6 7
(In binary) Base = 000 001 010 011 100 101 110 111
Scaled Index SS | Index Value of SIB Byte (in Hexadecimal)
EAX] 00 000 |00 01 02 03 04 05 06 07
ECX] 001 |08 09 0A 0B 0C oD 0] OF
EDX] 010 |10 11 12 13 14 15 16 17
EBX] 011 |18 19 1A 1B 1C 1D 1€ 1F
none 100 |20 21 22 23 24 25 26 27
EBP] 101 |28 29 2A 2B 2C 2D 2€ 2F
ESI] 110 |30 31 32 33 34 35 36 37
EDI] 111 |38 39 3A 3B 3C 3D 3€ 3F
EAX*2] 01 000 |40 41 42 43 44 45 46 47
ECX*2] 001 |48 49 4A 4B 4C 4D 4€ 4F
EDX*2] 010 |50 51 52 53 54 55 56 57
EBX*2] 011 |58 59 5A 5B 5C 5D 5€ 5F
none 100 |60 61 62 63 64 65 66 67
EBP*2] 101 |68 69 6A 6B 6C 6D 6€ 6F
ESI*2] 110 |70 71 72 73 74 75 76 77
EDI*2] 111 |78 79 7A 7B 7C 7D 7€ 7F
EAX*4] 10 000 |80 81 82 83 84 85 86 87
ECX*4] 001 |88 89 8A 8B 8C 8D 8E 8F
EDX*4] 010 |90 91 92 93 94 95 96 97
EBX*4] 011 |98 89 9A 9B 9C D 9€ 9F
none 100 | AO Al A2 A3 A4 A5 A6 A7
EBP*4] 101 | A8 A9 AA AB AC AD AE AF
ESI*4] 110 |BO B1 B2 B3 B4 B5 B6 B7
EDI*4] 111 | B8 B9 BA BB BC BD BE BF
EAX*8] 11 000 |cCO C1 c2 c3 C4 c5 C6 c7
ECX*8] 001 |(C8 9 CA (B CC CD CE CF
EDX*8] 010 |DO D1 D2 D3 D4 D5 D6 D7
EBX*8] 011 |D8 D9 DA DB DC DD DE DF
none 100 |EO E1 €2 €3 €4) €6 €7
EBP*8] 101 | €8 €9 EA €B €C €D EE EF
ESI*8] 110 |FO F1 F2 F3 F4 F5 F6 F7
EDI*8] 111 |F8 F9 FA FB FC FD FE FF

NOTES:

1. The [*] nomenclature means a disp32 with no base if the MOD is 00B. Otherwise, [*] means disp8
or disp32 + [EBP]. This provides the following address modes:

MOD bits _ Effective Address

00 [scaled index] + disp32
01 [scaled index] + disp8 + [EBP]
10 [scaled index] + disp32 + [EBP]

2-8 Vol.2A

INSTRUCTION FORMAT

2.2 IA-32€ MODE

IA-32e mode has two sub-modes. These are:

® Compatibility Mode. Enables a 64-bit operating system to run most legacy
protected mode software unmodified.

® 64-Bit Mode. Enables a 64-bit operating system to run applications written to
access 64-bit address space.

2.2.1 REX Prefixes

REX prefixes are instruction-prefix bytes used in 64-bit mode. They do the following:
® Specify GPRs and SSE registers.

® Specify 64-bit operand size.

® Specify extended control registers.

Not all instructions require a REX prefix in 64-bit mode. A prefix is necessary only if
an instruction references one of the extended registers or uses a 64-bit operand. If a
REX prefix is used when it has no meaning, it is ignored.

Only one REX prefix is allowed per instruction. If used, the prefix must immediately
precede the opcode byte or the two-byte opcode escape prefix (if present). Other
placements are ignored. The instruction-size limit of 15 bytes still applies to instruc-
tions with a REX prefix. See Figure 2-3.

ﬁgﬁ%s PFrzg]?i(x Opcode ModR/M SIB Displacement Immediate
Grp1,Grp (optional) 1-,2-,0r 1 byte 1 byte Address Immediate data
2,Grp 3, 3-byte (ifrequired) ~ (if required) displacementof of 1,2, or 4
Grp4 opcode 1,2,0r4bytes bytesor none

(optional)

Figure 2-3. Prefix Ordering in 64-bit Mode

Vol.2A 2-9

INSTRUCTION FORMAT

2.2.1.1 Encoding

Intel 64 and 1A-32 instruction formats specify up to three registers by using 3-bit
fields in the encoding, depending on the format:

® ModR/M: the reg and r/m fields of the ModR/M byte

® ModR/M with SIB: the reg field of the ModR/M byte, the base and index fields of
the SIB (scale, index, base) byte

® Instructions without ModR/M: the reg field of the opcode

In 64-bit mode, these formats do not change. Bits needed to define fields in the
64-bit context are provided by the addition of REX prefixes.

2.2.1.2 More on REX Prefix Fields

REX prefixes are a set of 16 opcodes that span one row of the opcode map and
occupy entries 40H to 4FH. These opcodes represent valid instructions (INC or DEC)
in 1A-32 operating modes and in compatibility mode. In 64-bit mode, the same
opcodes represent the instruction prefix REX and are not treated as individual
instructions.

The single-byte-opcode form of INC/DEC instruction not available in 64-bit mode.
INC/DEC functionality is still available using ModR/M forms of the same instructions
(opcodes FF/0 and FF/1).

See Table 2-4 for a summary of the REX prefix format. Figure 2-4 though Figure 2-7
show examples of REX prefix fields in use. Some combinations of REX prefix fields are
invalid. In such cases, the prefix is ignored. Some additional information follows:

® Setting REX.W can be used to determine the operand size but does not solely
determine operand width. Like the 66H size prefix, 64-bit operand size override
has no effect on byte-specific operations.

® For non-byte operations: if a 66H prefix is used with prefix (REX.W = 1), 66H is
ignored.

® If a 66H override is used with REX and REX.W = 0, the operand size is 16 bits.

¢ REX.R modifies the ModR/M reg field when that field encodes a GPR, SSE, control
or debug register. REX.R is ignored when ModR/M specifies other registers or
defines an extended opcode.

® REX.X bit modifies the SIB index field.

® REX.B either modifies the base in the ModR/M r/m field or SIB base field; or it
modifies the opcode reg field used for accessing GPRs.

2-10 Vol. 2A

INSTRUCTION FORMAT

Table 2-4. REX Prefix Fields [BITS: 0100WRXB]

Field Name Bit Position Definition
- 7:4 0100
W 3 0 = Operand size determined by CS.D
1 = 64 Bit Operand Size
R 2 Extension of the ModR/M reg field
1 Extension of the SIB index field
B 0 Extension of the ModR/M r/m field, SIB base field, or
Opcode reg field
ModRM Byte
REX PREFIX Opcode mod reg r/m
0100WROI? #11 rer ‘bt‘)b‘
*]
ier‘:r' Bbbb
OM7xrigi-3

Figure 2-4. Memory Addressing Without an SIB Byte; REX.X Not Used

ModRM Byte
REX PREFIX Opcode mod reg r/m
0100WR0B 11 rrr bbb
| |
‘ H J
ivvv J
Rrrr Bbbb
OM17Xfig1-4

Figure 2-5. Register-Register Addressing (No Memory Operand); REX.X Not Used

Vol.2A 2-11

INSTRUCTION FORMAT

ModRM Byte SIB Byte
REX PREFIX Opcode mod | reg r/m scale index | base
0100WRXB 11 rrr 100 ss XXX bbb
| 1]
H J J J
LVVV J Yyvy l
Rrrr Xxxx Bbbb
OM17Xfig1-5

Figure 2-6. Memory Addressing With a SIB Byte

REX PREFIX

0100W00B
|

Opcode

reg
bbb

|

Bbbb

OM17Xfig1-6

Figure 2-7. Register Operand Coded in Opcode Byte; REX.X & REX.R Not Used

In the 1A-32 architecture, byte registers (AH, AL, BH, BL, CH, CL, DH, and DL) are
encoded in the ModR/M byte’s reg field, the r/m field or the opcode reg field as regis-
ters O through 7. REX prefixes provide an additional addressing capability for byte-
registers that makes the least-significant byte of GPRs available for byte operations.

Certain combinations of the fields of the ModR/M byte and the SIB byte have special
meaning for register encodings. For some combinations, fields expanded by the REX

prefix are not decoded. Table 2-5 describes how each case behaves.

2-12 Vol. 2A

INSTRUCTION FORMAT

Table 2-5. Special Cases of REX Encodings

ModR/M or | Sub-field Compatibility Compatibility

SIB Encodings Mode Operation |Mode Implications | Additional Implications

ModR/M Byte |mod = 11 SIB byte present. |SIB byte required |REX prefix adds a fourth
/m == for ESP-based bit (b) which is not
b*100(ESP) addressing. decoded (don't care).

SIB byte also required for
R12-based addressing.

ModR/M Byte | mod == Base register not | EBP without a REX prefix adds a fourth
/m == used. displacement must | bit (b) which is not
b*101(EBP) be done using decoded (don't care).

mod = 01 with Using RBP or R13 without
displacement of 0. | displacement must be
done using mod = 01 with
a displacement of 0.

SIB Byte index == Index register not | ESP cannot be used | REX prefix adds a fourth
0100(ESP) used. as an index bit (b) which is decoded.
register. There are no additional

implications. The
expanded index field
allows distinguishing RSP
from R12, therefore R12
can be used as an index.

SIB Byte base == Base register is Base register REX prefix adds a fourth
0101(EBP) unused if depends on mod bit (b) which is not
mod = 0. encoding. decoded.

This requires explicit
displacement to be used
with EBP/RBP or R13.

NOTES:
* Don't care about value of REX.B

2.2.13 Displacement

Addressing in 64-bit mode uses existing 32-bit ModR/M and SIB encodings. The
ModR/M and SIB displacement sizes do not change. They remain 8 bits or 32 bits and
are sign-extended to 64 bits.

2.2.1.4 Direct Memory-Offset MOVs

In 64-bit mode, direct memory-offset forms of the MOV instruction are extended to
specify a 64-bit immediate absolute address. This address is called a moffset. No
prefix is needed to specify this 64-bit memory offset. For these MOV instructions, the

Vol.2A 2-13

INSTRUCTION FORMAT

size of the memory offset follows the address-size default (64 bits in 64-bit mode).
See Table 2-6.

Table 2-6. Direct Memory Offset Form of MOV

Opcode Instruction

AO MOV AL, moffset
Al MOV EAX, moffset
A2 MOV moffset, AL
A3 MOV moffset, EAX

2.2.1.5 Immediates

In 64-bit mode, the typical size of immediate operands remains 32 bits. When the
operand size is 64 bits, the processor sign-extends all immediates to 64 bits prior to
their use.

Support for 64-bit immediate operands is accomplished by expanding the semantics
of the existing move (MOV reg, imm16/32) instructions. These instructions (opcodes
B8H — BFH) move 16-bits or 32-bits of immediate data (depending on the effective
operand size) into a GPR. When the effective operand size is 64 bits, these instruc-
tions can be used to load an immediate into a GPR. A REX prefix is needed to override
the 32-bit default operand size to a 64-bit operand size.

For example:

48 B8 8877665544332211 MOV RAX,1122334455667788H

2.2.1.6 RIP-Relative Addressing

A new addressing form, RIP-relative (relative instruction-pointer) addressing, is
implemented in 64-bit mode. An effective address is formed by adding displacement
to the 64-bit RIP of the next instruction.

In 1A-32 architecture and compatibility mode, addressing relative to the instruction
pointer is available only with control-transfer instructions. In 64-bit mode, instruc-
tions that use ModR/M addressing can use RIP-relative addressing. Without RIP-rela-
tive addressing, all ModR/M instruction modes address memory relative to zero.

RIP-relative addressing allows specific ModR/M modes to address memory relative to
the 64-bit RIP using a signed 32-bit displacement. This provides an offset range of
+2GB from the RIP. Table 2-7 shows the ModR/M and SIB encodings for RIP-relative
addressing. Redundant forms of 32-bit displacement-addressing exist in the current
ModR/M and SIB encodings. There is one ModR/M encoding and there are several SIB
encodings. RIP-relative addressing is encoded using a redundant form.

In 64-bit mode, the ModR/M Disp32 (32-bit displacement) encoding is re-defined to
be RIP+Disp32 rather than displacement-only. See Table 2-7.

