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ABSTRACT

Message-based communication offers the potential benefits
of providing stronger specification and cleaner separation
between components. Compared with shared-memory in-
teractions, message passing has the potential disadvantages
of more expensive data exchange (no direct sharing) and
more complicated programming.

In this paper we report on the language, verification, and
run-time system features that make messages practical as
the sole means of communication between processes in the
Singularity operating system. We show that using advanced
programming language and verification techniques, it is pos-
sible to provide and enforce strong system-wide invariants
that enable efficient communication and low-overhead soft-
ware-based process isolation. Furthermore, specifications on
communication channels help in detecting programmer mis-
takes early—namely at compile-time—thereby reducing the
difficulty of the message-based programming model.

The paper describes our communication invariants, the
language and verification features that support them, as well
as implementation details of the infrastructure. A number
of benchmarks show the competitiveness of this approach.
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1. INTRODUCTION
Process isolation and inter-process communication are among
the central services that operating systems provide. Isola-
tion guarantees that a process cannot access or corrupt data
or code of another process. In addition, isolation provides
clear boundaries for shutting down a process and reclaim-
ing its recources without cooperation from other processes.
Inter-process communication allows processes to exchange
data and signal events.

There is a tension between isolation and communication,
in that the more isolated processes are, the more compli-
cated and potentially expensive it may be for them to com-
municate. For example, if processes are allowed to share
memory (low isolation), they can communicate in appar-
ently simple ways just by writing and reading memory. If,
on the other hand, processes cannot share memory, the op-
erating system must provide some form of communication
channels, which typically allow transmission of streams of
scalar values.

In deference to performance considerations, these trade-
offs are often resolved in the direction of shared memory,
even going as far as to co-locate components within the same
process. Examples of such co-location are device drivers,
browser extensions, and web service plug-ins. Eschewing
process isolation for such components makes it difficult to
provide failure isolation and clear resource management.
When one component fails, it leaves shared memory in in-
consistent or corrupted states that may render the remaining
components inoperable.

At the other end of the spectrum, truly isolated processes
communicating solely via messages have the advantage of
independent failure, but at the costs of 1) a more compli-
cated programming model (message passing or RPC) and 2)
the overhead of copying data.

This paper describes how we overcome these costs in the
Singularity OS [22, 23] through the use of strong system-
wide invariants that are enforced by the compiler and run-
time system. The main features of the communication in-
frastructure are:

• Data is exchanged over bidirectional channels, where
each channel consists of exactly two endpoints (called
Imp and Exp). At any point in time, each channel
endpoint is owned by a single thread.

• Buffers and other memory data structures can be trans-
ferred by pointer, rather than by copying. These trans-
fers pass ownership of blocks of memory. Such trans-



fers do not permit sharing between the sender and re-
ceiver since static verification prevents a sender from
accessing memory it no longer owns.

• Channel communication is governed by statically ver-
ified channel contracts that describe messages, mes-
sage argument types, and valid message interaction
sequences as finite state machines similar to session
types [17, 21].

• Channel endpoints can be sent in messages over chan-
nels. Thus, the communication network can evolve
dynamically.

• Sending and receiving on a channel requires no mem-
ory allocation.

• Sends are non-blocking and non-failing.

The next section provides context for the present work by
describing Singularity. Section 2 presents channels and how
programs use them. Section 3 describes the programming
model allowing static verification of resource management.
The implementation of channels is described in Section 4
along with some extensions in Section 5. Section 6 discusses
benchmarks and experience with the system. Finally, Sec-
tions 7 and 8 discuss related and future work.

1.1 Singularity
The Singularity project combines the expertise of researchers
in operating systems, programming language and verifica-
tion, and advanced compiler and optimization technology
to explore novel approaches in architecting operating sys-
tems, services, and applications so as to guarantee a higher
level of dependability without undue cost.

