
Efficient System-Enforced Deterministic Parallelism

Amittai Aviram, Shu-Chun Weng, Sen Hu, Bryan Ford

Yale University

Abstract

Deterministic execution offers many benefits for debug-

ging, fault tolerance, and security. Current methods

of executing parallel programs deterministically, how-

ever, often incur high costs, allow misbehaved software

to defeat repeatability, and transform time-dependent

races into input- or path-dependent races without elim-

inating them. We introduce a new parallel program-

ming model addressing these issues, and use Determina-

tor, a proof-of-concept OS, to demonstrate the model’s

practicality. Determinator’s microkernel API provides

only “shared-nothing” address spaces and determinis-

tic interprocess communication primitives to make ex-

ecution of all unprivileged code—well-behaved or not—

precisely repeatable. Atop this microkernel, Determi-

nator’s user-level runtime adapts optimistic replication

techniques to offer a private workspace model for both

thread-level and process-level parallel programing. This

model avoids the introduction of read/write data races,

and converts write/write races into reliably-detected con-

flicts. Coarse-grained parallel benchmarks perform and

scale comparably to nondeterministic systems, on both

multicore PCs and across nodes in a distributed cluster.

1 Introduction

We often wish to run software deterministically, so that

from a given input it always produces the same out-

put. Determinism is the foundation of replay debug-

ging [37, 39, 46, 56], fault tolerance [15, 18, 50], and ac-

countability mechanisms [30, 31]. Methods of intrusion

analysis [22, 34] and timing channel control [4] further

assume the system can enforce determinism even on ma-

licious code designed to evade analysis. Executing par-

allel software deterministically is challenging, however,

because threads sharing an address space—or processes

sharing resources such as file systems—are prone to non-

deterministic, timing-dependent races [3, 40, 42, 43].

User-space techniques for parallel deterministic exe-

cution [8, 10, 20, 21, 44] show promise but have limi-

tations. First, by relying on a deterministic scheduler

residing in the application process, they permit buggy

or malicious applications to compromise determinism

by interfering with the scheduler. Second, determinis-

tic schedulers emulate conventional APIs by synthesiz-

ing a repeatable—but arbitrary—schedule of inter-thread

interactions, often using an instruction counter as an arti-

ficial time metric. Data races remain, therefore, but their

manifestation depends subtly on inputs and code path

lengths instead of on “real” time. Third, the user-level

instrumentation required to isolate and schedule threads’

memory accesses can incur considerable overhead, even

on coarse-grained code that synchronizes rarely.

To meet the software development, debugging, and

security challenges that ubiquitous parallelism presents,

it may be insufficient to shoehorn the standard nonde-

terministic programming model into a synthetic execu-

tion schedule. Instead we propose to rethink the basic

model itself. We would like a parallel environment that:

(a) is “deterministic by default” [12, 40], except when

we inject nondeterminism explicitly via external inputs;

(b) introduces no data races, either at the memory ac-

cess level [25, 43] or at higher semantic levels [3]; (c)

can enforce determinism on arbitrary, compromised or

malicious code for security reasons; and (d) is efficient

enough to use for “normal-case” execution of deployed

code, not just for instrumentation during development.

As a step toward such a model, we present Determi-

nator, a proof-of-concept OS designed around the above

goals. Due to its OS-level approach, Determinator sup-

ports existing languages, can enforce deterministic exe-

cution not only on a single process but on groups of in-

teracting processes, and can prevent malicious user-level

code from subverting the kernel’s guarantee of determin-

ism. In order to explore the design space freely, Determi-

nator takes a “clean-slate” approach, making few com-

promises for backward compatibility with existing ker-

nels or APIs. Determinator’s programming model could

be implemented in a legacy kernel for backward compat-

ibility, however, as part of a “deterministic sandbox” for

example [9]. Determinator’s user-level runtime also pro-

vides limited emulation of the Unix process, thread, and

file APIs, to simplify application porting.

Determinator’s kernel enforces determinism by deny-

ing user code direct access to hardware resources whose

use can yield nondeterministic behavior, including real-

time clocks, cycle counters, and writable shared memory.

Determinator constrains user code to run within a hierar-

chy of single-threaded, process-like spaces, each having

a private virtual address space. The kernel’s low-level

API provides only three system calls, with which a space

can synchronize and communicate with its immediate

parent and children. Potentially useful sources of non-

determinism, such as timers, Determinator encapsulates

into I/O devices, which unprivileged spaces can access



only via explicit communication with more privileged

spaces. A supervisory space can thus mediate all non-

deterministic inputs affecting a subtree of unprivileged

spaces, logging true nondeterministic events for future

replay or synthesizing artificial events, for example.

Atop this minimal kernel API, Determinator’s user-

level runtime emulates familiar shared-resource pro-

gramming abstractions. The runtime employs file repli-

cation and versioning [47] to offer applications a logi-

cally shared file system accessed via the Unix file API,

and adapts distributed shared memory [2, 17] to emulate

shared memory for multithreaded applications. Since

this emulation is implemented in user space, applications

can freely customize it, and runtime bugs cannot com-

promise the kernel’s guarantee of determinism.

Rather than strictly emulating a conventional, nonde-

terministic API and consistency model like determinis-

tic schedulers do [8–10, 21, 44], Determinator explores

a novel private workspace model. In this model, each

thread keeps a private virtual replica of all shared mem-

ory and file system state; normal reads and writes access

and modify this working copy. Threads reconcile their

changes only at program-defined synchronization points,

much as developers use version control systems. This

model eliminates read/write data races, because reads see

only causally prior writes in the explicit synchronization

graph, and write/write races become conflicts, which the

runtime reliably detects and reports independently of any

(real or synthetic) execution schedule.

Experiments with common parallel benchmarks sug-

gest that Determinator can run coarse-grained paral-

lel applications deterministically with both performance

and scalability comparable to nondeterministic environ-

ments. Determinism incurs a high cost on fine-grained

parallel applications, however, due to Determinator’s use

of virtual memory to isolate threads. For “embarrass-

ingly parallel” applications requiring little inter-thread

communication, Determinator can distribute the com-

putation across nodes in a cluster mostly transparently

to the application, maintaining usable performance and

scalability. As a proof-of-concept, however, the cur-

rent prototype has many limitations, such as a restric-

tive space hierarchy, limited file system size, no persis-

tent storage, and inefficient cross-node communication.

This paper makes four main contributions. First,

we present the first OS designed from the ground

up to offer system-enforced deterministic execution,

for both multithreaded processes and groups of in-

teracting processes. Second, we introduce a private

workspace model for deterministic parallel program-

ming, which eliminates read/write data races and con-

verts schedule-dependent write/write races into reliably-

detected, schedule-independent conflicts. Third, we use

this model to emulate shared memory and file system ab-

stractions in Determinator’s user-space runtime. Fourth,

we demonstrate experimentally that this model is practi-

cal and efficient enough for “normal-case” use, at least

for coarse-grained parallel applications.

Section 2 outlines the deterministic programming

model we seek to create. Section 3 then describes the

Determinator kernel’s design and API, and Section 4 de-

tails its user-space application runtime. Section 5 exam-

ines our prototype implementation, and Section 6 evalu-

ates it informally and experimentally. Finally, Section 7

outlines related work, and Section 8 concludes.

2 A Deterministic Programming Model

Determinator’s basic goal is to offer a programming

model that is naturally and pervasively deterministic. To

be naturally deterministic, the model’s basic abstractions

should avoid introducing data races or other nondeter-

ministic behavior in the first place, and not merely pro-

vide ways to control, detect, or reproduce races. To be

pervasively deterministic, the model should behave de-

terministically at all levels of abstraction: e.g., for shared

memory access, inter-thread synchronization, file system

access, inter-process communication, external device or

network access, and thread/process scheduling.