2-14 Vol. 2A

INSTRUCTION FORMAT

Table 2-7. RIP-Relative Addressing

ModR/M and SIB Sub-field Compatibility 64-bit Mode | Additional Implications
Encodings Mode Operation | Operation in 64-bit mode
ModR/M mod == 00 Disp32 RIP + Disp32 | Must use SIB form with
Byte normal (zero-based)

r/m == 101 (none) displacement addressing

SIB Byte base == 101 (none) | if mod = 00, Same as None
index == 100 Disp32 legacy
(none)
scale=0,1,2,4

The ModR/M encoding for RIP-relative addressing does not depend on using prefix.
Specifically, the r/m bit field encoding of 101B (used to select RIP-relative
addressing) is not affected by the REX prefix. For example, selecting R13 (REX.B =1,
r/m = 101B) with mod = OOB still results in RIP-relative addressing. The 4-bit r/m
field of REX.B combined with ModR/M is not fully decoded. In order to address R13
with no displacement, software must encode R13 + 0 using a 1-byte displacement of
zero.

RIP-relative addressing is enabled by 64-bit mode, not by a 64-bit address-size. The
use of the address-size prefix does not disable RIP-relative addressing. The effect of
the address-size prefix is to truncate and zero-extend the computed effective
address to 32 bits.

2.2.1.7 Default 64-Bit Operand Size

In 64-bit mode, two groups of instructions have a default operand size of 64 bits (do
not need a REX prefix for this operand size). These are:

® Near branches
® All instructions, except far branches, that implicitly reference the RSP

2.2.2 Additional Encodings for Control and Debug Registers

In 64-bit mode, more encodings for control and debug registers are available. The
REX.R bit is used to modify the ModR/M reg field when that field encodes a control or
debug register (see Table 2-4). These encodings enable the processor to address
CR8-CR15 and DR8- DR15. An additional control register (CR8) is defined in 64-bit
mode. CR8 becomes the Task Priority Register (TPR).

In the first implementation of IA-32e mode, CR9-CR15 and DR8-DR15 are not imple-
mented. Any attempt to access unimplemented registers results in an invalid-opcode
exception (#UD).

Vol.2A 2-15

INSTRUCTION FORMAT

2-16 Vol. 2A

CHAPTER 3
INSTRUCTION SET REFERENCE, A-M

This chapter describes the instruction set for the Intel 64 and 1A-32 architectures
(A-M) in 1A-32e, protected, Virtual-8086, and real modes of operation. The set
includes general-purpose, x87 FPU, MMX, SSE/SSE2/SSE3/SSSE3, and system
instructions. See also Chapter 4, “Instruction Set Reference, N-Z,” in the Intel® 64
and 1A-32 Architectures Software Developer’s Manual, Volume 2B.

For each instruction, each operand combination is described. A description of the
instruction and its operand, an operational description, a description of the effect of
the instructions on flags in the EFLAGS register, and a summary of exceptions that
can be generated are also provided.

3.1 INTERPRETING THE INSTRUCTION REFERENCE
PAGES

This section describes the format of information contained in the instruction refer-
ence pages in this chapter. It explains notational conventions and abbreviations used
in these sections.

3.1.1 Instruction Format

The following is an example of the format used for each instruction description in this
chapter. The heading below introduces the example. The table below provides an
example summary table.

CMC—Complement Carry Flag [this is an example]

Opcode Instruction 64-bit Mode Compat/ Description
Leg Mode
F5 CcMC Valid Valid Complement carry flag.

Vol.2A 3-1

INSTRUCTION SET REFERENCE, A-M

3.1.1.1 Opcode Column in the Instruction Summary Table

The “Opcode” column in the table above shows the object code produced for each
form of the instruction. When possible, codes are given as hexadecimal bytes in the
same order in which they appear in memory. Definitions of entries other than hexa-
decimal bytes are as follows:

REX.W — Indicates the use of a REX prefix that affects operand size or
instruction semantics. The ordering of the REX prefix and other
optional/mandatory instruction prefixes are discussed Chapter 2. Note that REX
prefixes that promote legacy instructions to 64-bit behavior are not listed
explicitly in the opcode column.

/digit — A digit between 0 and 7 indicates that the ModR/M byte of the
instruction uses only the r/m (register or memory) operand. The reg field
contains the digit that provides an extension to the instruction's opcode.

/r — Indicates that the ModR/M byte of the instruction contains a register
operand and an r/m operand.

cb, cw, cd, cp, co, ct — A 1-byte (cb), 2-byte (cw), 4-byte (cd), 6-byte (cp),
8-byte (co) or 10-byte (ct) value following the opcode. This value is used to
specify a code offset and possibly a new value for the code segment register.

ib, iw, id, io — A 1-byte (ib), 2-byte (iw), 4-byte (id) or 8-byte (i0) immediate
operand to the instruction that follows the opcode, ModR/M bytes or scale-
indexing bytes. The opcode determines if the operand is a signed value. All
words, doublewords and quadwords are given with the low-order byte first.

+rb, +rw, +rd, +ro — A register code, from O through 7, added to the
hexadecimal byte given at the left of the plus sign to form a single opcode byte.
See Table 3-1 for the codes. The +ro columns in the table are applicable only in
64-bit mode.

+i — A number used in floating-point instructions when one of the operands is
ST(i) from the FPU register stack. The number i (which can range from 0 to 7) is
added to the hexadecimal byte given at the left of the plus sign to form a single
opcode byte.

Table 3-1. Register Codes Associated With +rb, +rw, +rd, +ro

byte register word register dword register quadword register
(64-Bit Mode only)
[© [© [© [©
o oQ o |2 oQ o |2 oQ o 2 o o
et B BB OB BB OB OB B OBOE
(=] (=] (=] o
g = g &~ @& = & | [~ |2
AL None 0 AX None 0 EAX None 0 RAX None 0
CL None 1 X None 1 ECX None 1 RCX None 1
DL None 2 DX None 2 EDX None 2 RDX None 2
3-2 Vol. 2A

INSTRUCTION SET REFERENCE, A-M

Table 3-1. Register Codes Associated With +rb, +rw, +rd, +ro (Contd.)

byte register word register dword register quadword register
(64-Bit Mode only)
S | 3 |8 @ 3 |8 @ 3 g @ S
& K 5 B B & B 5 B B %
g = g e = g @@ = g | [|
BL None 3 BX None 3 EBX None 3 RBX None 3
AH Not 4 SP None | 4 ESP None | 4 N/A N/A N/A
encod
able
(N.E)
CH N.E. 5 BP None | 5 EBP None 5 N/A N/A N/A
DH N.E. 6 S| None | 6 sl None | 6 N/A N/A N/A
BH N.E. 7 DI None | 7 EDI None 7 N/A N/A N/A
SPL Yes 4 SP None 4 ESP None 4 RSP None 4
BPL Yes 5 BP None 5 EBP None 5 RBP None 5
SIL Yes 6 SI None 6 €SI None 6 RSI None 6
DIL Yes 7 DI None 7 EDI None 7 RDI None 7
Registers R8 - R15 (see below): Available in 64-Bit Mode Only
R8L Yes 0 R8W Yes 0 R8D Yes 0 R8 Yes 0
ROL Yes 1 ROW Yes 1 RSD Yes 1 R9 Yes 1
R10L | Yes 2 R10W | Yes 2 R10D Yes 2 R10 Yes 2
R11L | Yes 3 R11W | Yes 3 R11D Yes 3 R11 Yes 3
R12L | Yes 4 R12W | Yes 4 R12D Yes 4 R12 Yes 4
R13L | Yes 5 R13W | Yes 5 R13D Yes 5 R13 Yes 5
R14L | Yes 6 R14W | Yes 6 R14D Yes 6 R14 Yes 6
R15L | Yes 7 R15W | Yes 7 R15D Yes 7 R15 Yes 7

3.1.1.2 Instruction Column in the Opcode Summary Table

The “Instruction” column gives the syntax of the instruction statement as it would
appear in an ASM386 program. The following is a list of the symbols used to repre-
sent operands in the instruction statements:

® rel8 — A relative address in the range from 128 bytes before the end of the
instruction to 127 bytes after the end of the instruction.

® rell6, rel32, rel64 — A relative address within the same code segment as the
instruction assembled. The rel16 symbol applies to instructions with an operand-
size attribute of 16 bits; the rel32 symbol applies to instructions with an
operand-size attribute of 32 bits; the rel64 symbol applies to instructions with an
operand-size attribute of 64 bits.

Vol.2A 3-3

INSTRUCTION SET REFERENCE, A-M

® ptrl6:16, ptrl6:32 and ptrl6:64 — A far pointer, typically to a code segment
different from that of the instruction. The notation 16:16 indicates that the value
of the pointer has two parts. The value to the left of the colon is a 16-bit selector
or value destined for the code segment register. The value to the right
corresponds to the offset within the destination segment. The ptrl16:16 symbol is
used when the instruction’'s operand-size attribute is 16 bits; the ptr16:32
symbol is used when the operand-size attribute is 32 bits; the ptr16:64 symbol is
used when the operand-size attribute is 64 bits.

® r8 — One of the byte general-purpose registers: AL, CL, DL, BL, AH, CH, DH, BH,
BPL, SPL, DIL and SIL; or one of the byte registers (R8L - R15L) available when
using REX.R and 64-bit mode.

® r16 — One of the word general-purpose registers: AX, CX, DX, BX, SP, BP, SlI, DI;
or one of the word registers (R8-R15) available when using REX.R and 64-bit
mode.

® 32 — One of the doubleword general-purpose registers: EAX, ECX, EDX, EBX,
ESP, EBP, ESI, EDI; or one of the doubleword registers (R8D - R15D) available
when using REX.R in 64-bit mode.

® r64 — One of the quadword general-purpose registers: RAX, RBX, RCX, RDX,
RDI, RSI, RBP, RSP, R8—R15. These are available when using REX.R and 64-bit
mode.

® imm8 — An immediate byte value. The imm8 symbol is a signed number
between —128 and +127 inclusive. For instructions in which imm8 is combined
with a word or doubleword operand, the immediate value is sign-extended to
form a word or doubleword. The upper byte of the word is filled with the topmost
bit of the immediate value.

® imm16 — An immediate word value used for instructions whose operand-size
attribute is 16 bits. This is a number between —32,768 and +32,767 inclusive.

®* imm32 — An immediate doubleword value used for instructions whose
operand-size attribute is 32 bits. It allows the use of a number between
+2,147,483,647 and —2,147,483,648 inclusive.

® imm64 — An immediate quadword value used for instructions whose
operand-size attribute is 64 bits. The value allows the use of a number
between +9,223,372,036,854,775,807 and —9,223,372,036,854,775,808
inclusive.

® r/m8 — A byte operand that is either the contents of a byte general-purpose
register (AL, CL, DL, BL, AH, CH, DH, BH, BPL, SPL, DIL and SIL) or a byte from
memory. Byte registers R8L - R15L are available using REX.R in 64-bit mode.

® r/m16 — A word general-purpose register or memory operand used for instruc-
tions whose operand-size attribute is 16 bits. The word general-purpose registers
are: AX, CX, DX, BX, SP, BP, SlI, DI. The contents of memory are found at the
address provided by the effective address computation. Word registers R8W -
R15W are available using REX.R in 64-bit mode.

3-4 Vol. 2A

INSTRUCTION SET REFERENCE, A-M

r/m32 — A doubleword general-purpose register or memory operand used for
instructions whose operand-size attribute is 32 bits. The doubleword general-
purpose registers are: EAX, ECX, EDX, EBX, ESP, EBP, ESI, EDI. The contents of
memory are found at the address provided by the effective address computation.
Doubleword registers R8D - R15D are available when using REX.R in 64-bit
mode.

r/m64 — A quadword general-purpose register or memory operand used for
instructions whose operand-size attribute is 64 bits when using REX.W.
Quadword general-purpose registers are: RAX, RBX, RCX, RDX, RDI, RSI, RBP,
RSP, R8—R15; these are available only in 64-bit mode. The contents of memory
are found at the address provided by the effective address computation.

m — A 16-, 32- or 64-bit operand in memory.

m8 — A byte operand in memory, usually expressed as a variable or array name,
but pointed to by the DS:(E)SI or ES:(E)DI registers. In 64-bit mode, it is pointed
to by the RSI or RDI registers.

m16 — A word operand in memory, usually expressed as a variable or array
name, but pointed to by the DS:(E)SI or ES:(E)DI registers. This nomenclature is
used only with the string instructions.

m32 — A doubleword operand in memory, usually expressed as a variable or
array name, but pointed to by the DS:(E)SI or ES:(E)DI registers. This nomen-
clature is used only with the string instructions.

m64 — A memory quadword operand in memory.

m128 — A memory double quadword operand in memory. This nomenclature is
used only with SSE and SSE2 instructions.

m1l6:16, m16:32 & m16:64 — A memory operand containing a far pointer
composed of two numbers. The number to the left of the colon corresponds to the
pointer's segment selector. The number to the right corresponds to its offset.

m16&32, m16&16, m32&32, m16&64 — A memory operand consisting of
data item pairs whose sizes are indicated on the left and the right side of the
ampersand. All memory addressing modes are allowed. The m16&16 and
m32&32 operands are used by the BOUND instruction to provide an operand
containing an upper and lower bounds for array indices. The m16&32 operand is
used by LIDT and LGDT to provide a word with which to load the limit field, and a
doubleword with which to load the base field of the corresponding GDTR and
IDTR registers. The m16&64 operand is used by LIDT and LGDT in 64-bit mode to
provide a word with which to load the limit field, and a quadword with which to
load the base field of the corresponding GDTR and IDTR registers.

moffs8, moffs16, moffs32, moffs64 — A simple memory variable (memory
offset) of type byte, word, or doubleword used by some variants of the MOV
instruction. The actual address is given by a simple offset relative to the segment
base. No ModR/M byte is used in the instruction. The number shown with moffs
indicates its size, which is determined by the address-size attribute of the
instruction.