The increased reliability we are seeking stems in good part
from the following design and architectural decisions:

1. All code, with the exception of the hardware abstrac-
tion layer and parts of the trusted runtime, is writ-
ten in an extension of C# called Sing#, a type-safe,
object-oriented, and garbage collected language. Sing#
provides support for message-based communication.
Using a type and memory safe language gurantees that
memory cannot be corrupted and that all failures of
the code are explicit and manifest as high-level ex-
ceptions (possibly uncaught), not random crashes or
failures.

2. The operating system itself is structured as a micro-
kernel in which most services and drivers are separate
processes communicating with other processes and the
kernel solely via channels. Processes and the kernel
do not share memory. This promotion of smaller inde-
pendent components allows for independent failure of
smaller parts of the system. Failure can be detected
reliably and compensating actions can be taken, for
example restarting of services.

Implemented naively, these design decisions lead to an inef-
ficient system due to the high frequency of process boundary
crossings implied by the large number of small isolated com-
ponents, the cost of copying message data from one process
to another, and the overhead imposed by a high-level lan-
guage and garbage collection. Singularity avoids these costs
using the following techniques:

1. Isolation among processes and the kernel is achieved
via the statically verified type safety of the program-
ming language rather than hardware memory protec-
tion. Software based isolation allows all code to run
in the highest privileged processor mode and in a sin-
gle virtual address space, thereby removing the cost
of changing VM protections and processor mode on
process transitions.

2. The efficient communication technique described in
this paper enables the exchange of data over channels
without copying. Such an approach is hard to make
safe in traditional systems not based on type safe lan-
guages. In our setting, we obtain safety via compile-
time verification guaranteeing that threads only access
memory they own. The static verification of this prop-
erty is vital to the integrity of process isolation.

3. All code of a processes is known on startup (no dy-
namic code loading), enabling the compiler to perform
a whole program analysis on each process during com-
pilation to machine code. Global program optimiza-
tions can eliminate many of the costs incurred with
high-level object-oriented languages, such as for in-
stance crossing many levels of abstraction and object-
oriented dispatch. Additionally, since each process has
its own runtime system and garbage collector, pro-
cesses do not have to agree on common object layouts
and GC algorithms. Each process can be compiled
with the object layout (including the removal of unsed
fields) and GC algorithm best suited to its needs.

The Singularity operating system prototype consists of
roughly 300K lines of commented Sing# code. It runs on
x86 hardware and contains a number of drivers for network
cards, IDE disks, sound and keyboard devices, a TCP/IP
network stack, and a file system. All drivers and services are
separate processes communicating via channels. Thus, even
network packets and disk blocks are transmitted between
drivers, the network stack, and the file systems as messages.

2. CHANNELS
A channel is a bi-directional message conduit consisting of
exactly two endpoints, called the channel peers. A channel is
loss-less, messages are delivered in order, and they can only
be retrieved in the order they were sent. Semantically, each
endpoint has a receive queue, and sending on an endpoint
enqueues a message on the peer’s queue.

Channels are described by channel contracts (Section 2.3).
The two ends of a channel are not symmetric. We call one
endpoint the importing end (Imp) and the other the export-
ing end (Exp). They are distinguished at the type level with
types C.Imp and C.Exp respectively, where C is the channel
contract governing the interaction. The next sections de-
scribe in more detail what data is exchanged through chan-
nels, how channel contracts govern the conversation on a
channel, and what static properties are enforced by verifica-
tion.

2.1 The Exchange Heap
Processes in Singularity maintain independent heaps and
share no memory with each other. If we are to pass data
from one process to another, that data cannot come from
a process’ private heap. Instead, we use a separate heap,
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Figure 1: Process heaps and the exchange heap

called the exchange heap, to hold data that can move be-
tween processes. Figure 1 shows how process heaps and the
exchange heap relate. Processes can contain pointers into
their own heap and into the exchange heap. The exchange
heap only contains pointers into the exchange heap itself.
Although all processes can hold pointers into the exchange
heap, every block of memory in the exchange heap is owned
(accessible) by at most one process at any time during the
execution of the system. Note that it is possible for processes
to have dangling pointers into the exchange heap (pointers
to blocks that the process does not own), but the static
verification will prevent the process from accessing memory
through dangling references.