Intermediate design points are possible and may yield

useful tradeoffs. Enforcing determinism only on syn-

chronization and not on low-level memory access might

improve efficiency, for example, as in Kendo [44]. For

now, however, we explore whether a “purist” approach

to pervasive determinism is feasible and practical.

To achieve this goal, we must address timing depen-

dencies in at least four aspects of current systems: in

way applications obtain semantically-relevant nondeter-

ministic inputs they require for operation; in shared state

such as memory and file systems; in the synchroniza-

tion APIs threads and processes use to coordinate; and

in the namespaces with which applications use and man-

age system resources. We make no claim that these are

the only areas in which current operating systems intro-

duce nondeterminism, but they are the aspects we found

essential to address in order to build a working, perva-

sively deterministic OS. We discuss each area in turn.

2.1 Explicit Nondeterministic Inputs

Many applications use nondeterministic inputs, such as

incoming messages for a web server, timers for an in-

teractive or real-time application, and random numbers

for a cryptographic algorithm. We seek not to eliminate

application-relevant nondeterministic inputs, but to make

such inputs explicit and controllable.

Mechanisms for parallel debugging [39, 46, 56], fault

tolerance [15, 18, 50], accountability [30, 31], and intru-

sion analysis [22, 34] all rely on the ability to replay a

computation instruction-for-instruction, in order to repli-



cate, verify, or analyze a program’s execution history.

Replay can be efficient when only I/O need be logged,

as for a uniprocessor virtual machine [22], but becomes

much more costly if internal sources of nondeterminism

due to parallelism must also be replayed [19, 23].

Determinator therefore transforms useful sources of

nondeterminism into explicit I/O, which applications

may obtain via controllable channels, and eliminates

only internal nondeterminism resulting from parallelism.

If an application calls gettimeofday(), for example,

then a supervising process can intercept this I/O to log,

replay, or synthesize these explicit time inputs.

2.2 A Race-Free Model for Shared State

Conventional systems give threads direct, concurrent ac-

cess to many forms of shared state, such as shared mem-

ory and file systems, yielding data races and heisenbugs

if the threads fail to synchronize properly [25, 40, 43].

While replay debuggers [37,39,46,56] and deterministic

schedulers [8,10,20,21,44] make data races reproducible

once they manifest, they do not change the inherently

race-prone model in which developers write applications.

Determinator replaces the standard concurrent access

model with a private workspace model, in which data

races do not arise in the first place. This model gives

each thread a complete, private virtual replica of all log-

ically shared state a thread may access, including shared

memory and file system state. A thread’s normal reads

and writes affect only its private working state, and do

not interact directly with other threads. Instead, Deter-

minator accumulates each threads’s changes to shared

state, then reconciles these changes among threads only

at program-defined synchronization points. This model

is related to and inspired by early parallel Fortran sys-

tems [7, 51], replicated file systems [47], transactional

memory [33, 52] and operating systems [48], and dis-

tributed version control systems [29], but to our knowl-

edge Determinator is the first OS to introduce a model

for pervasive thread- and process-level determinism.

If one thread executes the assignment ‘x = y’ while

another concurrently executes ‘y = x’, for example,

these assignments race in the conventional model, but are

race-free under Determinator and always swap x with y.

Each thread’s read of x or y always sees the “old” version

of that variable, saved in the thread’s private workspace

at the last explicit synchronization point.

Figure 1 illustrates a more realistic example of a game

or simulator, which uses an array of “actors” (players,

particles, etc.) to represent some logical “universe,” and

updates all of the actors in parallel at each time step. To

update the actors, the main thread forks a child thread to

process each actor, then synchronizes by joining all these

child threads. The child thread code to update each ac-

tor is shown “inline” within the main() function, which

struct actor state actor[nactors];

main()

initialize all elements of actor[] array

for (time = 0; ; time++)

for (i = 0; i < nactors; i++)

if (thread fork(i) == IN CHILD)

// child thread to process actor[i]

examine state of nearby actors

update state of actor[i] accordingly

thread exit();

for (i = 0; i < nactors; i++)

thread join(i);

Figure 1: C pseudocode for lock-step time simulation,

which contains a data race in standard concurrency mod-

els but is bug-free under Determinator.

under Unix works only with process-level fork(); De-

terminator offers this convenience for shared memory

threads as well, as discussed later in Section 4.4.

In this example, each child thread reads the “prior”

state of any or all actors in the array, then updates the

state of its assigned actor “in-place,” without any explicit

copying or additional synchronization. With standard

threads this code has a read/write race: each child thread

may see an arbitrary mix of “old” and “new” states as

it examines other actors in the array. Under Determi-

nator, however, this code is correct and race-free. Each

child thread reads only its private working copy of the

actors array, which is untouched (except by the child

thread itself) since the main thread forked that child. As

the main thread rejoins all its child threads, Determina-

tor merges each child’s actor array updates back into the

main thread’s working copy, for use in the next time step.

While read/write races disappear in Determinator’s

model, traditional write/write races become conflicts. If

two child threads concurrently write to the same actor

array element, for example, Determinator detects this

conflict and signals a runtime exception when the main

thread attempts to join the second conflicting child. In

the conventional model, by contrast, the threads’ execu-

tion schedules might cause either of the two writes to

“win” and silently propagate its likely erroneous value

throughout the computation. Running this code under

a conventional deterministic scheduler causes the “win-

ner” to be decided based on a synthetic, reproducible

time metric (e.g., instruction count) rather than real time,

but the race remains and may still manifest or vanish due

to slight changes in inputs or instruction path lengths.

2.3 A Race-Free Synchronization API

Conventional threads can still behave nondeterministi-

cally even in a correctly locked program with no low-



level data races. Two threads might acquire a lock in any

order, for example, leading to high-level data races [3].

This source of nondeterminism is inherent in the lock ab-

straction: we can record and replay or synthesize a lock

acquisition schedule [44], but such a schedule is still ar-

bitrary and effectively unpredictable to the developer.

Fortunately, many other synchronization abstractions

are naturally deterministic, such as fork/join, barriers,

and futures [32]. Deterministic abstractions have the key

property that when threads synchronize, program logic

alone determines at what points in the threads’ execu-

tion paths the synchronization occurs, and which threads

are involved. In fork/join synchronization, for exam-

ple, the parent’s thread join(t) operation and the child’s

thread exit() determine the respective synchronization

points, and the parent indicates explicitly the thread t to

join. Locks fail this test because one thread’s unlock()

passes the lock to an arbitrary successor thread’s lock().

Queue abstractions such as semaphores and pipes are de-

terministic if only one thread can access each end of the

queue [24, 36], but nondeterministic if several threads

can race to insert or remove elements at either end. A

related draft elaborates on these considerations [5].

Since the multicore revolution is young and most ap-

plication code is yet to be parallelized, we may still have

a choice of what synchronization abstractions to use.

Determinator therefore supports only race-free synchro-

nization primitives natively, although it can emulate non-

deterministic primitives via deterministic scheduling for

compatibility, as described later in Section 4.5.

2.4 Race-Free System Namespaces

Current operating system APIs often introduce nondeter-

minism unintentionally by exposing shared namespaces

implicitly synchronized by locks. Execution timing af-

fects the pointers returned by malloc() or mmap()

or the file numbers returned by open() in multi-

threaded Unix processes, and the process IDs returned

by fork() or the file names returned by mktemp() in

single-threaded processes. Even if only one thread actu-

ally uses a given memory block, file, process ID, or tem-

porary file, the assignment of these names from a shared

namespace is inherently nondeterministic.