Vol.2A 3-5

INSTRUCTION SET REFERENCE, A-M

Sreg — A segment register. The segment register bit assignments are ES = 0,
CS=1,SS=2,DS=3,FS =4, and GS = 5.

m32fp, m64fp, m80fp — A single-precision, double-precision, and double
extended-precision (respectively) floating-point operand in memory. These
symbols designate floating-point values that are used as operands for x87 FPU
floating-point instructions.

m1l6int, m32int, m64int — A word, doubleword, and quadword integer
(respectively) operand in memory. These symbols designate integers that are
used as operands for x87 FPU integer instructions.

ST or ST(0) — The top element of the FPU register stack.
ST(i) — The ith element from the top of the FPU register stack (i < O through 7).
mm — An MMX register. The 64-bit MMX registers are: MMO through MM7.

mm/m32 — The low order 32 bits of an MMX register or a 32-bit memory
operand. The 64-bit MMX registers are: MMO through MM7. The contents of
memory are found at the address provided by the effective address computation.

mm/m64 — An MMX register or a 64-bit memory operand. The 64-bit MMX
registers are: MMO through MM7. The contents of memory are found at the
address provided by the effective address computation.

xmm — An XMM register. The 128-bit XMM registers are: XMMO through XMM7;
XMMS8 through XMM15 are available using REX.R in 64-bit mode.

xmm/m32— An XMM register or a 32-bit memory operand. The 128-bit XMM
registers are XMMO through XMM7; XMM8 through XMM15 are available using
REX.R in 64-bit mode. The contents of memory are found at the address provided
by the effective address computation.

xmm/m64 — An XMM register or a 64-bit memory operand. The 128-bit SIMD
floating-point registers are XMMO through XMM7; XMM8 through XMM15 are
available using REX.R in 64-bit mode. The contents of memory are found at the
address provided by the effective address computation.

Xxmm/m128 — An XMM register or a 128-bit memory operand. The 128-bit XMM
registers are XMMO through XMM7; XMM8 through XMM15 are available using
REX.R in 64-bit mode. The contents of memory are found at the address provided
by the effective address computation.

3.1.1.3 64-bit Mode Column in the Instruction Summary Table

The “64-bit Mode” column indicates whether the opcode sequence is supported in
64-bit mode. The column uses the following notation:

Valid — Supported.
Invalid — Not supported.

N.E. — Indicates an instruction syntax is not encodable in 64-bit mode (it may
represent part of a sequence of valid instructions in other modes).

3-6 Vol.2A

INSTRUCTION SET REFERENCE, A-M

® N.P.— Indicates the REX prefix does not affect the legacy instruction in 64-bit

mode.
® N.l. — Indicates the opcode is treated as a new instruction in 64-bit mode.
® N.S. — Indicates an instruction syntax that requires an address override prefix in

64-bit mode and is not supported. Using an address override prefix in 64-bit
mode may result in model-specific execution behavior.

3.1.14 Compatibility/Legacy Mode Column in the Instruction Summary
Table
The “Compatibility/Legacy Mode” column provides information on the opcode

sequence in either the compatibility mode or other 1A-32 modes. The column uses
the following notation:

® Valid — Supported.
® Invalid — Not supported.

® N.E. — Indicates an Intel 64 instruction mnemonics/syntax that is not
encodable; the opcode sequence is not applicable as an individual instruction in
compatibility mode or 1A-32 mode. The opcode may represent a valid sequence
of legacy 1A-32 instructions.

3.1.1.5 Description Column in the Instruction Summary Table

The “Description” column briefly explains forms of the instruction.

3.1.1.6 Description Section

Each instruction is then described by number of information sections. The “Descrip-
tion” section describes the purpose of the instructions and required operands in more
detail.

3.1.1.7 Operation Section

The “Operation” section contains an algorithm description (frequently written in
pseudo-code) for the instruction. Algorithms are composed of the following
elements:

® Comments are enclosed within the symbol pairs “(*” and “*)”.

® Compound statements are enclosed in keywords, such as: IF, THEN, ELSE and FI
for an if statement; DO and OD for a do statement; or CASE... OF for a case
statement.

® Aregister name implies the contents of the register. A register name enclosed in
brackets implies the contents of the location whose address is contained in that
register. For example, ES:[DI] indicates the contents of the location whose ES
segment relative address is in register DI. [SI] indicates the contents of the

Vol.2A 3-7

INSTRUCTION SET REFERENCE, A-M

address contained in register Sl relative to the Sl register’s default segment (DS)
or the overridden segment.

Parentheses around the “E” in a general-purpose register name, such as (E)SlI,
indicates that the offset is read from the Sl register if the address-size attribute
is 16, from the ESI register if the address-size attribute is 32. Parentheses
around the “R” in a general-purpose register name, (R)SI, in the presence of a
64-bit register definition such as (R)SI, indicates that the offset is read from the
64-bit RSI register if the address-size attribute is 64.

Brackets are used for memory operands where they mean that the contents of
the memory location is a segment-relative offset. For example, [SRC] indicates
that the content of the source operand is a segment-relative offset.

A « B indicates that the value of B is assigned to A.

The symbols =, #, >, <, >, and < are relational operators used to compare two
values: meaning equal, not equal, greater or equal, less or equal, respectively. A
relational expression such as A < B is TRUE if the value of A is equal to B;
otherwise it is FALSE.

The expression “<< COUNT” and “>> COUNT” indicates that the destination
operand should be shifted left or right by the number of bits indicated by the
count operand.

The following identifiers are used in the algorithmic descriptions:

OperandSize and AddressSize — The OperandSize identifier represents the
operand-size attribute of the instruction, which is 16, 32 or 64-bits. The
AddressSize identifier represents the address-size attribute, which is 16, 32 or
64-bits. For example, the following pseudo-code indicates that the operand-size
attribute depends on the form of the MOV instruction used.

IF Instruction <« MOVW
THEN OperandSize « 16;

ELSE
IF Instruction <~ MOVD
THEN OperandSize « 32;
ELSE
IF Instruction <~ MOVQ
THEN OperandSize « 64;
Fl;
Fl;
Fl;

See “Operand-Size and Address-Size Attributes” in Chapter 3 of the Intel® 64
and 1A-32 Architectures Software Developer’s Manual, Volume 1, for guidelines
on how these attributes are determined.

StackAddrSize — Represents the stack address-size attribute associated with
the instruction, which has a value of 16, 32 or 64-bits. See “Address-Size

3-8 Vol.2A

INSTRUCTION SET REFERENCE, A-M

Attribute for Stack” in Chapter 6, “Procedure Calls, Interrupts, and Exceptions,” of
the Intel® 64 and 1A-32 Architectures Software Developer’s Manual, Volume 1.

SRC — Represents the source operand.
DEST — Represents the destination operand.

The following functions are used in the algorithmic descriptions:

ZeroExtend(value) — Returns a value zero-extended to the operand-size
attribute of the instruction. For example, if the operand-size attribute is 32, zero
extending a byte value of —10 converts the byte from F6H to a doubleword value
of 0O00O000F6H. If the value passed to the ZeroExtend function and the operand-
size attribute are the same size, ZeroExtend returns the value unaltered.

SignExtend(value) — Returns a value sign-extended to the operand-size
attribute of the instruction. For example, if the operand-size attribute is 32, sign
extending a byte containing the value —10 converts the byte from F6H to a
doubleword value of FFFFFFF6H. If the value passed to the SignExtend function
and the operand-size attribute are the same size, SignExtend returns the value
unaltered.

SaturateSignedWordToSignedByte — Converts a signed 16-bit value to a
signed 8-bit value. If the signed 16-bit value is less than —128, it is represented
by the saturated value -128 (80H); if it is greater than 127, it is represented by
the saturated value 127 (7FH).

SaturateSignedDwordToSignedWord — Converts a signed 32-bit value to a
signed 16-bit value. If the signed 32-bit value is less than —32768, it is
represented by the saturated value —32768 (8000H); if it is greater than 32767,
it is represented by the saturated value 32767 (7FFFH).

SaturateSignedWordToUnsignedByte — Converts a signed 16-bit value to an
unsigned 8-bit value. If the signed 16-bit value is less than zero, it is represented
by the saturated value zero (O0OH); if it is greater than 255, it is represented by
the saturated value 255 (FFH).

SaturateToSignedByte — Represents the result of an operation as a signed
8-bit value. If the result is less than —128, it is represented by the saturated value
—128 (80H); if it is greater than 127, it is represented by the saturated value 127
(7FH).

SaturateToSignedWord — Represents the result of an operation as a signed
16-bit value. If the result is less than —32768, it is represented by the saturated
value —32768 (8000H); if it is greater than 32767, it is represented by the
saturated value 32767 (7FFFH).

SaturateToUnsignedByte — Represents the result of an operation as a signed
8-bit value. If the result is less than zero it is represented by the saturated value
zero (OOH); if it is greater than 255, it is represented by the saturated value 255
(FFH).

SaturateToUnsignedWord — Represents the result of an operation as a signed
16-bit value. If the result is less than zero it is represented by the saturated value

Vol.2A 3-9

INSTRUCTION SET REFERENCE, A-M

zero (OOH); if it is greater than 65535, it is represented by the saturated value
65535 (FFFFH).

® LowOrderWord(DEST * SRC) — Multiplies a word operand by a word operand
and stores the least significant word of the doubleword result in the destination
operand.

¢ HighOrderWord(DEST * SRC) — Multiplies a word operand by a word operand
and stores the most significant word of the doubleword result in the destination
operand.

® Push(value) — Pushes a value onto the stack. The number of bytes pushed is
determined by the operand-size attribute of the instruction. See the “Operation”
subsection of the “PUSH—Push Word, Doubleword or Quadword Onto the Stack”
section in Chapter 4 of the Intel® 64 and 1A-32 Architectures Software
Developer’s Manual, Volume 2B.

® Pop() removes the value from the top of the stack and returns it. The statement
EAX « Pop(); assigns to EAX the 32-bit value from the top of the stack. Pop will
return either a word, a doubleword or a quadword depending on the operand-size
attribute. See the “Operation” subsection in the “POP—Pop a Value from the
Stack” section of Chapter 4 of the Intel® 64 and 1A-32 Architectures Software
Developer’'s Manual, Volume 2B.

® PopRegisterStack — Marks the FPU ST(O) register as empty and increments
the FPU register stack pointer (TOP) by 1.

® Switch-Tasks — Performs a task switch.

¢ Bit(BitBase, BitOffset) — Returns the value of a bit within a bit string. The bit
string is a sequence of bits in memory or a register. Bits are numbered from low-
order to high-order within registers and within memory bytes. If the BitBase is a
register, the BitOffset can be in the range O to [15, 31, 63] depending on the
mode and register size. See Figure 3-1: the function Bit[RAX, 21] is illustrated.

63 31 21 0

T—Bit Offset « 21 A

Figure 3-1. Bit Offset for BIT[RAX, 21]

If BitBase is a memory address, the BitOffset can range has different ranges
depending on the operand size (see Table 3-2).

3-10 Vol.2A

INSTRUCTION SET REFERENCE, A-M

Table 3-2. Range of Bit Positions Specified by Bit Offset Operands

Operand Size Immediate BitOffset | Register BitOffset
16 0to15 —2t0 215 -1
32 0to 31 Sl (AR
64 0to63 25310283 1

The addressed bit is numbered (Offset MOD 8) within the byte at address
(BitBase + (BitOffset DIV 8)) where DIV is signed division with rounding towards
negative infinity and MOD returns a positive number (see Figure 3-2).