To make the static verification of the single owner prop-
erty of blocks in the exhange heap tractable, we actually en-
force a stronger property, namely that each block is owned
by at most one thread at any time. The fact that each block
in the exchange heap is accessible by a single thread at any
time also provides a useful mutual exclusion guarantee.

2.2 Exchangeable Types
Exchangeable types encompass the type of all values that
can be sent from one process to another. They consist
of scalars, rep structs (structs of exchangeable types), and
pointers to exchangeable types. Pointers can either point to
a single exchangeable value or to a vector of values. Below,
we explain in more detail how these types are declared.

rep struct NetworkPacket {
byte [] in ExHeap data;
int bytesUsed;

}

NetworkPacket∗ in ExHeap packet;

The code above declares a rep struct consisting of two fields:
data holds a pointer to a vector of bytes in the exchange heap
and bytesUsed is an integer. The type of variable packet spec-
ifies that it holds a pointer into the exchange heap pointing
to a NetworkPacket struct.

Allocation in the exchange heap takes the following forms:

byte [] in ExHeap vec = new[ExHeap] byte[512];

NetworkPacket∗ in ExHeap pkt = new[ExHeap] NetworkPacket(...);

The syntax for new is retained from C#, but the ExHeap

modifier makes it clear that the allocation is to be perfomed
in the exchange heap. Blocks in the exchangeable heap are
deleted explicitly via the statement delete ptr, modeled after

C++. Section 3 shows why this cannot lead to dangling
pointer accesses or leaks.

Endpoints themselves are represented as pointers to rep
structs in the exchangeable heap so that they can be ex-
changed via messages as well. Section 4 describes in more
detail how endpoints are implemented.

2.3 Channel Contracts
Channel contracts in Sing# consist of message declarations
and a set of named protocol states. Message declarations
state the number and types of arguments for each message
and an optional message direction. Each state specifies the
possible message sequences leading to other states in the
state machine.

We explain channel contracts via a simplified contract for
network device drivers.

contract NicDevice {
out message DeviceInfo (...);
in message RegisterForEvents(NicEvents.Exp:READY evchan);
in message SetParameters (...);
out message InvalidParameters (...);
out message Success();
in message StartIO();
in message ConfigureIO();
in message PacketForReceive(byte[] in ExHeap pkt);
out message BadPacketSize(byte[] in ExHeap pkt, int mtu);
in message GetReceivedPacket();
out message ReceivedPacket(NetworkPacket∗ in ExHeap pkt);
out message NoPacket();

state START: one {
DeviceInfo ! → IO CONFIGURE BEGIN;

}

state IO CONFIGURE BEGIN: one {
RegisterForEvents ? →

SetParameters? → IO CONFIGURE ACK;
}

state IO CONFIGURE ACK: one {
InvalidParameters ! → IO CONFIGURE BEGIN;
Success ! → IO CONFIGURED;

}

state IO CONFIGURED: one {
StartIO? → IO RUNNING;
ConfigureIO? → IO CONFIGURE BEGIN;

}

state IO RUNNING: one {
PacketForReceive? → (Success ! or BadPacketSize!)

→ IO RUNNING;
GetReceivedPacket? → (ReceivedPacket! or NoPacket!)

→ IO RUNNING;
...

}
}

A channel contract is written from the exporting view point
and starts in the first listed state. Message sequences consist
of a message tag and a message direction sign (! for Exp to
Imp), and (? for Imp to Exp). The message direction signs
are not necessary if message declarations already contain
a direction ( in ,out), but the signs make the state machine
more human-readable.