Determinator’s API therefore avoids creating shared

namespaces with system-chosen names, instead favor-

ing thread-private namespaces with application-chosen

names. Application code, not the system, decides where

to allocate memory and what process IDs to assign chil-

dren. This principle ensures that naming a resource re-

veals no shared state information other than what the ap-

plication itself provided. Since implicitly shared names-

paces often cause multiprocessor contention, designing

system APIs to avoid this implicit sharing may be syner-

gistic with recent multicore scalability work [14].

Figure 2: The kernel’s hierarchy of spaces, each contain-

ing private register and virtual memory state.

3 The Determinator Kernel

Having outlined the principles underlying Determina-

tor’s programming model, we now describe its kernel

design. Normal applications do not use the kernel API

directly, but rather the higher-level abstractions provided

by the user-level runtime, described in the next section.

We make no claim that our kernel design or API is the

“right” design for a determinism-enforcing kernel, but

merely that it illustrates one way to implement a perva-

sively deterministic application environment.

3.1 Spaces

Determinator executes application code within an arbi-

trarily deep hierarchy of spaces, illustrated in Figure 2.

Each space consists of CPU register state for a single

control flow, and private virtual memory containing code

and data directly accessible within that space. A De-

terminator space is analogous to a single-threaded Unix

process, with important differences; we use the term

“space” to highlight these differences and avoid confu-

sion with the “process” and “thread” abstractions Deter-

minator emulates at user level, described in Section 4.

As in a nested process model [27], a Determinator

space cannot outlive its parent, and a space can directly

interact only with its immediate parent and children via

three system calls described below. The kernel provides

no file systems, writable shared memory, or other ab-

stractions that imply globally shared state.

Only the distinguished root space has direct access to

nondeterministic inputs via I/O devices, such as console

input or clocks. Other spaces can access I/O devices only

indirectly via parent/child interactions, or via I/O privi-

leges delegated by the root space. A parent space can

thus control all nondeterministic inputs into any unpriv-

ileged space subtree, e.g., logging inputs for future re-

play. This space hierarchy also creates a performance

bottleneck for I/O-bound applications, a limitation of the

current design we intend to address in future work.



Call Interacts with Description

Put Child space Copy register state and/or virtual memory range into child, and optionally start child executing.

Get Child space Copy register state, virtual memory range, and/or changes since the last snapshot out of a child.

Ret Parent space Stop and wait for parent to issue a Get or Put. Processor traps also cause implicit Ret.

Table 1: System calls comprising Determinator’s kernel API.

Put Get Option Description

X X Regs PUT/GET child’s register state.

X X Copy Copy memory to/from child.

X X Zero Zero-fill virtual memory range.

X Snap Snapshot child’s virtual memory.

X Start Start child space executing.

X Merge Merge child’s changes into parent.

X X Perm Set memory access permissions.

X X Tree Copy (grand)child subtree.

Table 2: Options/arguments to the Put and Get calls.

3.2 System Call API

Determinator spaces interact only as a result of proces-

sor traps and the kernel’s three system calls—Put, Get,

and Ret, summarized in Table 1. Put and Get take sev-

eral optional arguments, summarized in Table 2. Most

options can be combined: e.g., in one Put call a space

can initialize a child’s registers, copy a range of the par-

ent’s virtual memory into the child, set page permissions

on the destination range, save a complete snapshot of the

child’s address space, and start the child executing.

Each space has a private namespace of child spaces,

which user-level code manages. A space specifies a

child number to Get or Put, and the kernel creates that

child if it doesn’t already exist, before performing the re-

quested operations. If the specified child did exist and

was still executing at the time of the Put/Get call, the

kernel blocks the parent’s execution until the child stops

due to a Ret system call or a processor trap. These “ren-

dezvous” semantics ensure that spaces synchronize only

at well-defined points in both spaces’ execution.

The Copy option logically copies a range of virtual

memory between the invoking space and the specified

child. The kernel uses copy-on-write to optimize large

copies and avoid physically copying read-only pages.

Merge is available only on Get calls. A Merge is like a

Copy, except the kernel copies only bytes that differ be-

tween the child’s current and reference snapshots into the

parent space, leaving other bytes in the parent untouched.

The kernel also detects conflicts: if a byte changed in

both the child’s and parent’s spaces since the snapshot,

the kernel generates an exception, treating a conflict as

a programming error like an illegal memory access or

divide-by-zero. Determinator’s user-level runtime uses

Merge to give multithreaded processes the illusion of

shared memory, as described later in Section 4.4. In prin-

ciple, user-level code could implement Merge itself, but

Figure 3: A spaces migrating among two nodes and start-

ing child spaces on each node.

the kernel’s direct access to page tables makes it easy for

the kernel to implement Merge efficiently.

Finally, the Ret system call stops the calling space, re-

turning control to the space’s parent. Exceptions such as

divide-by-zero also cause a Ret, providing the parent a

status code indicating why the child stopped.

To facilitate debugging and prevent untrusted children

from looping forever, a parent can start a child with an

instruction limit, forcing control back to the parent af-

ter the child and its descendants collectively execute this

many instructions. Counting instructions instead of “real

time” preserves determinism, while enabling spaces to

“quantize” a child’s execution to implement scheduling

schemes deterministically at user level [8, 21].

Barring kernel or processor bugs, unprivileged spaces

constrained to use the above kernel API alone cannot

behave nondeterministically even by deliberate design.

While a formal proof is out of scope, one straightforward

argument is that the above Get/Put/Ret primitives reduce

to blocking, one-to-one message channels, making the

space hierarchy a deterministic Kahn network [36].

3.3 Distribution via Space Migration

The kernel allows space hierarchies to span not only

multiple CPUs in a multiprocessor/multicore system, but

also multiple nodes in a homogeneous cluster, mostly

transparently to application code. While distribution is

semantically transparent to applications, an application

may have to be designed with distribution in mind to per-

form well. As with other aspects of the kernel’s design,

we make no pretense that this is the “right” approach to

cross-node distribution, but merely one way to extend a

deterministic execution model across a cluster.

Distribution adds no new system calls or options to

the API above. Instead, the Determinator kernel inter-



prets the higher-order bits in each process’s child num-

ber namespace as a “node number” field. When a space

invokes Put or Get, the kernel first logically migrates the

calling space’s state and control flow to the node whose

number the user specifies as part of its child number

argument, before creating and/or interacting with some

child on that node, as specified in the remaining child

number bits. Figure 3 illustrates a space migrating be-

tween two nodes and managing child spaces on each.

Once created, a space has a home node, to which the

space migrates when interacting with its parent on a Ret

or trap. Nodes are numbered so that “node zero” in

any space’s child namespace always refers to the space’s

home node. If a space uses only the low bits in its

child numbers and leaves the node number field zero, the

space’s children all have the same home as the parent.

When the kernel migrates a space, it first transfers to

the receiving kernel only the space’s register state and

address space summary information. Next, the receiving

kernel requests the space’s memory pages on demand as

the space accesses them on the new node. Each node’s

kernel avoids redundant cross-node page copying in the

common case when a space repeatedly migrates among

several nodes—e.g., when a space starts children on each

of several nodes, then returns later to collect their results.

For pages that the migrating space only reads and never

writes, such as program code, each kernel reuses cached

copies of these pages whenever the space returns to that

node. The kernel currently performs no prefetching or

other adaptive optimizations. Its rudimentary messaging

protocol runs directly atop Ethernet, and does not support

TCP/IP for Internet-wide distribution.

4 Emulating High-Level Abstractions

Determinator’s kernel API eliminates many convenient

and familiar abstractions; can we reproduce them un-

der strict determinism? We find that many familiar ab-

stractions remain feasible, though with important trade-

offs. This section describes how Determinator’s user-

level runtime infrastructure emulates traditional Unix

processes, file systems, threads, and synchronization.