BitBase + BitBase J BitBase —

LBitOffset «—+13

7 07 07 5 0

BitBase BitBase — BitBase -
BitOffset « — J

Figure 3-2. Memory Bit Indexing

3.1.1.8 Intel® C/C++ Compiler Intrinsics Equivalents Section

The Intel C/C++ compiler intrinsics equivalents are special C/C++ coding extensions
that allow using the syntax of C function calls and C variables instead of hardware
registers. Using these intrinsics frees programmers from having to manage registers
and assembly programming. Further, the compiler optimizes the instruction sched-
uling so that executable run faster.

The following sections discuss the intrinsics APl and the MMX technology and SIMD
floating-point intrinsics. Each intrinsic equivalent is listed with the instruction
description. There may be additional intrinsics that do not have an instruction equiv-
alent. It is strongly recommended that the reader reference the compiler documen-
tation for the complete list of supported intrinsics.

Vol.2A 3-11

INSTRUCTION SET REFERENCE, A-M

See Appendix C, “InteL® C/C++ Compiler Intrinsics and Functional Equivalents,” in
the Intel® 64 and 1A-32 Architectures Software Developer’s Manual, Volume 2B, for
more information on using intrinsics.

Intrinsics API

The benefit of coding with MMX technology intrinsics and the SSE/SSE2/SSE3 intrin-
sics is that you can use the syntax of C function calls and C variables instead of hard-
ware registers. This frees you from managing registers and programming assembly.
Further, the compiler optimizes the instruction scheduling so that your executable
runs faster. For each computational and data manipulation instruction in the new
instruction set, there is a corresponding C intrinsic that implements it directly. The
intrinsics allow you to specify the underlying implementation (instruction selection)
of an algorithm yet leave instruction scheduling and register allocation to the
compiler.

MMX™ Technology Intrinsics

The MMX technology intrinsics are based on a ___m64 data type that represents the
specific contents of an MMX technology register. You can specify values in bytes,
short integers, 32-bit values, or a 64-bit object. The ___m64 data type, however, is
not a basic ANSI C data type, and therefore you must observe the following usage
restrictions:

® Use ___m64 data only on the left-hand side of an assignment, as a return value,
or as a parameter. You cannot use it with other arithmetic expressions (“+7, “>>",
and so on).

® Use ___m64 objects in aggregates, such as unions to access the byte elements
and structures; the address of an __m64 object may be taken.

® Use___m64 data only with the MMX technology intrinsics described in this manual
and Intel® C/C++ compiler documentation.

® See:
— http://www.intel.com/support/performancetools/

— Appendix C, “InteL® C/C++ Compiler Intrinsics and Functional Equivalents,”
in the Intel® 64 and I1A-32 Architectures Software Developer’s Manual,
Volume 2B, for more information on using intrinsics.

— SSE/SSE2/SSE3 Intrinsics

— SSE/SSE2/SSE3 intrinsics all make use of the XMM registers of the Pentium
Ill, Pentium 4, and Intel Xeon processors. There are three data types
supported by these intrinsics: __m128, _ m128d, and __m128i.

® The __m128 data type is used to represent the contents of an XMM register used
by an SSE intrinsic. This is either four packed single-precision floating-point
values or a scalar single-precision floating-point value.

® The ___m128d data type holds two packed double-precision floating-point values
or a scalar double-precision floating-point value.

3-12 Vol.2A

INSTRUCTION SET REFERENCE, A-M

® The ___m128idata type can hold sixteen byte, eight word, or four doubleword, or
two quadword integer values.

The compiler aligns __m128, _ m128d, and ___m128i local and global data to
16-byte boundaries on the stack. To align integer, float, or double arrays, use the
declspec statement as described in Intel C/C++ compiler documentation. See
http://www.intel.com/support/performancetools/.

The __m128, _ m128d, and ___m128i data types are not basic ANSI C data types
and therefore some restrictions are placed on its usage:

® Use_ ml128, m128d, and _ _m128i only on the left-hand side of an
assignment, as a return value, or as a parameter. Do not use it in other arithmetic
expressions such as “+” and “>>.”

® Do notinitialize __m128, m128d, and ___m128i with literals; there is no way to
express 128-bit constants.

® Use___ml128, m128d, and __m128i objects in aggregates, such as unions (for
example, to access the float elements) and structures. The address of these
objects may be taken.

® Use___ml128, ml128d, and ___m128i data only with the intrinsics described in
this user’s guide. See Appendix C, “InteL® C/C++ Compiler Intrinsics and
Functional Equivalents,” in the Intel® 64 and 1A-32 Architectures Software
Developer’s Manual, Volume 2B, for more information on using intrinsics.

The compiler aligns __m128, _ m128d, and __m128i local data to 16-byte bound-
aries on the stack. Global __m128 data is also aligned on 16-byte boundaries. (To
align float arrays, you can use the alignment declspec described in the following
section.) Because the new instruction set treats the SIMD floating-point registers in
the same way whether you are using packed or scalar data, there is no ___m32 data
type to represent scalar data as you might expect. For scalar operations, you should
use the __m128 objects and the “scalar” forms of the intrinsics; the compiler and the
processor implement these operations with 32-bit memory references.

The suffixes ps and ss are used to denote “packed single” and “scalar single” preci-
sion operations. The packed floats are represented in right-to-left order, with the
lowest word (right-most) being used for scalar operations: [z, y, X, w]. To explain
how memory storage reflects this, consider the following example.

The operation:

float a[4] < {1.0,2.0,3.0,4.0},
__m128t <« _mm_load_ps(a);

Produces the same result as follows:

__m128t« _mm_set_ps(4.0, 3.0, 2.0, 1.0);

In other words:

t«[40,30,20,1.0]

Where the “scalar” element is 1.0.

Vol.2A 3-13

INSTRUCTION SET REFERENCE, A-M

Some intrinsics are “composites” because they require more than one instruction to
implement them. You should be familiar with the hardware features provided by the
SSE, SSE2, SSE3, and MMX technology when writing programs with the intrinsics.

Keep the following important issues in mind:

® Certain intrinsics, such as _mm_loadr_ps and _mm_cmpgt_ss, are not directly
supported by the instruction set. While these intrinsics are convenient
programming aids, be mindful of their implementation cost.

¢ Data loaded or stored as ___m128 objects must generally be 16-byte-aligned.

® Some intrinsics require that their argument be immediates, that is, constant
integers (literals), due to the nature of the instruction.

® The result of arithmetic operations acting on two NaN (Not a Number) arguments
is undefined. Therefore, floating-point operations using NaN arguments may not
match the expected behavior of the corresponding assembly instructions.

For a more detailed description of each intrinsic and additional information related to
its usage, refer to Intel C/C++ compiler documentation. See:

— http://www.intel.com/support/performancetools/

— Appendix C, “Intel® C/C++ Compiler Intrinsics and Functional Equivalents,”
in the Intel® 64 and I1A-32 Architectures Software Developer’s Manual,
Volume 2B, for more information on using intrinsics.

3.1.1.9 Flags Affected Section

The “Flags Affected” section lists the flags in the EFLAGS register that are affected by
the instruction. When a flag is cleared, it is equal to O; when it is set, it is equal to 1.
The arithmetic and logical instructions usually assign values to the status flags in a
uniform manner (see Appendix A, “Eflags Cross-Reference,” in the Intel® 64 and
1A-32 Architectures Software Developer’'s Manual, Volume 1). Non-conventional
assignments are described in the “Operation” section. The values of flags listed as
undefined may be changed by the instruction in an indeterminate manner. Flags
that are not listed are unchanged by the instruction.

3.1.1.10 FPU Flags Affected Section

The floating-point instructions have an “FPU Flags Affected” section that describes
how each instruction can affect the four condition code flags of the FPU status word.

3.1.1.11 Protected Mode Exceptions Section

The “Protected Mode Exceptions” section lists the exceptions that can occur when the
instruction is executed in protected mode and the reasons for the exceptions. Each
exception is given a mnemonic that consists of a pound sign (#) followed by two
letters and an optional error code in parentheses. For example, #GP(0) denotes a
general protection exception with an error code of 0. Table 3-3 associates each two-

3-14 Vol.2A

INSTRUCTION SET REFERENCE, A-M

letter mnemonic with the corresponding interrupt vector number and exception

name. See Chapter 5, “Interrupt and Exception Handling,” in the Intel® 64 and 1A-32
Architectures Software Developer’s Manual, Volume 3A, for a detailed description of
the exceptions.

Application programmers should consult the documentation provided with their oper-
ating systems to determine the actions taken when exceptions occur.

Table 3-3. Intel 64 and IA-32 General Exceptions
Vector | Name Source Protected | Real Virtual
No. Mode? Address | 8086
Mode Mode
0 #DE—Divide Error DIV and IDIV instructions. Yes Yes Yes
1 #DB—Debug Any code or data reference. Yes Yes Yes
3 #BP—Breakpoint INT 3 instruction. Yes Yes Yes
4 #OF—Overflow INTO instruction. Yes Yes Yes
5 #BR—BOUNDRange | BOUND instruction. Yes Yes Yes
Exceeded
6 #UD—Invalid UDZ instruction or reserved Yes Yes Yes
Opcode (Undefined | opcode.
Opcode)
7 #NM—Device Not Floating-point or WAIT/FWAIT Yes Yes Yes
Available (No Math | instruction.
Coprocessor)
8 #DF—Double Fault | Any instruction that can Yes Yes Yes
generate an exception, an
NMI, or an INTR.
10 #TS—Invalid TSS Task switch or TSS access. Yes Reserved Yes
11 #NP—Segment Not | Loading segment registers or Yes Reserved Yes
Present accessing system segments.
12 #SS—Stack Stack operations and SS Yes Yes Yes
Segment Fault register loads.
13 #GP—General Any memory reference and Yes Yes Yes
Protection? other protection checks.
14 #PF—Page Fault Any memory reference. Yes Reserved Yes
16 #MF—Floating-Point | Floating-point or WAIT/FWAIT Yes Yes Yes
Error (Math Fault) instruction.
17 #AC—Alignment Any data reference in Yes Reserved Yes
Check memory.

Vol.2A 3-15

INSTRUCTION SET REFERENCE, A-M

Table 3-3. Intel 64 and IA-32 General Exceptions (Contd.)

Vector | Name Source Protected | Real Virtual
No. Mode? Address | 8086
Mode Mode
18 #MC—Machine Model dependent machine Yes Yes Yes
Check check errors.
19 #XM—SIMD SSE/SSE2/SSE3 floating-point Yes Yes Yes
Floating-Point instructions.
Numeric Error
NOTES:

1. Apply to protected mode, compatibility mode, and 64-bit mode.
2. In the real-address mode, vector 13 is the segment overrun exception.

3.1.1.12 Real-Address Mode Exceptions Section

The “Real-Address Mode Exceptions” section lists the exceptions that can occur when
the instruction is executed in real-address mode (see Table 3-3).

3.1.1.13 Virtual-8086 Mode Exceptions Section

The “Virtual-8086 Mode Exceptions” section lists the exceptions that can occur when
the instruction is executed in virtual-8086 mode (see Table 3-3).

3.1.1.14 Floating-Point Exceptions Section

The “Floating-Point Exceptions” section lists exceptions that can occur when an x87
FPU floating-point instruction is executed. All of these exception conditions result in
a floating-point error exception (#MF, vector number 16) being generated. Table 3-4
associates a one- or two-letter mnemonic with the corresponding exception name.
See “Floating-Point Exception Conditions” in Chapter 8 of the Intel® 64 and 1A-32
Architectures Software Developer’s Manual, Volume 1, for a detailed description of
these exceptions.

3-16 Vol. 2A

INSTRUCTION SET REFERENCE, A-M

Table 3-4. x87 FPU Floating-Point Exceptions

Mnemonic Name Source
Floating-point invalid operation:
z:i - Stack overflow or underflow - x87 FPU stack overflow or underflow
- Invalid arithmetic operation - Invalid FPU arithmetic operation
#Z Floating-point divide-by-zero Divide-by-zero
#D Floating-point denormal operand Source operand that is a denormal number
#0 Floating-point numeric overflow Overflow in result
#U Floating-point numeric underflow Underflow in result
#P Floating-point inexact result Inexact result (precision)
(precision)

3.1.1.15 SIMD Floating-Point Exceptions Section

The “SIMD Floating-Point Exceptions” section lists exceptions that can occur when an
SSE/SSE2/SSES3 floating-point instruction is executed. All of these exception condi-
tions result in a SIMD floating-point error exception (#XM, vector number 19) being
generated. Table 3-5 associates a one-letter mnemonic with the corresponding
exception name. For a detailed description of these exceptions, refer to "SSE and
SSE2 Exceptions”, in Chapter 11 of the Intel® 64 and 1A-32 Architectures Software
Developer’s Manual, Volume 1.