In our example, the first state is START and the net-
work device driver starts the conversation by sending the
client (probably the netstack) information about the device
via message DeviceInfo. After that the conversation is in
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the IO CONFIGURE BEGIN state, where the client must send
message RegisterForEvents to register another channel for re-
ceiving events and set various parameters in order to get
the conversation into the IO CONFIGURED state. If some-
thing goes wrong during the parameter setting, the driver
can force the client to start the configuration again by send-
ing message InvalidParameters . Once the conversation is in
the IO CONFIGURED state, the client can either start IO
(by sending StartIO), or reconfigure the driver (ConfigureIO).
If IO is started, the conversation is in state IO RUNNING.
In state IO RUNNING, the client provides the driver with
packet buffers to be used for incoming packets (message
PacketForReceive). The driver may respond with BadPacketSize,
returning the buffer and indicating the size expected. This
way, the client can provide the driver with a number of
buffers for incoming packets. The client can ask for packets
with received data through message GetReceivedPacket and
the driver either returns such a packet via ReceivedPacket or
states that there are no more packets with data (NoPacket).
Similar message sequences are present for transmitting pack-
ets, but we elide them in the example.

From the channel contract it appears that the client polls
the driver to retrieve packets. However, we haven’t ex-
plained the argument of message RegisterForEvents yet. The
argument of type NicEvents.Exp:READY describes an Exp chan-
nel endpoint of contract NicEvents in state READY. This end-
point argument establishes a second channel between the
client and the network driver over which the driver notifies
the client of important events (such as the beginning of a
burst of packet arrivals). The client retrieves packets when
it is ready through the NicDevice channel. Figure 2 shows the
configuration of channels between the client and the network
driver. The NicEvents contract is shown below.

contract NicEvents {
enum NicEventType {

NoEvent, ReceiveEvent, TransmitEvent, LinkEvent
}

out message NicEvent(NicEventType eventType);
in message AckEvent();

state READY: one {
NicEvent! → AckEvent? →READY;

}
}

So far we have seen how channel contracts specify messages
and a finite state machine describing the protocol between
the Imp and Exp endpoints of the channel. The next section
describes how programs use channels.

2.4 Channel Operations
To create a new channel supporting contract C, the following

rep struct Imp {
void SendAckEvent();
void RecvNicEvent(out NicEventType eventType);

}

rep struct Exp {
void SendNicEvent(NicEventType eventType);
void RecvAckEvent();

}

Listing 1: Methods on endpoints

code is used:

C.Imp imp;
C.Exp exp;
C.NewChannel(out imp, out exp);

Two variables imp and exp of the corresponding endpoint
types are declared. These variables are then initialized via
a call to C.NewChannel which creates the new channel and
returns the endpoints by initializing the out parameters.1

Endpoint types contain method definitions for sending
and receiving messages described in the contract. For ex-
ample, the endpoints of the NicEvents contract contain the
method declarations shown in Listing 1. The semantics of
these methods is as follows. Send methods never block and
only fail if the endpoint is in a state in the conversation
where the message cannot be sent. Receive operations check
that the expected message is at the head of the queue and
if so, return the associated data. If the queue is empty, re-
ceives block until a message has arrived. If the message at
the head of the queue is not the expected message or the
channel is closed by the peer, the receive fails.

As is apparent from these declarations, there is no need
to allocate a message object and fill it with the message
data. Only the message arguments are actually transmitted
along with a tag identifying the message. The sender and
receiver only manipulate the message arguments, never an
entire message. This property is desirable, for it avoids the
possibility of failure on sends. Furthermore, as we discuss
in Section 2.6, it simplifies the implementation.