4.1 Processes and fork/exec/wait

We make no attempt to replicate Unix process se-

mantics exactly, but would like to emulate traditional

fork/exec/wait APIs enough to support common

uses in scriptable shells, build tools, and multi-process

“batch processing” applications such as compilers.

Fork: Implementing a basic Unix fork() requires

only one Put system call, to copy the parent’s entire

memory state into a child space, set up the child’s regis-

ters, and start the child. The difficulty arises from Unix’s

global process ID (PID) namespace, a source of nonde-

terminism as discussed in Section 2.4. Since most ap-

plications use PIDs returned by fork() merely as an

opaque argument to a subsequent waitpid(), our run-

time makes PIDs local to each process: one process’s

PIDs are unrelated to, and may numerically conflict with,

PIDs in other processes. This change breaks Unix appli-

cations that pass PIDs among processes, and means that

commands like ‘ps’ must be built into shells for the same

reason that ‘cd’ already is. This simple approach works

for compute-oriented applications following the typical

fork/wait pattern, however.

Since fork() returns a PID chosen by the system,

while our kernel API requires user code to manage child

numbers, our user-level runtime maintains a “free list” of

child spaces and reserves one during each fork(). To

emulate Unix process semantics more closely, a central

space such as the root space could manage a global PID

namespace, at the cost of requiring inter-space commu-

nication during operations such as fork().

Exec: A user-level implementation of Unix exec()

must construct the new program’s memory image, in-

tended to replace the old program, while still execut-

ing the old program’s runtime library code. Our run-

time loads the new program into a “reserved” child space

never used by fork(), then calls Get to copy that

child’s entire memory atop that of the (running) parent:

this Get thus “returns” into the new program. To ensure

that the instruction address following the old program’s

Get is a valid place to start the new program, the run-

time places this Get in a small “trampoline” code frag-

ment mapped at the same location in the old and new

programs. The runtime also carries over some Unix pro-

cess state, such as the the PID namespace and file system

state described later, from the old to the new program.

Wait: When an application calls waitpid() to wait

for a specific child, the runtime calls Get to synchronize

with the child’s Ret and obtain the child’s exit status. The

child may return to the parent before terminating, in or-

der to make I/O requests as described below; in this case,

the parent’s runtime services the I/O request and resumes

the waitpid() transparently to the application.

Unix’s wait() is more challenging, as it waits for

any (i.e., “the first”) child to terminate, violating the

constraints of deterministic synchronization discussed in

Section 2.3. Our kernel’s API provides no system call to

“wait for any child,” and can’t (for unprivileged spaces)

without compromising determinism. Instead, our run-

time waits for the child that was forked earliest whose

status was not yet collected.

This behavior does not affect applications that fork one

or more children and then wait for all of them to com-

plete, but affects two common uses of wait(). First,

interactive Unix shells use wait() to report when back-



Figure 4: Example parallel make scheduling scenarios

under Unix versus Determinator: (a) and (b) with unlim-

ited parallelism (no user-level scheduling); (c) and (d)

with a “2-worker” quota imposed at user level.

ground processes complete; thus, an interactive shell run-

ning under Determinator requires special “nondetermin-

istic I/O privileges” to provide this functionality (and re-

lated functions such as interactive job control). Second,

our runtime’s behavior may adversely affect the perfor-

mance of programs that use wait() to implement dy-

namic scheduling or load balancing in user space.

Consider a parallel make run with or without limiting

the number of concurrent children. A plain ‘make -j’,

allowing unlimited children, leaves scheduling decisions

to the system. Under Unix or Determinator, the kernel’s

scheduler dynamically assigns tasks to available CPUs,

as illustrated in Figure 4 (a) and (b). If the user runs

‘make -j2’, however, then make initially starts only

tasks 1 and 2, then waits for one of them to complete be-

fore starting task 3. Under Unix, wait() returns when

the short task 2 completes, enabling make to start task 3

immediately as in (c). On Determinator, however, the

wait() returns only when (deterministically chosen)

task 1 completes, resulting in a non-optimal schedule (d):

determinism prevents the runtime from learning which of

tasks 1 and 2 completed first. The unavailability of tim-

ing information with which to make good application-

level scheduling decisions thus suggests a practice of

leaving scheduling to the system in a deterministic en-

vironment (e.g., ‘make -j’ instead of ‘-j2’).

4.2 A Shared File System

Unix’s globally shared file system provides a convenient

namespace and repository for staging program inputs,

storing outputs, and holding intermediate results such as

temporary files. Since our kernel permits no physical

state sharing, user-level code must emulate shared state

abstractions. Determinator’s “shared-nothing” space hi-

erarchy is similar to a distributed system consisting only

of uniprocessor machines, so our user-level runtime bor-

rows distributed file system principles to offer applica-

tions a shared file system abstraction.

Figure 5: Each user-level runtime maintains a private

replica of a logically shared file system, using file ver-

sioning to reconcile replicas at synchronization points.

Since our current focus is on emulating familiar ab-

stractions and not on developing storage systems, Deter-

minator’s file system currently provides no persistence:

it effectively serves only as a temporary file system.

While many distributed file system designs may be ap-

plicable, our runtime uses replication with weak consis-

tency [53, 55]. Our runtime maintains a complete file

system replica in the address space of each process it

manages, as shown in Figure 5. When a process cre-

ates a child via fork(), the child inherits a copy of

the parent’s file system in addition to the parent’s open

file descriptors. Individual open/close/read/write

operations in a process use only that process’s file sys-

tem replica, so different processes’ replicas may diverge

as they modify files concurrently. When a child termi-

nates and its parent collects its state via wait(), the

parent’s runtime copies the child’s file system image into

a scratch area in the parent space and uses file version-

ing [47] to propagate the child’s changes into the parent.

If a shell or parallel make forks several compiler pro-

cesses in parallel, for example, each child writes its out-

put .o file to its own file system replica, then the par-

ent’s runtime merges the resulting .o files into the par-

ent’s file system as the parent collects each child’s exit

status. This copying and reconciliation is not as ineffi-

cient as it may appear, due to the kernel’s copy-on-write

optimizations. Replicating a file system image among

many spaces copies no physical pages until user-level

code modifies them, so all processes’ copies of identical

files consume only one set of pages.

As in any weakly-consistent file system, processes

may cause conflicts if they perform unsynchronized, con-

current writes to the same file. When our runtime detects

a conflict, it simply discards one copy and sets a con-

flict flag on the file; subsequent attempts to open() the

file result in errors. This behavior is intended for batch

compute applications for which conflicts indicate an ap-

plication or build system bug, whose appropriate solu-

tion is to fix the bug and re-run the job. Interactive use

would demand a conflict handling policy that avoids los-

ing data. The user-level runtime could alternatively use



pessimistic locking to implement stronger consistency

and avoid unsynchronized concurrent writes, at the cost

of more inter-space communication.

The current design’s placement of each process’s file

system replica in the process’s own address space has

two drawbacks. First, it limits total file system size to

less than the size of an address space; this is a serious

limitation in our 32-bit prototype, though it may be less

of an issue on a 64-bit architecture. Second, wild pointer

writes in a buggy process may corrupt the file system

more easily than in Unix, where a buggy process must

actually call write() to corrupt a file. The runtime

could address the second issue by write-protecting the

file system area between calls to write(), or it could

address both issues by storing file system data in child

spaces not used for executing child processes.