Table 3-5. SIMD Floating-Point Exceptions

Mnemonic Name Source
#l Floating-point invalid operation Invalid arithmetic operation or source operand
#Z Floating-point divide-by-zero Divide-by-zero
#D Floating-point denormal operand | Source operand that is a denormal number
#0 Floating-point numeric overflow | Overflow in result
#U Floating-point numeric underflow | Underflow in result
#P Floating-point inexact result Inexact result (precision)

3.1.1.16 Compatibility Mode Exceptions Section

This section lists exception that occur within compatibility mode.

3.1.1.17 64-Bit Mode Exceptions Section

This section lists exception that occur within 64-bit mode.

Vol.2A 3-17

INSTRUCTION SET REFERENCE, A-M

3.2 INSTRUCTIONS (A-M)

The remainder of this chapter provides descriptions of Intel 64 and 1A-32 instructions
(A-M). See also: Chapter 4, “Instruction Set Reference, N-Z,” in the Intel® 64 and
1A-32 Architectures Software Developer’s Manual, Volume 2B.

3-18 Vol. 2A

INSTRUCTION SET REFERENCE, A-M

AAA—ASCII Adjust After Addition

Opcode Instruction 64-Bit Mode Compat/ Description
Leg Mode
37 AAA Invalid Valid ASCII adjust AL after addition.
Description

Adjusts the sum of two unpacked BCD values to create an unpacked BCD result. The
AL register is the implied source and destination operand for this instruction. The AAA
instruction is only useful when it follows an ADD instruction that adds (binary addi-
tion) two unpacked BCD values and stores a byte result in the AL register. The AAA
instruction then adjusts the contents of the AL register to contain the correct 1-digit
unpacked BCD result.

If the addition produces a decimal carry, the AH register increments by 1, and the CF
and AF flags are set. If there was no decimal carry, the CF and AF flags are cleared
and the AH register is unchanged. In either case, bits 4 through 7 of the AL register
are set to O.

This instruction executes as described in compatibility mode and legacy mode. It is
not valid in 64-bit mode.

Operation
IF 64-Bit Mode
THEN
#UD;
ELSE
IF (AL AND OFH) > 9) or (AF = 1)
THEN
AL« AL+6;
AH <« AH+1;
AF < 1;
CF«1;
AL « AL AND OFH;
ELSE
AF < C;
CF «0O;
AL <~ AL AND OFH;
FI;
Fl;

Flags Affected

The AF and CF flags are set to 1 if the adjustment results in a decimal carry; other-
wise they are set to 0. The OF, SF, ZF, and PF flags are undefined.

AAA—ASCII Adjust After Addition Vol.2A 3-19

INSTRUCTION SET REFERENCE, A-M

Protected Mode Exceptions
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
Same exceptions as protected mode.

Virtual-8086 Mode Exceptions
Same exceptions as protected mode.

Compatibility Mode Exceptions
Same exceptions as protected mode.

64-Bit Mode Exceptions
#UD If in 64-bit mode.

3-20 Vol.2A AAA—ASCII Adjust After Addition

INSTRUCTION SET REFERENCE, A-M

AAD—ASCII Adjust AX Before Division

Opcode Instruction 64-Bit Mode Compat/ Description
Leg Mode
D5 0A AAD Invalid Valid ASCII adjust AX before division.
D5 ib (No mnemonic) Invalid Valid Adjust AX before division to
number base imm8.

Description

Adjusts two unpacked BCD digits (the least-significant digit in the AL register and the
most-significant digit in the AH register) so that a division operation performed on
the result will yield a correct unpacked BCD value. The AAD instruction is only useful
when it precedes a DIV instruction that divides (binary division) the adjusted value in
the AX register by an unpacked BCD value.

The AAD instruction sets the value in the AL register to (AL + (10 * AH)), and then
clears the AH register to OOH. The value in the AX register is then equal to the binary
equivalent of the original unpacked two-digit (base 10) number in registers AH

and AL.

The generalized version of this instruction allows adjustment of two unpacked digits
of any number base (see the “Operation” section below), by setting the imm8 byte to
the selected number base (for example, 08H for octal, OAH for decimal, or OCH for
base 12 numbers). The AAD mnemonic is interpreted by all assemblers to mean
adjust ASCII (base 10) values. To adjust values in another number base, the instruc-
tion must be hand coded in machine code (D5 imm8).

This instruction executes as described in compatibility mode and legacy mode. It is
not valid in 64-bit mode.

Operation

IF 64-Bit Mode
THEN
#UD;
ELSE
tempAL « AL;
tempAH « AH;
AL « (tempAL + (tempAH * imm8)) AND FFH;
(* imm8is set to OAH for the AAD mnemonic.*)
AH « 0;
Fl;

The immediate value (imma8) is taken from the second byte of the instruction.

AAD—ASCII Adjust AX Before Division Vol. 2A 3-21

INSTRUCTION SET REFERENCE, A-M

Flags Affected

The SF, ZF, and PF flags are set according to the resulting binary value in the AL
register; the OF, AF, and CF flags are undefined.

Protected Mode Exceptions
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
Same exceptions as protected mode.

Virtual-8086 Mode Exceptions
Same exceptions as protected mode.

Compatibility Mode Exceptions
Same exceptions as protected mode.

64-Bit Mode Exceptions
#UD If in 64-bit mode.

3-22 Vol.2A AAD—ASCII Adjust AX Before Division

INSTRUCTION SET REFERENCE, A-M

AAM—ASCII Adjust AX After Multiply

Opcode Instruction 64-Bit Compat/ Description
Mode Leg Mode
D4 OA AAM Invalid Valid ASCII adjust AX after multiply.
D4 ib (No mnemonic) Invalid Valid Adjust AX after multiply to number
base imm8.
Description

Adjusts the result of the multiplication of two unpacked BCD values to create a pair
of unpacked (base 10) BCD values. The AX register is the implied source and desti-
nation operand for this instruction. The AAM instruction is only useful when it follows
an MUL instruction that multiplies (binary multiplication) two unpacked BCD values
and stores a word result in the AX register. The AAM instruction then adjusts the
contents of the AX register to contain the correct 2-digit unpacked (base 10) BCD
result.

The generalized version of this instruction allows adjustment of the contents of the
AX to create two unpacked digits of any number base (see the “Operation” section
below). Here, the imma8 byte is set to the selected number base (for example, 08H
for octal, OAH for decimal, or OCH for base 12 numbers). The AAM mnemonic is inter-
preted by all assemblers to mean adjust to ASCII (base 10) values. To adjust to
values in another number base, the instruction must be hand coded in machine code
(D4 imm83).

This instruction executes as described in compatibility mode and legacy mode. Itis
not valid in 64-bit mode.

Operation

IF 64-Bit Mode
THEN
#UD;
ELSE
tempAL « AL
AH « tempAL / imm8; (* imm8is set to OAH for the AAM mnemonic *)
AL « tempAL MOD imm8;
Fl;

The immediate value (imm8) is taken from the second byte of the instruction.

Flags Affected

The SF, ZF, and PF flags are set according to the resulting binary value in the AL
register. The OF, AF, and CF flags are undefined.

AAM—ASCII Adjust AX After Multiply Vol.2A 3-23

INSTRUCTION SET REFERENCE, A-M

Protected Mode Exceptions
#DE If an immediate value of O is used.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
Same exceptions as protected mode.

Virtual-8086 Mode Exceptions
Same exceptions as protected mode.

Compatibility Mode Exceptions
Same exceptions as protected mode.

64-Bit Mode Exceptions
#UD If in 64-bit mode.

3-24 Vol.2A AAM—ASCII Adjust AX After Multiply

INSTRUCTION SET REFERENCE, A-M

AAS—ASCII Adjust AL After Subtraction

Opcode Instruction 64-Bit Compat/ Description
Mode Leg Mode

3F AAS Invalid Valid ASCII adjust AL after subtraction.

Description

Adjusts the result of the subtraction of two unpacked BCD values to create a
unpacked BCD result. The AL register is the implied source and destination operand
for this instruction. The AAS instruction is only useful when it follows a SUB instruc-
tion that subtracts (binary subtraction) one unpacked BCD value from another and
stores a byte result in the AL register. The AAA instruction then adjusts the contents
of the AL register to contain the correct 1-digit unpacked BCD result.

If the subtraction produced a decimal carry, the AH register decrements by 1, and the
CF and AF flags are set. If no decimal carry occurred, the CF and AF flags are cleared,
and the AH register is unchanged. In either case, the AL register is left with its top
nibble set to 0.

This instruction executes as described in compatibility mode and legacy mode. It is
not valid in 64-bit mode.

Operation
IF 64-bit mode
THEN
#UD;
ELSE
IF (AL AND OFH) > 9) or (AF = 1)
THEN
AL « AL - 6;
AH <« AH-1;
AF < 1;
CF«1;
AL < AL AND OFH;
ELSE
CF «0O;
AF < C;
AL < AL AND OFH;
Fl;
Fl;
Flags Affected

The AF and CF flags are set to 1 if there is a decimal borrow; otherwise, they are
cleared to 0. The OF, SF, ZF, and PF flags are undefined.

AAS—ASCII Adjust AL After Subtraction Vol.2A 3-25

INSTRUCTION SET REFERENCE, A-M

Protected Mode Exceptions
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
Same exceptions as protected mode.

Virtual-8086 Mode Exceptions
Same exceptions as protected mode.

Compatibility Mode Exceptions
Same exceptions as protected mode.

64-Bit Mode Exceptions
#UD If in 64-bit mode.

3-26 Vol.2A AAS—ASCII Adjust AL After Subtraction

ADC—Add with Carry

INSTRUCTION SET REFERENCE, A-M

Opcode

14 ib

15 iw

15id

REXW + 15 id
80/2ib
REX+80/2ib
81 /2 iw
81/2id

REXW +81 /2 id
83/2ib

83/2ib

REXW +83 /2 ib
10/r

REX+10/r

111/r
111/r
REXW +11/r
12/r

REX+12/r

13/r

Instruction

ADC AL, imm8
ADCAX, imm16

ADC EAX,
imm32

ADC RAX,
imm32

ADC r/m8,
imm8

ADC r/m§,
imm8

ADC r/m16,
imm16

ADC r/m32,
imm32

ADC r/m64,
imm32

ADC r/m16,
imm8

ADC r/m32,
imm8

ADC r/m64,
imm8

ADC r/m8, r8

ADC r/m8’, 8

ADC r/m16,r16
ADC r/m32, r32
ADC r/m64, r64
ADC r8, r/m8

ADC 8, r/m8’

ADCr16, r/m16

64-Bit
Mode

Valid
Valid
Valid

Valid

Valid

Valid

Valid

Valid

Valid

Valid

Valid

Valid

Valid

Valid

Valid
Valid
Valid
Valid

Valid

Valid

Compat/
Leg Mode

Valid
Valid
Valid

N.E.
Valid
N.E.
Valid
Valid
N.E.
Valid
Valid
N.E.
Valid
N.E.

Valid
Valid
N.E.

Valid

N.E.

Valid

Description

Add with carry imm8 to AL.
Add with carry imm16 to AX.
Add with carry imm32 to EAX.

Add with carry imm32 sign
extended to 64-bits to RAX.

Add with carry imm8 to r/m8.
Add with carry imm8 to r/m8.
Add with carry imm16 to r/m16.
Add with CF imm32 to r/m32.

Add with CF imm32 sign
extended to 64-bits to r/m64.

Add with CF sign-extended
imm8to r/m16.

Add with CF sign-extended
imm8into r/m32.

Add with CF sign-extended
imm8into r/m64.

Add with carry byte register to
r/m8.

Add with carry byte register to
r/m64.

Add with carry r16 to r/m16.
Add with CF r32 to r/m32.
Add with CF r64 to r/m64.

Add with carry r/m8 to byte
register.

Add with carry r/m64 to byte
register.

Add with carry /m16to r16.

ADC—Add with Carry

Vol.2A 3-27

INSTRUCTION SET REFERENCE, A-M

Opcode Instruction 64-Bit Compat/ Description

Mode Leg Mode
13/r ADC r32, r/m32 Valid Valid Add with CF r/m32 to r32.
REXW + 13 /r ADC r64, r/mé64 Valid N.E. Add with CF r/m64 to r64.
NOTES:

* In 64-bit mode, r/m8 can not be encoded to access the following byte registers if a REX prefix is
used: AH, BH, CH, DH.