Direct calls to the receive methods are not useful in gen-
eral, since a program has to be ready to receive one of a num-
ber of possible messages. Sing# provides the switch receive

statement for this purpose. Here’s an example of using the
NicDevice channel endpoint in the server:

NicDevice.Exp:IO RUNNING nicClient ...

switch receive {
case nicClient .PacketForReceive(buf ):

// add buf to the available buffers , reply
...

case nicClient .GetReceivedPacket():
// send back a buffer with packet data if available
...

case nicClient .ChannelClosed():
// client closed channel
...

}

1In C# an out parameter is like a C++ by-ref parameter,
but with the guarantee that it will be initialized on all nor-
mal code paths.



In general, each case can consist of a conjunction of patterns
of the form

pattern−conjunction :− pattern [ && pattern−conjunction ]
| unsatisfiable

pattern :− var .M(id ,...)

A pattern describes a message M to be received on an end-
point in variable var and a sequence of identifiers id ,... that
will be bound to the message arguments in the case body.

A pattern is satisifed if the expected message is at the
head of the endpoint’s receive queue. The execution of a
switch receive statement proceeds as follows. Each case is
examined in order and the first case for which all pattern
conjuncts are satisfied executes. The messages of the match-
ing case are removed from the corresponding endpoints and
the message arguments are bound to the identifiers before
execution continues with the case block. Blocks must end
in a control transfer, typically a break.

If no case is satisfied, but some cases could be satisfied
if more messages arrive, the switch receive will block until
the arrival of new messages. If on the other hand, none of
the cases could be satisfied by more message arrivals, the
switch receive continues with the unsatisfiable block.

2.5 Channel Closure
Channels are the only ties between processes and thus act
as the unique failure points between them. We adopted the
design that channel endpoints can be closed at any time,
either because a process explicitly closes an endpoint via
delete ep, or because the process terminates (normally or
abruptly) and the kernel reclaims the endpoint. Each end-
point is closed independently but a channel’s memory is re-
claimed only when both ends have been closed.

This independent closure of endpoints makes it easier to
provide a clean failure semantics and a single point where
programs determine if a channel peer has closed its endpoint.
As we mentioned above, sends to endpoints never fail if the
endpoint is in the correct state in the conversation, even if
the peer endpoint is already closed. However, on receives a
special message ChannelClosed appears in the receive queue
once all preceeding messages have been received and the
peer has closed its end. Once an endpoint has been closed,
the compiler verifies that no more sends or receives can be
performed on that endpoint. The ChannelClosed messages are
implicit in the channel contracts.

2.6 Channel Properties
A main requirement of the channel implementation for Sin-
gularity is that sends and receives perform no memory al-
location. The requirement has three motivations: 1) since
channels are ubiquitous and even low-level parts of the ker-
nels use channels, we must be able to send and receive in
out-of-memory situations, and 2) if memory allocation oc-
curred on sends, programs would have to handle out of mem-
ory situations at each send operation, which is onerous, and
3) make message transfers as efficient as possible.

In order to achieve this no-allocation semantics of chan-
nel operations, we enforce a finiteness property on the queue
size of each channel. The rule we have adopted, and which is
enforced by Sing#, is that each cycle in the state transitions
of a contract C contains at least one receive and one send
action. This simple rule guarantees that no end can send
an unbounded amount of data without having to wait for a

message. As we will describe in Section 4, this rule allows us
to layout all necessary buffers in the endpoints themselves
and pre-allocate them as the endpoints are allocated. Al-
though the rule seems restrictive, we have not yet seen a
need to relax this rule in practice.

The second property enforced on channels is that they
transfer only values of exchangeable types. Allowing a refer-
ence to an object in the GC’ed heap to be transferred would
violate the property that no processes contain pointers into
any other processes heap. Thus, enforcing this property
statically is vital to the integrity of processes.