4.3 Input/Output and Logging

Since unprivileged spaces can access external I/O de-

vices only indirectly via parent/child interaction within

the space hierarchy, our user-level runtime treats I/O as

a special case of file system synchronization. In addition

to regular files, a process’s file system image can contain

special I/O files, such as a console input file and a console

output file. Unlike Unix device special files, Determina-

tor’s I/O files actually hold data in the process’s file sys-

tem image: for example, a process’s console input file

accumulates all the characters the process has received

from the console, and its console output file contains all

the characters it has written to the console. In the current

prototype this means that console or log files can even-

tually “fill up” and become unusable, though a suitable

garbage-collection mechanism could address this flaw.

When a process does a read() from the console,

the C library first returns unread data already in the pro-

cess’s local console input file. When no more data is

available, instead of returning an end-of-file condition,

the process calls Ret to synchronize with its parent and

wait for more console input (or in principle any other

form of new input) to become available. When the par-

ent does a wait() or otherwise synchronizes with the

child, it propagates any new input it already has to the

child. When the parent has no new input for any waiting

children, it forwards all their input requests to its parent,

and ultimately to the kernel via the root process.

When a process does a console write(), the run-

time appends the new data to its internal console output

file as it would append to a regular file. The next time the

process synchronizes with its parent, file system recon-

ciliation propagates these writes toward the root process,

which forwards them to the kernel’s I/O devices. A pro-

cess can request immediate synchronization and output

propagation by explicitly calling fsync().

The reconciliation mechanism handles “append-only”

Figure 6: A multithreaded process built from one space

per thread, with a master space managing synchroniza-

tion and memory reconciliation.

writes differently from other file changes, enabling con-

current writes to console or log files without conflict.

During reconciliation, if both the parent and child have

made append-only writes to the same file, reconciliation

appends the child’s latest writes to the parent’s copy of

the file, and vice versa. Each process’s replica thus ac-

cumulates all processes’ concurrent writes, though dif-

ferent processes may observe these writes in a different

order. Unlike Unix, rerunning a parallel computation

from the same inputs with and without output redirection

yields byte-for-byte identical console and log file output.

4.4 Shared Memory Multithreading

Shared memory multithreading is popular despite the

nondeterminism it introduces into processes, in part be-

cause parallel code need not pack and unpack messages:

threads simply compute “in-place” on shared variables

and structures. Since Determinator gives user spaces no

physically shared memory other than read-only sharing

via copy-on-write, emulating shared memory involves

distributed shared memory (DSM) techniques. Adapting

the private workspace model discussed in Section 2.2 to

thread-level shared memory involves reusing ideas ex-

plored in early parallel Fortran machines [7, 51] and in

release-consistent DSM systems [2, 17], although none

of this prior work attempted to provide determinism.

Our runtime uses the kernel’s Snap and Merge opera-

tions (Section 3.2) to emulate shared memory in the pri-

vate workspace model, using fork/join synchronization.

To fork a child, the parent thread calls Put with the Copy,

Snap, Regs, and Start options to copy the shared part of

its memory into a child space, save a snapshot of that

memory state in the child, and start the child running, as

illustrated in Figure 6. The master thread may fork mul-



tiple children this way. To synchronize with a child and

collect its results, the parent calls Get with the Merge op-

tion, which merges all changes the child made to shared

memory, since its snapshot was taken, back into the par-

ent. If both parent and child—or the child and other chil-

dren whose changes the parent has collected—have con-

currently modified the same byte since the snapshot, the

kernel detects and reports this conflict.

Our runtime also supports barriers, the foundation of

data-parallel programming models like OpenMP [45].

When each thread in a group arrives at a barrier, it calls

Ret to stop and wait for the parent thread managing

the group. The parent calls Get with Merge to collect

each child’s changes before the barrier, then calls Put

with Copy and Snap to resume each child with a new

shared memory snapshot containing all threads’ prior re-

sults. While our private workspace model conceptually

extends to non-hierarchical synchronization [5], our pro-

totype’s strict space hierarchy currently limits synchro-

nization flexibility, an issue we intend to address in the

future. Any synchronization abstraction may be emulated

at some cost as described in the next section, however.

An application can choose which parts of its address

space to share and which to keep thread-private. By plac-

ing thread stacks outside the shared region, all threads

can reuse the same stack area, and the kernel wastes no

effort merging stack data. Thread-private stacks also of-

fer the convenience of allowing a child thread to inherit

its parent’s stack, and run “inline” in the same C/C++

function as its parent, as in Figure 1. If threads wish

to pass pointers to stack-allocated structures, however,

then they may locate their stacks in disjoint shared re-

gions. Similarly, if the file system area is shared, then the

threads share a common file descriptor namespace as in

Unix. Excluding the file system area from shared space

and using normal file system reconciliation (Section 4.2)

to synchronize it yields thread-private file tables.

4.5 Emulating Legacy Thread APIs

As discussed in Section 2.3, we hope much existing se-

quential code can readily be parallelized using naturally

deterministic synchronization abstractions, like data-

parallel models such as OpenMP [45] and SHIM [24]

already offer. For code already parallelized using non-

deterministic synchronization, however, Determinator’s

runtime can emulate the standard pthreads API via deter-

ministic scheduling [8, 10, 21], at certain costs.

In a process that uses nondeterministic synchroniza-

tion, the process’s initial master space never runs ap-

plication code directly, but instead acts as a determin-

istic scheduler. This scheduler creates one child space

to run each application thread. The scheduler runs the

threads under an artificial execution schedule, emulating

a schedule by which a true shared-memory multiproces-

sor might in principle run them, but using a deterministic,

virtual notion of time—namely, number of instructions

executed—to schedule all inter-thread interactions.

Like DMP [8, 21], our deterministic scheduler quan-

tizes each thread’s execution by preempting it after exe-

cuting a fixed number of instructions. Whereas DMP im-

plements preemption by instrumenting user-level code,

our scheduler uses the kernel’s instruction limit feature

(Section 3.2). The scheduler “donates” execution quanta

to threads round-robin, allowing each thread to run con-

currently with other threads for one quantum, before col-

lecting the thread’s shared memory changes via Merge

and restarting it for another quantum.

A thread’s shared memory writes propagate to other

threads only at the end of each quantum, violating se-

quential consistency [38]. Like DMP-B [8], our sched-

uler implements a weak consistency model [28], totally

ordering only synchronization operations. To enforce

this total order, each synchronization operation could

simply spin for a a full quantum. To avoid wasteful

spinning, however, our synchronization primitives inter-

act with the deterministic scheduler directly.

Each mutex, for example, is always “owned” by some

thread, whether or not the mutex is locked. The mutex’s

owner can lock and unlock the mutex without scheduler

interactions, but any other thread needing the mutex must

first invoke the scheduler to obtain ownership. At the

current owner’s next quantum, the scheduler “steals” the

mutex from its current owner if the mutex is unlocked,

and otherwise places the locking thread on the mutex’s

queue to be awoken once the mutex becomes available.

Since the scheduler can preempt threads at any

point, a challenge common to any preemptive sce-

nario is making synchronization functions such as

pthread_mutex_lock() atomic. The kernel does

not allow threads to disable or extend their own instruc-

tion limits, since we wish to use instruction limits at pro-

cess level as well, e.g., to enforce deterministic “time”

quotas on untrusted processes, or to improve user-level

process scheduling (see Section 4.1) by quantizing pro-

cess execution. After synchronizing with a child thread,

therefore, the master space checks whether the instruc-

tion limit preempted a synchronization function, and if

so, resumes the preempted code in the master space. Be-

fore returning to the application, these functions check

whether they have been “promoted” to the master space,

and if so migrate their register state back to the child

thread and restart the scheduler in the master space.