Description

Adds the destination operand (first operand), the source operand (second operand),
and the carry (CF) flag and stores the result in the destination operand. The destina-
tion operand can be a register or a memory location; the source operand can be an
immediate, a register, or a memory location. (However, two memory operands
cannot be used in one instruction.) The state of the CF flag represents a carry from a
previous addition. When an immediate value is used as an operand, it is sign-
extended to the length of the destination operand format.

The ADC instruction does not distinguish between signed or unsigned operands.
Instead, the processor evaluates the result for both data types and sets the OF and
CF flags to indicate a carry in the signed or unsigned result, respectively. The SF flag
indicates the sign of the signed result.

The ADC instruction is usually executed as part of a multibyte or multiword addition
in which an ADD instruction is followed by an ADC instruction.

This instruction can be used with a LOCK prefix to allow the instruction to be
executed atomically.

In 64-bit mode, the instruction’s default operation size is 32 bits. Using a REX prefix
in the form of REX.R permits access to additional registers (R8-R15). Using a REX
prefix in the form of REX.W promotes operation to 64 bits. See the summary chart at
the beginning of this section for encoding data and limits.

Operation

DEST « DEST + SRC + CF;

Flags Affected
The OF, SF, ZF, AF, CF, and PF flags are set according to the result.

Protected Mode Exceptions
#GP(0) If the destination is located in a nhon-writable segment.

If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.

3-28 Vol.2A ADC—Add with Carry

#SS(0)

#PF(fault-code)
#AC(0)

#UD

INSTRUCTION SET REFERENCE, A-M

If the DS, ES, FS, or GS register is used to access memory and it
contains a NULL segment selector.

If a memory operand effective address is outside the SS
segment limit.

If a page fault occurs.

If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

If the LOCK prefix is used but the destination is not a memory
operand.

Real-Address Mode Exceptions

#GP

#SS

#UD

If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.

If a memory operand effective address is outside the SS
segment limit.

If the LOCK prefix is used but the destination is not a memory
operand.

Virtual-8086 Mode Exceptions

#GP(0)
#SS(0)

#PF(fault-code)
#AC(0)

#UD

If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.

If a memory operand effective address is outside the SS
segment limit.

If a page fault occurs.

If alignment checking is enabled and an unaligned memory
reference is made.

If the LOCK prefix is used but the destination is not a memory
operand.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions

#SS(0)

#GP(0)
#PF(fault-code)
#AC(0)

#UD

ADC—Add with Carry

If a memory address referencing the SS segment is in a non-
canonical form.

If the memory address is in a non-canonical form.
If a page fault occurs.

If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

If the LOCK prefix is used but the destination is not a memory
operand.

Vol.2A 3-29

INSTRUCTION SET REFERENCE, A-M

ADD—Add
Opcode Instruction 64-Bit Mode Compat/ Description
Leg Mode
04 ib ADD AL, imm8 Valid Valid Add imm8 to AL.
05 iw ADD AX, imm16 Valid Valid Add imm16 to AX.
05 id ADD EAX, imm32 Valid Valid Add imm32 to EAX.
REX.W + 05 id ADD RAX, imm32 Valid N.E. Add imm32 sign-
extended to 64-bits
to RAX.
80/0ib ADD r/m8, imm8 Valid Valid Add imm8 to r/m8.
REX +80 /0 ib ADD r/m8’, imm8 Valid N.E. Add sign-extended
imm8 to r/mé64.
81 /0 iw ADD r/m16, imm16 Valid Valid Add imm16 to r/m16.
81 /0 id ADD r/m32, imm32 Valid Valid Add imm32 to r/m32.
REXW +81/0id ADD r/m64, imm32 Valid N.E. Add imm32 sign-
extended to 64-bits
to r/m64.
83/0ib ADD r/m16, imm8 Valid Valid Add sign-extended
imm8to r/m16.
83/0ib ADD r/m32, imm8 Valid Valid Add sign-extended
imm81to r/m32.
REXW +83/0ib ADD r/m64, imm8 Valid N.E. Add sign-extended
imm8 to r/mé64.
00/r ADD r/m8, r8 Valid Valid Add r8to r/m8.
REX + 00 /r ADD r/m8’, r8 Valid N.E. Add r8to r/m8.
01 /r ADD r/m16,r16 Valid Valid Add r16to r/m1i6.
o1/r ADD r/m32, r32 Valid Valid Add r32 to /m32.
REXW +01/r ADD r/m64, r64 Valid N.E. Add r64 to r/m64.
02/r ADD r8, r/m8 Valid Valid Add r/m8+to r8.
REX+02/r ADD r8*, r/m8 Valid N.E. Add r/m8+to r8.
03/r ADDr16, r/m16 Valid Valid Add r/mi16torie6.
03/r ADD r32, r/m32 Valid Valid Add r/m32 to r32.
REXW +03/r ADD r64, r/m64 Valid N.E. Add r/m64 to ré64.
NOTES:

* |n 64-bit mode, r/m8 can not be encoded to access the following byte registers if a REX prefix is
used: AH, BH, CH, DH.

3-30 Vol. 2A

ADD—Add

INSTRUCTION SET REFERENCE, A-M

Description

Adds the destination operand (first operand) and the source operand (second
operand) and then stores the result in the destination operand. The destination
operand can be a register or a memory location; the source operand can be an imme-
diate, a register, or a memory location. (However, two memory operands cannot be
used in one instruction.) When an immediate value is used as an operand, it is sign-
extended to the length of the destination operand format.

The ADD instruction performs integer addition. It evaluates the result for both signed
and unsigned integer operands and sets the OF and CF flags to indicate a carry (over-
flow) in the signed or unsigned result, respectively. The SF flag indicates the sign of
the signed result.

This instruction can be used with a LOCK prefix to allow the instruction to be
executed atomically.

In 64-bit mode, the instruction’s default operation size is 32 bits. Using a REX prefix
in the form of REX.R permits access to additional registers (R8-R15). Using a REX a
REX prefix in the form of REX.W promotes operation to 64 bits. See the summary
chart at the beginning of this section for encoding data and limits.

Operation

DEST « DEST + SRC;

Flags Affected
The OF, SF, ZF, AF, CF, and PF flags are set according to the result.

Protected Mode Exceptions
#GP(0) If the destination is located in a non-writable segment.

If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.

If the DS, ES, FS, or GS register is used to access memory and it
contains a NULL segment selector.

#SS(0) If a memory operand effective address is outside the SS
segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

#UD If the LOCK prefix is used but the destination is not a memory
operand.

Real-Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.

ADD—Add Vol.2A 3-31

INSTRUCTION SET REFERENCE, A-M

#SS If a memory operand effective address is outside the SS
segment limit.

#UD If the LOCK prefix is used but the destination is not a memory
operand.

Virtual-8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.

#SS(0) If a memory operand effective address is outside the SS
segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made.

#UD If the LOCK prefix is used but the destination is not a memory
operand.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-
canonical form.

#GP(0) If the memory address is in a non-canonical form.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

#UD If the LOCK prefix is used but the destination is not a memory
operand.

3-32 Vol.2A ADD—Add

INSTRUCTION SET REFERENCE, A-M

ADDPD—Add Packed Double-Precision Floating-Point Values

Opcode Instruction 64-Bit Compat/ Description
Mode Leg Mode
66 OF 58 /r ADDPD xmm1, Valid Valid Add packed double-precision floating-
xmmZ2/m128 point values from xmmZ2/m128 to
xmm1.
Description

Performs a SIMD add of the two packed double-precision floating-point values from
the source operand (second operand) and the destination operand (first operand),
and stores the packed double-precision floating-point results in the destination
operand.

The source operand can be an XMM register or a 128-bit memory location. The desti-
nation operand is an XMM register. See Chapter 11 in the Intel® 64 and I1A-32 Archi-
tectures Software Developer’s Manual, Volume 1, for an overview of SIMD double-
precision floating-point operation.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to
access additional registers (XMM8-XMM15).

Operation

DEST[63:0] « DEST[63:0] + SRC[63:0];
DEST[127:64] « DEST[127:64] + SRC[127:64];

Intel C/C++ Compiler Intrinsic Equivalent
ADDPD __m128d_mm_add_pd (m128d a, m128d b)

SIMD Floating-Point Exceptions

Overflow, Underflow, Invalid, Precision, Denormal.

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS,
ES, FS or GS segments.

If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

#SS(0) For an illegal address in the SS segment.

#PF(fault-code) For a page fault.

#NM If CRO.TS[bit 3] = 1.

#HXM If an unmasked SIMD floating-point exception and CR4.0SXM-

MEXCPT[bit 10] = 1.

ADDPD—Add Packed Double-Precision Floating-Point Values Vol.2A 3-33

INSTRUCTION SET REFERENCE, A-M

#UD If an unmasked SIMD floating-point exception and CR4.0SXM-
MEXCPT[bit 10] = O.

If CRO.EM[bit 2] = 1.

If CR4.0OSFXSR[bit 9] = 0.

If CPUID.O1H:EDX.SSE2[bit 26] = 0.
If the LOCK prefix is used.

Real-Address Mode Exceptions

#GP(0) If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

If any part of the operand lies outside the effective address
space from O to FFFFH.

#NM If CRO.TS[bit 3] = 1.

#XM If an unmasked SIMD floating-point exception and CR4.0SXM-
MEXCPT[bit 10] = 1.

#UD If an unmasked SIMD floating-point exception and CR4.0SXM-

MEXCPT[bit 10] = O.

If CRO.EM[bit 2] = 1.

If CR4.0SFXSR[bit 9] = 0.

If CPUID.O1H:EDX.SSE2[bit 26] = O.
If the LOCK prefix is used.

Virtual-8086 Mode Exceptions

Same exceptions as in real address mode.
#PF(fault-code) For a page fault.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-
canonical form.

#GP(0) If the memory address is in a non-canonical form.

If memory operand is not aligned on a 16-byte boundary,
regardless of segment.

#PF(fault-code) For a page fault.
#NM If CRO.TS[bit 3] = 1.

HXM If an unmasked SIMD floating-point exception and CR4.0SXM-
MEXCPT[bit 10] = 1.

3-34 Vol. 2A ADDPD—Add Packed Double-Precision Floating-Point Values

INSTRUCTION SET REFERENCE, A-M

#UD If an unmasked SIMD floating-point exception and CR4.0SXM-
MEXCPT[bit 10] = O.

If CRO.EM[bit 2] = 1.

If CR4.0OSFXSR[bit 9] = 0.

If CPUID.O1H:EDX.SSE2[bit 26] = 0.
If the LOCK prefix is used.

ADDPD—Add Packed Double-Precision Floating-Point Values Vol.2A 3-35

INSTRUCTION SET REFERENCE, A-M

ADDPS—Add Packed Single-Precision Floating-Point Values

Opcode Instruction 64-Bit Compat/ Description
Mode Leg Mode
OF 58 /r ADDPS xmm1, xmmZ2/m128 \Valid Valid Add packed single-precision

floating-point values from
xmmZ2/m128 to xmm]1.

Description

Performs a SIMD add of the four packed single-precision floating-point values from
the source operand (second operand) and the destination operand (first operand),
and stores the packed single-precision floating-point results in the destination
operand.

The source operand can be an XMM register or a 128-bit memory location. The desti-
nation operand is an XMM register. See Chapter 10 in the Intel® 64 and 1A-32 Archi-
tectures Software Developer’s Manual, Volume 1, for an overview of SIMD single-
precision floating-point operation.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to
access additional registers (XMM8-XMM15).

Operation

DEST[31:0] « DEST[31:0] + SRC[31:0];
DEST[63:32] « DEST[63:32] + SRC[63:32];
DEST[95:64] « DEST[95:64] + SRC[95:64];
DEST[127:96] « DEST[127:96] + SRC[127:96];

Intel C/C++ Compiler Intrinsic Equivalent
ADDPS __m128 _mm_add_ps(__m128a,__m128Db)

SIMD Floating-Point Exceptions

Overflow, Underflow, Invalid, Precision, Denormal.

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS,
ES, FS or GS segments.

If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

#SS(0) For an illegal address in the SS segment.
#PF(fault-code) For a page fault.
#NM If CRO.TS[bit 3] = 1.

3-36 Vol.2A ADDPS—Add Packed Single-Precision Floating-Point Values

INSTRUCTION SET REFERENCE, A-M

#XM If an unmasked SIMD floating-point exception and CR4.0SXM-
MEXCPT[bit 10] = 1.
#UD If an unmasked SIMD floating-point exception and CR4.0SXM-

MEXCPT[bit 10] = O.

If CRO.EM[bit 2] = 1.

If CR4.0OSFXSR[bit 9] = 0.

If CPUID.O1H:EDX.SSE[bit 25] = O.
If the LOCK prefix is used.

Real-Address Mode Exceptions

#GP(0) If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

If any part of the operand lies outside the effective address
space from O to FFFFH.

#NM If CRO.TS[bit 3] = 1.

#XM If an unmasked SIMD floating-point exception and CR4.0SXM-
MEXCPT[bit 10] = 1.

#UD If an unmasked SIMD floating-point exception and CR4.0SXM-

MEXCPT[bit 10] = O.

If CRO.EM[bit 2] = 1.

If CR4.0SFXSR[bit 9] = 0.

If CPUID.O1H:EDX.SSE[bit 25] = O.
If the LOCK prefix is used.

Virtual-8086 Mode Exceptions

Same exceptions as in real address mode.
#PF(fault-code) For a page fault.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-
canonical form.

#GP(0) If the memory address is in a non-canonical form.

If memory operand is not aligned on a 16-byte boundary,
regardless of segment.

#PF(fault-code) For a page fault.
#NM If CRO.TS[bit 3] = 1.

ADDPS—Add Packed Single-Precision Floating-Point Values Vol.2A 3-37

INSTRUCTION SET REFERENCE, A-M

H#HXM If an unmasked SIMD floating-point exception and CR4.0SXM-
MEXCPT[bit 10] = 1.
#UD If an unmasked SIMD floating-point exception and CR4.0SXM-

MEXCPT[bit 10] = O.

If CRO.EM[bit 2] = 1.

If CR4.0OSFXSR[bit 9] = 0.

If CPUID.O1H:EDX.SSE[bit 25] = O.
If the LOCK prefix is used.

3-38 Vol.2A ADDPS—Add Packed Single-Precision Floating-Point Values

INSTRUCTION SET REFERENCE, A-M

ADDSD—Add Scalar Double-Precision Floating-Point Values

Opcode Instruction 64-Bit Compat/ Description
Mode Leg Mode
F2 OF 58 /r ADDSD xmm1, xmmZ2/m64 Valid Valid Add the low double-

precision floating-point
value from xmmZ2/m64 to
xmm1.

Description

Adds the low double-precision floating-point values from the source operand (second
operand) and the destination operand (first operand), and stores the double-preci-
sion floating-point result in the destination operand.

The source operand can be an XMM register or a 64-bit memory location. The desti-
nation operand is an XMM register. The high quadword of the destination operand
remains unchanged. See Chapter 11 in the Intel® 64 and 1A-32 Architectures Soft-
ware Developer’s Manual, Volume 1, for an overview of a scalar double-precision
floating-point operation.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to
access additional registers (XMM8-XMM15).

Operation

DEST[63:0] «— DEST[63:0] + SRC[63:0];
(* DEST[127:64] unchanged *)

Intel C/C++ Compiler Intrinsic Equivalent
ADDSD __m128d_mm_add_sd (m128d a, m128d b)

SIMD Floating-Point Exceptions

Overflow, Underflow, Invalid, Precision, Denormal.

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS,
ES, FS or GS segments.

#SS(0) For an illegal address in the SS segment.

#PF(fault-code) For a page fault.

#NM If CRO.TS[bit 3] = 1.

#XM If an unmasked SIMD floating-point exception and CR4.0SXM-

MEXCPT[bit 10] = 1.

ADDSD—Add Scalar Double-Precision Floating-Point Values Vol.2A 3-39

INSTRUCTION SET REFERENCE, A-M

#UD If an unmasked SIMD floating-point exception and CR4.0SXM-
MEXCPT[bit 10] = O.

If CRO.EM[bit 2] = 1.

If CR4.0OSFXSR[bit 9] = 0.

If CPUID.O1H:EDX.SSE2[bit 26] = 0.
If the LOCK prefix is used.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

Real-Address Mode Exceptions

GP(0) If any part of the operand lies outside the effective address
space from O to FFFFH.

#NM If CRO.TS[bit 3] = 1.

#XM If an unmasked SIMD floating-point exception and CR4.0SXM-
MEXCPT[bit 10] = 1.

#UD If an unmasked SIMD floating-point exception and CR4.0SXM-

MEXCPT[bit 10] = O.

If CRO.EM[bit 2] = 1.

If CR4.0SFXSR[bit 9] = 0.

If CPUID.O1H:EDX.SSE2[bit 26] = O.
If the LOCK prefix is used.

Virtual-8086 Mode Exceptions
Same exceptions as in real address mode.
#PF(fault-code) For a page fault.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-
canonical form.

#GP(0) If the memory address is in a non-canonical form.
#PF(fault-code) For a page fault.

#NM If CRO.TS[bit 3] = 1.

HXM If an unmasked SIMD floating-point exception and CR4.0SXM-

MEXCPTI[bit 10] = 1.

3-40 Vol.2A ADDSD—Add Scalar Double-Precision Floating-Point Values

INSTRUCTION SET REFERENCE, A-M

#UD If an unmasked SIMD floating-point exception and CR4.0SXM-
MEXCPT[bit 10] = O.

If CRO.EM[bit 2] = 1.

If CR4.0OSFXSR[bit 9] = 0.

If CPUID.O1H:EDX.SSE2[bit 26] = O.
If the LOCK prefix is used.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

ADDSD—Add Scalar Double-Precision Floating-Point Values Vol.2A 3-41

INSTRUCTION SET REFERENCE, A-M

ADDSS—Add Scalar Single-Precision Floating-Point Values

Opcode Instruction 64-Bit Compat/ Description
Mode Leg Mode
F30F58/r ADDSS xmm1, xmmZ2/m32 Valid Valid Add the low single-

precision floating-point
value from xmm2/m32 to
xmm1.

Description

Adds the low single-precision floating-point values from the source operand (second
operand) and the destination operand (first operand), and stores the single-precision
floating-point result in the destination operand.

The source operand can be an XMM register or a 32-bit memory location. The desti-
nation operand is an XMM register. The three high-order doublewords of the destina-
tion operand remain unchanged. See Chapter 10 in the Intel® 64 and I1A-32
Architectures Software Developer’s Manual, Volume 1, for an overview of a scalar
single-precision floating-point operation.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to
access additional registers (XMM8-XMM15).

Operation

DEST[31:0] «— DEST[31:0] + SRC[31:0];
(* DEST[127:32] unchanged *)

Intel C/C++ Compiler Intrinsic Equivalent
ADDSS __m128 _mm_add_ss(__m128a,__m128Db)

SIMD Floating-Point Exceptions

Overflow, Underflow, Invalid, Precision, Denormal.

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS,
ES, FS or GS segments.

#SS(0) For an illegal address in the SS segment.

#PF(fault-code) For a page fault.

#NM If CRO.TS[bit 3] = 1.

H#HXM If an unmasked SIMD floating-point exception and CR4.0SXM-

MEXCPT[bit 10] = 1.

3-42 Vol.2A ADDSS—Add Scalar Single-Precision Floating-Point Values

INSTRUCTION SET REFERENCE, A-M

#UD If an unmasked SIMD floating-point exception and CR4.0SXM-
MEXCPT[bit 10] = O.

If CRO.EM[bit 2] = 1.

If CR4.0OSFXSR[bit 9] = 0.

If CPUID.O1H:EDX.SSE[bit 25] = O.
If the LOCK prefix is used.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

Real-Address Mode Exceptions

GP(0) If any part of the operand lies outside the effective address
space from O to FFFFH.

#NM If CRO.TS[bit 3] = 1.

#HXM If an unmasked SIMD floating-point exception and CR4.0SXM-
MEXCPT[bit 10] = 1.

#UD If an unmasked SIMD floating-point exception and CR4.0SXM-

MEXCPT[bit 10] = 0.

If CRO.EM[bit 2] = 1.

If CR4.0SFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE[bit 25] = O.
If the LOCK prefix is used.

Virtual-8086 Mode Exceptions
Same exceptions as in real address mode.
#PF(fault-code) For a page fault.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-
canonical form.

#GP(0) If the memory address is in a non-canonical form.
#PF(fault-code) For a page fault.

#NM If CRO.TS[bit 3] = 1.

#XM If an unmasked SIMD floating-point exception and CR4.0SXM-

MEXCPT[bit 10] = 1.

ADDSS—Add Scalar Single-Precision Floating-Point Values Vol.2A 3-43

INSTRUCTION SET REFERENCE, A-M

#UD If an unmasked SIMD floating-point exception and CR4.0SXM-
MEXCPT[bit 10] = O.

If CRO.EM[bit 2] = 1.

If CR4.0OSFXSR[bit 9] = 0.

If CPUID.O1H:EDX.SSE[bit 25] = O.
If the LOCK prefix is used.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

3-44 Vol. 2A ADDSS—Add Scalar Single-Precision Floating-Point Values

INSTRUCTION SET REFERENCE, A-M

ADDSUBPD—Packed Double-FP Add/Subtract

Opcode Instruction 64-Bit Compat/ Description
Mode Leg Mode
66 OF DO /r ADDSUBPD xmm1, xmm2/m128 \Valid Valid Add/subtract

double-precision
floating-point values
from xmm2/m128
to xmm1.

Description

Adds the double-precision floating-point values in the high quadword of the source
and destination operands and stores the result in the high quadword of the destina-

tion operand.

Subtracts the double-precision floating-point value in the low quadword of the source
operand from the low quadword of the destination operand and stores the result in
the low quadword of the destination operand. See Figure 3-3.

The source operand can be a 128-bit memory location or an XMM register. The desti-
nation operand is an XMM register.

ADDSUBPD xmm1, xmm2/m128

[127:64]

[63:0]

xmm2/m128

A

A

xmm1[127:64] + xmm2/m128[127:64]

xmm1[63:0] - xmm2/m128[63:0]

RESULT:
xmm1

[127:64]

[63:0]

OM15991

Figure 3-3. ADDSUBPD—Packed Double-FP Add/Subtract

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to
access additional registers (XMM8-XMM15).

ADDSUBPD—Packed Double-FP

Add/Subtract

Vol.2A 3-45

INSTRUCTION SET REFERENCE, A-M

Operation

xmm1[63:0] = xmm1[63:0] — xmm2/m128[63:0];
xmm1[127:64] = xmm1[127:64] + xmm2/m128[127:64];

Intel C/C++ Compiler Intrinsic Equivalent
ADDSUBPD __m128d _mm_addsub_pd(__m128d a, __m128d b)

Exceptions

When the source operand is a memory operand, it must be aligned on a 16-byte
boundary or a general-protection exception (#GP) will be generated.

SIMD Floating-Point Exceptions

Overflow, Underflow, Invalid, Precision, Denormal.

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS,
ES, FS or GS segments.

If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

#SS(0) For an illegal address in the SS segment.

#PF(fault-code) For a page fault.

#NM If CRO.TS[bit 3] = 1.

H#HXM For an unmasked Streaming SIMD Extensions numeric excep-
tion, CR4.0SXMMEXCPT[bit 10] = 1.

#UD If CRO.EM is 1.

For an unmasked Streaming SIMD Extensions numeric excep-
tion (CR4.0SXMMEXCPT[bit 10] = 0).

If CR4.0SFXSR[bit 9] = 0.
If CPUID.O1H:ECX.SSE3[bit 0] = 0.
If the LOCK prefix is used.

Real Address Mode Exceptions

GP(0) If any part of the operand would lie outside of the effective
address space from O to OFFFFH.

If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

#NM If TS bitin CRO is 1.

HXM For an unmasked Streaming SIMD Extensions numeric excep-
tion, CR4.0SXMMEXCPT[bit 10] = 1.

3-46 Vol. 2A ADDSUBPD—Packed Double-FP Add/Subtract

INSTRUCTION SET REFERENCE, A-M

#UD If CRO.EM[bit 2] = 1.

For an unmasked Streaming SIMD Extensions numeric excep-
tion (CR4.0SXMMEXCPT[bit 10] = 0).

If CR4.0OSFXSR[bit 9] = 0.
If CPUID.O1H:ECX.SSE3[bit 0] = 0.
If the LOCK prefix is used.

Virtual 8086 Mode Exceptions

GP(0) If any part of the operand would lie outside of the effective
address space from O to OFFFFH.

If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

#NM If CRO.TS[bit 3] = 1.

#XM For an unmasked Streaming SIMD Extensions numeric excep-
tion, CR4.0SXMMEXCPT[bit 10] = 1.

#UD If CRO.EM[bit 2] = 1.

For an unmasked Streaming SIMD Extensions numeric excep-
tion (CR4.0SXMMEXCPT[bit 10] = 0).

If CR4.0SFXSR[bit 9] = 0.

If CPUID.O1H:ECX.SSE3[bit 0] = 0.

If the LOCK prefix is used.
#PF(fault-code) For a page fault.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-
canonical form.

#GP(0) If the memory address is in a non-canonical form.