While deterministic scheduling provides compatibility

with existing parallel code, it has drawbacks. The master

space, required to enforce a total order on synchroniza-

tion operations, may be a scaling bottleneck unless exe-

cution quanta are large. Since threads can interact only

at quanta boundaries, however, large quanta increase the



time one thread may waste waiting to interact with an-

other, to steal an unlocked mutex for example.

Further, since the deterministic scheduler may pre-

empt a thread and propagate shared memory changes at

any point in application code, the programming model

remains nondeterministic. In contrast with our private

workspace model, if one thread runs ‘x = y’ while an-

other runs ‘y = x’ under the deterministic scheduler, the

result may be repeatable but is no more predictable to the

programmer than on traditional systems. While rerun-

ning a program with exactly identical inputs will yield

identical results, if the input is perturbed to change the

length of any instruction sequence, these changes may

cascade into a different execution schedule and trigger

schedule-dependent if not timing-dependent bugs.

5 Prototype Implementation

Determinator is written in C with small assembly frag-

ments, currently runs on the 32-bit x86 architecture, and

implements the kernel API and user-level runtime facil-

ities described above. Source releases are available at

‘http://dedis.cs.yale.edu/’.

Since our focus is on parallel compute-bound applica-

tions, Determinator’s I/O capabilities are currently lim-

ited. The system provides text-based console I/O and a

Unix-style shell supporting redirection and both scripted

and interactive use. The shell offers no interactive job

control, which would require currently unimplemented

“nondeterministic privileges” (Section 4.1). The system

has no demand paging or persistent disk storage: the

user-level runtime’s logically shared file system abstrac-

tion currently operates in physical memory only.

The kernel supports application-transparent space mi-

gration among up to 32 machines in a cluster, as de-

scribed in Section 3.3. Migration uses a synchronous

messaging protocol with only two request/response types

and implements almost no optimizations such as page

prefetching. The protocol runs directly atop Ethernet,

and is not intended for Internet-wide distribution.

The prototype has other limitations already men-

tioned. The kernel’s strict space hierarchy could bottle-

neck I/O-intensive applications (Section 3.1), and does

not easily support non-hierarchical synchronization such

as queues or futures (Section 4.4). The file system’s size

is constrained to a process’s address space (Section 4.2),

and special I/O files can fill up (Section 4.3). None of

these limitations are fundamental to Determinator’s pro-

gramming model. At some cost in complexity, the model

could support non-hierarchical synchronization [5]. The

runtime could store files in child spaces or on external

I/O devices, and could garbage-collect I/O streams.

Implementing instruction limits (Section 3.2) requires

the kernel to recover control after a precise number of

instructions execute in user mode. While the PA-RISC

architecture provided this feature [1], the x86 does not,

so we borrowed ReVirt’s technique [22]. We first set an

imprecise hardware performance counter, which unpre-

dictably overshoots its target a small amount, to interrupt

the CPU before the desired number of instructions, then

run the remaining instructions under debug tracing.

6 Evaluation

This section evaluates the Determinator prototype, first

informally, then examining single-node and distributed

parallel processing performance, and finally code size.

6.1 Experience Using the System

We find that a deterministic programming model sim-

plifies debugging of both applications and user-level

runtime code, since user-space bugs are always repro-

ducible. Conversely, when we do observe nondetermin-

istic behavior, it can result only from a kernel (or hard-

ware) bug, immediately limiting the search space.

Because Determinator’s file system holds a process’s

output until the next synchronization event (often the

process’s termination), each process’s output appears

as a unit even if the process executes in parallel with

other output-generating processes. Further, different pro-

cesses’ outputs appear in a consistent order across runs,

as if run sequentially. (The kernel provides a system call

for debugging that outputs a line to the “real” console im-

mediately, reflecting true execution order, but chaotically

interleaving output as in conventional systems.)

While race detection tools exist [25, 43], we found it

convenient that Determinator always detects conflicts un-

der “normal-case” execution, without requiring the user

to run a special tool. Since the kernel detects shared

memory conflicts and the user-level runtime detects file

system conflicts at every synchronization event, Deter-

minator’s model makes conflict detection as standard as

detecting division by zero or illegal memory accesses.

A subset of Determinator doubles as PIOS, “Paral-

lel Instructional Operating System,” which we used in

Yale’s operating system course this spring. While the

OS course’s objectives did not include determinism, they

included introducing students to parallel, multicore, and

distributed operating system concepts. For this purpose,

we found Determinator/PIOS to be a useful instructional

tool due to its simple design, minimal kernel API, and

adoption of distributed systems techniques within and

across physical machines. PIOS is partly derived from

MIT’s JOS [35], and includes a similar instructional

framework where students fill in missing pieces of a

“skeleton.” The twelve students who took the course,

working in groups of two or three, all successfully reim-

plemented Determinator’s core features: multiproces-

sor scheduling with Get/Put/Ret coordination, virtual

memory with copy-on-write and Snap/Merge, user-level



Figure 7: Determinator performance relative to pthreads

under Ubuntu Linux on various parallel benchmarks.

threads with fork/join synchronization (but not determin-

istic scheduling), the user-space file system with ver-

sioning and reconciliation, and application-transparent

cross-node distribution via space migration. In their fi-

nal projects they extended the OS with features such as

graphics, pipes, and a remote shell. While instructional

use by no means indicates a system’s real-world utility,

we find the success of the students in understanding and

building on Determinator’s architecture promising.

6.2 Single-node Multicore Performance

Since Determinator runs user-level code “natively” on

the hardware instead of rewriting user code [8, 21], we

expect it to perform comparably to conventional systems

when executing single-threaded, compute-bound code.

Since thread interactions require system calls, context

switches, and virtual memory operations, however, we

expect determinism to incur a performance cost in pro-

portion to the frequency of thread interaction.

Figure 7 shows the performance of several shared-

memory parallel benchmarks we ported to Determina-

tor, relative to the same benchmarks using conventional

pthreads on 32-bit Ubuntu Linux 9.10. The md5 bench-

mark searches for an ASCII string yielding a particu-

lar MD5 hash, as in a brute-force password cracker;

matmult multiplies two 1024 × 1024 integer matrices;

qsort is a recursive parallel quicksort on an integer ar-

ray; blackscholes is a financial benchmark from the PAR-

SEC suite [11]; and fft, lu cont, and lu noncont are Fast

Fourier Transform and LU-decomposition benchmarks

from SPLASH-2 [57]. We tested all benchmarks on a

2 socket × 6 core, 2.2GHz AMD Opteron PC.

Coarse-grained benchmarks like md5, matmult, qsort,

blackscholes, and fft show performance comparable with

that of nondeterministic multithreaded execution under

Linux. The md5 benchmark shows better scaling on De-

terminator than on Linux, achieving a 2.25× speedup

over Linux on 12 cores. We have not identified the pre-

cise cause of this speedup over Linux but suspect scaling

bottlenecks in Linux’s thread system [54].

Figure 8: Determinator parallel speedup over its own

single-CPU performance on various benchmarks.

Figure 9: Matrix multiply with varying matrix size.

Porting the blackscholes benchmark to Determinator

required no changes as it uses deterministically sched-

uled pthreads (Section 4.5). The deterministic sched-

uler’s quantization, however, incurs a fixed performance

cost of about 35% for the chosen quantum of 10 million

instructions. We could reduce this overhead by increas-

ing the quantum, or eliminate it by porting the bench-

mark to Determinator’s “native” parallel API.

The fine-grained lu benchmarks show a higher per-

formance cost, indicating that Determinator’s virtual

memory-based approach to enforcing determinism is not

well-suited to fine-grained parallel applications. Future

hardware enhancements might make determinism practi-

cal for fine-grained parallel applications, however [21].