If memory operand is not aligned on a 16-byte boundary,
regardless of segment.

#PF(fault-code) For a page fault.
#NM If CRO.TS[bit 3] = 1.

#XM If an unmasked SIMD floating-point exception and CR4.0SXM-
MEXCPT[bit 10] = 1.

ADDSUBPD—Packed Double-FP Add/Subtract Vol. 2A 3-47

INSTRUCTION SET REFERENCE, A-M

#UD If an unmasked SIMD floating-point exception and CR4.0SXM-
MEXCPT[bit 10] = O.

If CRO.EM[bit 2] = 1.

If CR4.0OSFXSR[bit 9] = 0.

If CPUID.0O1H:ECX.SSE3[bit 0] = 0.
If the LOCK prefix is used.

3-48 Vol. 2A ADDSUBPD—Packed Double-FP Add/Subtract

INSTRUCTION SET REFERENCE, A-M

ADDSUBPS—Packed Single-FP Add/Subtract

Opcode Instruction 64-Bit Compat/ Description
Mode Leg Mode
F20FDO/r ADDSUBPS xmm1, xmm2/m128 Valid Valid Add/subtract single-

precision floating-
point values from
xmmZ2/m128to
xmm1.

Description

Adds odd-numbered single-precision floating-point values of the source operand
(second operand) with the corresponding single-precision floating-point values from
the destination operand (first operand); stores the result in the odd-numbered
values of the destination operand.

Subtracts the even-numbered single-precision floating-point values in the source
operand from the corresponding single-precision floating values in the destination
operand; stores the result into the even-numbered values of the destination
operand.

The source operand can be a 128-bit memory location or an XMM register. The desti-
nation operand is an XMM register. See Figure 3-4.

ADDSUBPS xmm1, xmm2/m128
[127:96] [95:64] [63:32] [31:0] ’;ﬂﬂg’;’
y A A A
xmm1[127:96] + | xmm1[95:64] - xmm2/| xmm1[63:32] + xmmi[31:0]- | RESULT:
xmm2/m128[127:96] m128[95:64] xmm2/m128[63:32] | xmm2/m128[31:0] | xmm1
[127:96] [95:64] [63:32] [31:0]

OM15992

Figure 3-4. ADDSUBPS—Packed Single-FP Add/Subtract

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to
access additional registers (XMM8-XMM15).

ADDSUBPS—Packed Single-FP Add/Subtract Vol.2A 3-49

INSTRUCTION SET REFERENCE, A-M

Operation

xmm1[31:0] = xmm1[31:0] — xmm2/m128[31:0];
xmm1[63:32] = xmm1[63:32] + xmm2/m128[63:32];
xmm1[95:64] = xmm1[95:64] — xmm2/m128[95:64];
xmm1[127:96] = xmm1[127:96] + xmm2/m128[127:96];

Intel C/C++ Compiler Intrinsic Equivalent
ADDSUBPS __m128 _mm_addsub_ps(__m128a,__m128b)

Exceptions

When the source operand is a memory operand, the operand must be aligned on a
16-byte boundary or a general-protection exception (#GP) will be generated.

SIMD Floating-Point Exceptions

Overflow, Underflow, Invalid, Precision, Denormal.

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS,
ES, FS or GS segments.

If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

#SS(0) For an illegal address in the SS segment.

#PF(fault-code) For a page fault.

#NM If CRO.TS[bit 3] = 1.

H#HXM For an unmasked Streaming SIMD Extensions numeric excep-
tion, CR4.0SXMMEXCPT[bit 10] = 1.

#UD If CRO.EM[bit 2] = 1.

For an unmasked Streaming SIMD Extensions numeric excep-
tion (CR4.0SXMMEXCPT[bit 10] = 0).

If CR4.0SFXSR[bit 9] = 0.
If CPUID.O1H:ECX.SSE3[bit 0] = 0.
If the LOCK prefix is used.

Real Address Mode Exceptions

GP(0) If any part of the operand would lie outside of the effective
address space from O to OFFFFH.

If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

#NM If CRO.TS[bit 3] = 1.

3-50 Vol.2A ADDSUBPS—Packed Single-FP Add/Subtract

INSTRUCTION SET REFERENCE, A-M

#XM For an unmasked Streaming SIMD Extensions numeric excep-
tion, CR4.0SXMMEXCPT[bit 10] = 1.
#UD If CRO.EM[bit 2] = 1.

For an unmasked Streaming SIMD Extensions numeric excep-
tion (CR4.0SXMMEXCPT[bit 10] = 0).

If CR4.0OSFXSR[bit 9] = 0.
If CPUID.01H:ECX.SSE3[bit 0] = 0.
If the LOCK prefix is used.

Virtual 8086 Mode Exceptions

GP(0) If any part of the operand would lie outside of the effective
address space from O to OFFFFH.

If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

#NM If CRO.TS[bit 3] = 1.

#XM For an unmasked Streaming SIMD Extensions numeric excep-
tion, CR4.0SXMMEXCPT[bit 10] = 1.

#UD If CRO.EM[bit 2] = 1.

For an unmasked Streaming SIMD Extensions numeric excep-
tion (CR4.0SXMMEXCPT[bit 10] = 0).

If CR4.0SFXSR[bit 9] = 0.
If CPUID.O1H:ECX.SSE3[bit 0] = 0.
If the LOCK prefix is used.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-
canonical form.

#GP(0) If the memory address is in a non-canonical form.

If memory operand is not aligned on a 16-byte boundary,
regardless of segment.

#PF(fault-code) For a page fault.
#NM If CRO.TS[bit 3] = 1.

#XM If an unmasked SIMD floating-point exception and CR4.0SXM-
MEXCPT[bit 10] = 1.

ADDSUBPS—Packed Single-FP Add/Subtract Vol.2A 3-51

INSTRUCTION SET REFERENCE, A-M

#UD If an unmasked SIMD floating-point exception and CR4.0SXM-
MEXCPT[bit 10] = O.

If CRO.EM[bit 2] = 1.

If CR4.0OSFXSR[bit 9] = 0.

If CPUID.0O1H:ECX.SSE3[bit 0] = 0.
If the LOCK prefix is used.

3-52 Vol. 2A ADDSUBPS—Packed Single-FP Add/Subtract

AND—Logical AND

INSTRUCTION SET REFERENCE, A-M

Opcode Instruction 64-Bit Comp/Leg Description
Mode Mode

24 ib AND AL, imm8 Valid Valid AL AND imm8.

25 iw AND AX, imm16 Valid Valid AX AND imm16.

25 id AND EAX, imm32 Valid Valid EAX AND imm32.

REXW +25id AND RAX, imm32 Valid N.E. RAX AND imm32 sign-
extended to 64-bits.

80/4 ib AND r/m8, imm8 Valid Valid r/m8 AND imm8.

REX+80/4ib AND r/m8, imm8 Valid N.E. r/m64 AND imm8 (sign-
extended).

81 /4 iw AND r/m16, imm16 Valid Valid r/m16 AND imm16.

81 /4 id AND r/m32, imm32 Valid Valid r/m32 AND imm32.

REXW +81/4 AND r/m64, imm32 Valid N.E. r/m64 AND imm32 sign

id extended to 64-bits.

83/4ib AND r/m16, imm8 Valid Valid r/m16 AND imm8 (sign-
extended).

83/4ib AND r/m32, imm8 Valid Valid r/m32 AND imm8 (sign-
extended).

REXW +83/4 AND r/m64, imm8 Valid N.E. r/m64 AND imm8 (sign-

ib extended).

20 /r AND r/m8, r8 Valid Valid r/m8 AND r8.

REX + 20 /r AND r/m8’, r8 Valid N.E. r/m64 AND r8 (sign-
extended).

21/r AND r/m16,r16 Valid Valid r/m16 AND r16.

211/r AND r/m32, r32 Valid Valid r/m32 AND r32.

REXW +21/r AND r/m64, r64 Valid N.E. r/m64 AND r32.

221r AND r8, r/m8 Valid Valid r8 AND r/m8.

REX +22/r AND 18, r/m8 Valid N.E. r/m64 AND r8 (sign-
extended).

23/r AND r16, r/m16 Valid Valid r16 AND r/m16.

23/r AND r32, r/m32 Valid Valid r32 AND r/m32.

REXW +23/r AND r64, r/m64 Valid N.E. r64 AND r/m64.

NOTES:

* In 64-bit mode, r/m8 can not be encoded to access the following byte registers if a REX prefix is
used: AH, BH, CH, DH.

AND—Logical AND

Vol.2A 3-53

INSTRUCTION SET REFERENCE, A-M

Description

Performs a bitwise AND operation on the destination (first) and source (second)
operands and stores the result in the destination operand location. The source
operand can be an immediate, a register, or a memory location; the destination
operand can be a register or a memory location. (However, two memory operands
cannot be used in one instruction.) Each bit of the result is set to 1 if both corre-
sponding bits of the first and second operands are 1; otherwise, it is set to O.

This instruction can be used with a LOCK prefix to allow the it to be executed atomi-
cally.

In 64-bit mode, the instruction’s default operation size is 32 bits. Using a REX prefix
in the form of REX.R permits access to additional registers (R8-R15). Using a REX
prefix in the form of REX.W promotes operation to 64 bits. See the summary chart at
the beginning of this section for encoding data and limits.

Operation

DEST « DEST AND SRC;

Flags Affected

The OF and CF flags are cleared; the SF, ZF, and PF flags are set according to the
result. The state of the AF flag is undefined.

Protected Mode Exceptions
#GP(0) If the destination operand points to a non-writable segment.

If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.

If the DS, ES, FS, or GS register contains a NULL segment

selector.

#SS(0) If a memory operand effective address is outside the SS
segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

#UD If the LOCK prefix is used but the destination is not a memory
operand.

Real-Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.
#SS If a memory operand effective address is outside the SS

segment limit.

3-54 Vol. 2A AND—Logical AND

#UD

INSTRUCTION SET REFERENCE, A-M

If the LOCK prefix is used but the destination is not a memory
operand.

Virtual-8086 Mode Exceptions

#GP(0)
#SS(0)

#PF(fault-code)
#AC(0)

#UD

If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.

If a memory operand effective address is outside the SS
segment limit.

If a page fault occurs.

If alignment checking is enabled and an unaligned memory
reference is made.

If the LOCK prefix is used but the destination is not a memory
operand.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions

#SS(0)
#GP(0)
#PF(fault-code)
#AC(0)

#UD

AND—Logical AND

If a memory address referencing the SS segment is in a non-
canonical form.

If the memory address is in a non-canonical form.
If a page fault occurs.

If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

If the LOCK prefix is used but the destination is not a memory
operand.

Vol.2A 3-55

INSTRUCTION SET REFERENCE, A-M

ANDPD—Bitwise Logical AND of Packed Double-Precision Floating-
Point Values

Opcode Instruction 64-Bit Compat/ Description
Mode Leg Mode
66 OF 54 /r ANDPD xmm1, Valid Valid Bitwise logical AND of xmmZ2/m128 and
xmm2/m128 xmm1.
Description

Performs a bitwise logical AND of the two packed double-precision floating-point
values from the source operand (second operand) and the destination operand (first
operand), and stores the result in the destination operand.

The source operand can be an XMM register or a 128-bit memory location. The desti-
nation operand is an XMM register.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to
access additional registers (XMM8-XMM15).

Operation

DEST[127:0] < DEST[127:0] BitwiseAND SRC[127:0];

Intel C/C++ Compiler Intrinsic Equivalent
ANDPD __m128d_mm_and_pd(__m128da, __m128dDb)

SIMD Floating-Point Exceptions

None.

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS,
ES, FS or GS segments.

If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

#SS(0) For an illegal address in the SS segment.
#PF(fault-code) For a page fault.

#NM If CRO.TS[bit 3] = 1.

#UD If CRO.EM[bit 2] = 1.

If CR4.0SFXSR[bit 9] = 0.
If CPUID.O1H:EDX.SSE2[bit 26] = 0.
If the LOCK prefix is used.

3-56 Vol.2A ANDPD—Bitwise Logical AND of Packed Double-Precision Floating-Point Values

INSTRUCTION SET REFERENCE, A-M

Real-Address Mode Exceptions

#GP(0) If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

If any part of the operand lies outside the effective address
space from O to FFFFH.

#NM If CRO.TS[bit 3] = 1.

#UD If CRO.EM[bit 2] = 1.
If CR4.0OSFXSR[bit 9] = 0.
If CPUID.O1H:EDX.SSE2[bit 26] = O.
If the LOCK prefix is used.

Virtual-8086 Mode Exceptions

Same exceptions as in real address mode.
#PF(fault-code) For a pa