Figure 8 shows each benchmark’s speedup relative to

single-threaded execution on Determinator. The “embar-

rassingly parallel” md5 and blackscholes scale well, mat-

mult and fft level off after four processors (but still per-

form comparably to Linux as Figure 7 shows), and the

remaining benchmarks scale poorly.

To quantify further the effect of parallel interaction

granularity on deterministic execution performance, Fig-

ures 9 and 10 show Linux-relative performance of mat-

mult and qsort, respectively, for varying problem sizes.

With both benchmarks, deterministic execution incurs a

high performance cost on small problem sizes requiring

frequent interaction, but on large problems Determinator

is competitive with and sometimes faster than Linux.



Figure 10: Parallel quicksort with varying array size.

Figure 11: Speedup of deterministic shared memory

benchmarks on varying-size distributed clusters.

6.3 Distributed Computing Performance

While Determinator’s rudimentary space migration (Sec-

tion 3.3) is far from providing a full cluster comput-

ing architecture, we would like to test whether such a

mechanism can extend a deterministic computing model

across nodes with usable performance at least for some

applications. We therefore changed the md5 and mat-

mult benchmarks to distribute workloads across a clus-

ter of up to 32 uniprocessor nodes via space migration.

Both benchmarks still run in a (logical) shared memory

model via Snap/Merge. Since we did not have a clus-

ter on which we could run Determinator natively, we ran

it under QEMU [6], on a cluster of 2 socket × 2 core,

2.4GHz Intel Xeon machines running SuSE Linux 11.1.

Figure 11 shows parallel speedup under Determinator

relative to local single-node execution in the same envi-

ronment, on a log-log scale. In md5-circuit, the master

space acts like a traveling salesman, migrating serially to

each “worker” node to fork child processes, then retrac-

ing the same circuit to collect their results. The md5-tree

variation forks workers recursively in a binary tree: the

master space forks children on two nodes, those children

each fork two children on two nodes, etc. The matmult-

tree benchmark implements matrix multiply with recur-

Figure 12: Deterministic shared memory benchmarks

versus distributed-memory equivalents for Linux.

Determinator PIOS

Component Semicolons Semicolons

Kernel core 2044 1847

Hardware/device drivers 751 647

User-level runtime 2952 1079

Generic C library code 6948 394

User-level programs 1797 1418

Total 14,492 5385

Table 3: Implementation code size of the Determinator

OS and of PIOS, its instructional subset.

sive work distribution as in md5-tree.

The “embarrassingly parallel” md5-tree performs and

scales well, but only with recursive work distribution.

Matrix multiply levels off at two nodes, due to the

amount of matrix data the kernel transfers across nodes

via its simplistic page copying protocol, which currently

performs no data streaming, prefetching, or delta com-

pression. The slowdown for 1-node distributed execution

in matmult-tree reflects the cost of transferring the matrix

to a (single) remote machine for processing.

As Figure 12 shows, the shared memory md5-tree

and matmult-tree benchmarks, running on Determina-

tor, perform comparably to nondeterministic, distributed-

memory equivalents running on Puppy Linux 4.3.1, in

the same QEMU environment. Determinator’s clustering

protocol does not use TCP as the Linux-based bench-

marks do, so we explored the benchmarks’ sensitivity

to this factor by implementing TCP-like round-trip tim-

ing and retransmission behavior in Determinator. These

changes resulted in less than a 2% performance impact.

Illustrating the simplicity benefits of Determinator’s

shared memory thread API, the Determinator version of

md5 is 63% the size of the Linux version (62 lines con-

taining semicolons versus 99), which uses remote shells

to coordinate workers. The Determinator version of mat-

mult is 34% the size of its Linux equivalent (90 lines ver-

sus 263), which passes data explicitly via TCP.

6.4 Implementation Complexity

To provide a feel for implementation complexity, Table 3

shows source code line counts for Determinator, as well

as its PIOS instructional subset, counting only lines con-



taining semicolons. The entire system is less than 15,000

lines, about half of which is generic C and math library

code needed mainly for porting Unix applications easily.

7 Related Work

Recognizing the benefits of determinism [12, 40], paral-

lel languages such as SHIM [24] and DPJ [12, 13] en-

force determinism at language level, but require rewrit-

ing, rather than just parallelizing, existing serial code.

Race detectors [25, 43] detect low-level heisenbugs in

nondeterministic parallel programs, but may miss higher-

level heisenbugs [3]. Language extensions can dynami-

cally check determinism assertions [16, 49], but heisen-

bugs may persist if the programmer omits an assertion.

Early parallel Fortran systems [7, 51], release con-

sistent DSM [2, 17], transactional memory [33, 52] and

OS APIs [48], replicated file systems [53, 55], and dis-

tributed version control [29] all foreshadow Determina-

tor’s private workspace programming model. None of

these precedents create a deterministic application pro-

gramming model, however, as is Determinator’s goal.

Deterministic schedulers such as DMP [8, 21] and

Grace [10] instrument an application to schedule inter-

thread interactions on a repeatable, artificial time sched-

ule. DMP isolates threads via code rewriting, while

Grace uses virtual memory as in Determinator. De-

veloped simultaneously with Determinator, dOS [9] in-

corporates a deterministic scheduler into the Linux ker-

nel, preserving Linux’s existing programming model and

API. This approach provides greater backward compati-

bility than Determinator’s clean-slate design, but makes

the Linux programming model no more semantically de-

terministic than before. Determinator offers new thread

and process models redesigned to eliminate conventional

data races, while supporting deterministic scheduling in

user space for backward compatibility.

Many techniques are available to log and replay non-

deterministic events in parallel applications [39, 46, 56].

SMP-ReVirt can log and replay a multiprocessor virtual

machine [23], supporting uses such as system-wide in-

trusion analysis [22,34] and replay debugging [37]. Log-

ging a parallel system’s nondeterministic events is costly

in performance and storage space, however, and usu-

ally infeasible for “normal-case” execution. Determi-

nator demonstrates the feasibility of providing system-

enforced determinism for normal-case execution, with-

out internal event logging, while maintaining perfor-

mance comparable with current systems at least for

coarse-grained parallel applications.

Determinator’s kernel design owes much to microker-

nels such as L3 [41]. An interesting contrast is with

the Exokernel approach [26], which is incompatible with

Determinator’s. System-enforced determinism requires

hiding nondeterministic kernel state from applications,

such as the physical addresses of virtual memory pages,

whereas exokernels deliberately expose this state.

8 Conclusion

While Determinator is only a proof-of-concept, it shows

that operating systems can offer a pervasively and nat-

urally deterministic application environment, avoiding

the introduction of data races in shared memory and file

system access, thread and process synchronization, and

throughout the API. Our experiments suggest that such

an environment can efficiently run coarse-grained paral-

lel applications, both on a single multicore machine and

across a cluster, though supporting fine-grained paral-

lelism efficiently may require hardware evolution.

Acknowledgments

We thank Zhong Shao, Ramakrishna Gummadi, Frans

Kaashoek, Nickolai Zeldovich, Sam King, and the OSDI

reviewers for their valuable feedback. We also thank

NSF for their support under grant CNS-1017206.

References

[1] PA-RISC 1.1 Architecture and Instruction Set Reference

Manual. Hewlett-Packard, Feb. 1994.

[2] C. Amza et al. TreadMarks: Shared memory computing

on networks of workstations. IEEE Computer, 29(2):18–

28, Feb. 1996.

[3] C. Artho, K. Havelund, and A. Biere. High-level data

races. In VVEIS, pages 82–93, Apr. 2003.

[4] A. Aviram et al. Determinating timing channels in com-

pute clouds. In CCSW, Oct. 2010.

[5] A. Aviram and B. Ford. Deterministic consistency, Feb.

2010. http://arxiv.org/abs/0912.0926.

[6] F. Bellard. QEMU, a fast and portable dynamic translator,

Apr. 2005.

[7] M. Beltrametti, K. Bobey, and J. R. Zorbas. The con-

trol mechanism for the Myrias parallel computer system.

Computer Architecture News, 16(4):21–30, Sept. 1988.

[8] T. Bergan et al. CoreDet: A compiler and runtime system

for deterministic multithreaded execution. In 15th ASP-

LOS, Mar. 2010.

[9] T. Bergan et al. Deterministic process groups in dOS. In

9th OSDI, Oct. 2010.

[10] E. D. Berger et al. Grace: Safe multithreaded program-

ming for C/C++. In OOPSLA, Oct. 2009.

[11] C. Bienia et al. The PARSEC benchmark suite: Charac-

terization and architectural implications. In 17th PACT,

October 2008.

[12] R. L. Bocchino et al. Parallel programming must be de-

terministic by default. In HotPar. Mar. 2009.

[13] R. L. Bocchino et al. A type and effect system for deter-

ministic parallel Java. In OOPSLA, Oct. 2009.

[14] S. Boyd-Wickizer et al. Corey: An operating system for

many cores. In 8th OSDI, Dec. 2008.



[15] T. C. Bressoud and F. B. Schneider. Hypervisor-based

fault-tolerance. TOCS, 14(1):80–107, Feb. 1996.

[16] J. Burnim and K. Sen. Asserting and checking determin-

ism for multithreaded programs. In FSE, Aug. 2009.

[17] J. B. Carter, J. K. Bennett, and W. Zwaenepoel. Imple-

mentation and performance of Munin. In 13th SOSP, Oct.

1991.

[18] M. Castro and B. Liskov. Practical byzantine fault toler-

ance. In 3rd OSDI, pages 173–186, Feb. 1999.

[19] J.-D. Choi and H. Srinivasan. Deterministic replay of Java

multithreaded applications. In SPDT ’98: Proceedings of

the SIGMETRICS symposium on Parallel and distributed

tools, pages 48–59. 1998.

[20] H. Cui, J. Wu, and J. Yang. Stable deterministic multi-

threading through schedule memoization. In 9th OSDI,

Oct. 2010.

[21] J. Devietti et al. DMP: Deterministic shared memory mul-

tiprocessing. In 14th ASPLOS, Mar. 2009.

[22] G. W. Dunlap et al. ReVirt: Enabling intrusion analysis

through virtual-machine logging and replay. In 5th OSDI,

Dec. 2002.

[23] G. W. Dunlap et al. Execution replay for multiprocessor

virtual machines. In VEE, Mar. 2008.

[24] S. A. Edwards, N. Vasudevan, and O. Tardieu. Program-

ming shared memory multiprocessors with determinis-

tic message-passing concurrency: Compiling SHIM to

Pthreads. In DATE, Mar. 2008.

[25] D. Engler and K. Ashcraft. RacerX: effective, static de-

tection of race conditions and deadlocks. In 19th SOSP,

Oct. 2003.

[26] D. R. Engler, M. F. Kaashoek, and J. O’Toole. Exokernel:

An operating system architecture for application-level re-

source management. In 15th SOSP, Dec. 1995.

[27] B. Ford et al. Microkernels meet recursive virtual ma-

chines. In 2nd OSDI, pages 137–151, 1996.

[28] K. Gharachorloo et al. Memory consistency and event

ordering in scalable shared-memory multiprocessors. In

17th ISCA, pages 15–26, May 1990.

[29] git: the fast version control system.

http://git-scm.com/.

[30] A. Haeberlen et al. Accountable virtual machines. In 9th

OSDI, Oct. 2010.

[31] A. Haeberlen, P. Kouznetsov, and P. Druschel. PeerRe-

view: Practical accountability for distributed systems. In

21st SOSP, Oct. 2007.

[32] R. H. Halstead, Jr. Multilisp: A language for concur-

rent symbolic computation. TOPLAS, 7(4):501–538, Oct.

1985.

[33] M. Herlihy and J. E. B. Moss. Transactional memory:

Architectural support for lock-free data structures. In 20th

ISCA, pages 289–300, May 1993.

[34] A. Joshi et al. Detecting past and present intrusions

through vulnerability-specific predicates. In 20th SOSP,

pages 91–104. 2005.

[35] F. Kaashoek et al. 6.828: Operating system engineering.

http://pdos.csail.mit.edu/6.828/.

[36] G. Kahn. The semantics of a simple language for paral-

lel programming. In Information Processing, pages 471–

475. 1974.

[37] S. T. King, G. W. Dunlap, and P. M. Chen. Debugging

operating systems with time-traveling virtual machines.

In USENIX, pages 1–15, Apr. 2005.

[38] L. Lamport. How to make a multiprocessor computer that

correctly executes multiprocess programs. IEEE Transac-

tions on Computers, 28(9):690–691, Sept. 1979.

[39] T. J. Leblanc and J. M. Mellor-Crummey. Debugging par-

allel programs with instant replay. IEEE Transactions on

Computers, C-36(4):471–482, Apr. 1987.

[40] E. Lee. The problem with threads. Computer, 39(5):33–

42, May 2006.

[41] J. Liedtke. On micro-kernel construction. In 15th SOSP,

1995.

[42] S. Lu, S. Park, E. Seo, and Y. Zhou. Learning from mis-

takes — a comprehensive study on real world concur-

rency bug characteristics. In 13th ASPLOS, pages 329–

339, Mar. 2008.

[43] M. Musuvathi et al. Finding and reproducing Heisenbugs

in concurrent programs. In 8th OSDI. 2008.

[44] M. Olszewski, J. Ansel, and S. Amarasinghe. Kendo: Ef-

ficient deterministic multithreading in software. In 14th

ASPLOS, Mar. 2009.

[45] OpenMP Architecture Review Board. OpenMP applica-

tion program interface version 3.0, May 2008.

[46] D. Z. Pan and M. A. Linton. Supporting reverse execution

of parallel programs. In PADD ’88, pages 124–129. 1988.

[47] D. S. Parker, Jr. et al. Detection of mutual inconsistency

in distributed systems. IEEE Transactions on Software

Engineering, SE-9(3), May 1983.

[48] D. E. Porter et al. Operating system transactions. In 22nd

SOSP, Oct. 2009.

[49] C. Sadowski, S. N. Freund, and C. Flanagan. Single-

Track: A dynamic determinism checker for multithreaded

programs. In 18th ESOP, Mar. 2009.

[50] F. B. Schneider. Implementing fault-tolerant services us-

ing the state machine approach: A tutorial. Computing

Surveys, 22(4):299–319, Dec. 1990.

[51] J. T. Schwartz. The burroughs FMP machine, Jan. 1980.

Ultracomputer Note #5.

[52] N. Shavit and D. Touitou. Software transactional memory.

Distributed Computing, 10(2):99–116, Feb. 1997.

[53] D. B. Terry et al. Managing update conflicts in Bayou,

a weakly connected replicated storage system. In 15th

SOSP, 1995.

[54] R. von Behren et al. Capriccio: Scalable threads for in-

ternet services. In SOSP’03.

[55] B. Walker et al. The LOCUS distributed operating sys-

tem. OSR, 17(5), Oct. 1983.

[56] L. Wittie. The Bugnet distributed debugging system. In

Making Distributed Systems Work, Sept. 1986.

[57] S. C. Woo et al. The SPLASH-2 programs: Characteri-

zation and methodological considerations. In 22nd ISCA,

pages 24–36, June 1995.