The third and final send-state property concerns end-
points transferred in messages. Such endpoints must be
in a state of the conversation where the next operation is
a send on the transferred endpoint, rather than a receive.
This property is motivated by implementation considera-
tions. As we will discuss in Section 4, each block in the
exchange heap (thus each endpoint) contains a header indi-
cating which process owns it at the moment. In order for
send operations to update this information correctly, one has
to avoid the following scenario: process A sends endpoint e

to process B. Before it has transferred e’s ownership to B,
process C, holding the peer f of e tries to send a block m

on f . C finds that the peer is owned by A. After that, A
transfers e to B, but C still thinks it needs to make A the
owner of m, whereas B should be the owner.

This scenario is essentially a race condition that could be
attacked using various locking schemes. But such locking
would involve multiple channels, is likely to cause contention
and is difficult to implement without deadlocks. The send-
state property rules out this race statically and allows for a
simple lock-free implementation of transfers.

3. RESOURCE VERIFICATION
One of the goals for the Singularity project is to write code in
a high-level garbage-collected language, thereby ruling out
errors such as referencing memory through dangling point-
ers. However, garbage collection is local to a process and
ownership of memory blocks transferred through channels
requires the reintroduction of explicit memory management
into the language.

Consider the operation ep.SendPacketForReceive(ptr) from
the NicDevice contract. The ptr argument points to a vector
in the exchange heap (type byte [] in ExHeap). After the send
operation, the sending process can no longer access this byte
vector. From the sender’s perspective, sending the vector is
no different than calling delete on the vector. In both cases,
the value of ptr constitutes a dangling reference after these
operations.

Avoiding errors caused by manual memory management
in C/C++ programs is a long standing problem. Thus, it
would appear that adopting an ownership transfer model
for message data would set us back in our quest for more
reliable systems.

Fortunately, the programming language community has
made important progress in statically verifying explicit re-
source management in restricted contexts [10, 12, 32]. The
rules described in this section for handling blocks in the
exchange heap allow a compiler to statically verify that 1)
processes only access memory they own, 2) processes never
leak a block of memory, and 3) send and receive operations
on channels are never applied in the wrong protocol state.



3.1 Tracked Data
In order to make the static verification of block ownership
tractable, we segregate data on the GC heap from data on
the exchange heap. This segregation is explicit at the type
level, where pointers into the exchange heap always have
the form R∗ in ExHeap or R[] in ExHeap. Any other type is
either a scalar or must live in the GC heap. We use the term
tracked pointer to refer to pointers (including vectors) to the
exchange heap because the verification tracks ownership of
such pointers precisely at compile time. Pointers into the
GC’ed heap need not be tracked generally, since the lack of
explicit freeing and presence of garbage collection guarantee
memory safety for those objects.

In the following sections, we first present a very restricted,
but simple method of tracking ownership, and then gradu-
ally relax it to allow more programming idioms to be ex-
pressed and verified.

3.1.1 Basic tracking
The simplest form of ownership tracking restricts tracked
pointers to appear only on the stack (i.e., as method pa-
rameters, return values, and local variables). The com-
piler simply rejects tracked pointer types in any other po-
sition. With these restrictions, GC’ed objects never point
to tracked blocks, and tracked blocks themselves only con-
tain scalars. Now it is fairly easy to classify which pointers
are owned within the context of a method by considering
how ownership is acquired and is lost. There are three ways
ownership of a tracked block is acquired by a method:

1. A pointer to the block is passed in as a parameter

2. A pointer to the block is the result of a method call

3. A pointer to the block is the result of new operation

Similarly, there are three ways a method can lose ownership
of a tracked block:

1. A pointer to the block is passed as an actual parameter
in a call

2. A pointer to the block is a result of the method

3. A pointer to the block is the argument to delete

Let’s look more closely at how ownership of blocks is trans-
ferred from a caller to a callee. There are two common cases
when passing a tracked pointer to a method:

• The ownership of the block pointed to by the parame-
ter is passed to the callee temporarily, i.e., upon re-
turn, ownership reverts back to the caller. In the
classification above, we consider that as two transfers:
from caller to callee as a parameter, and then as an
implicit result from callee to caller upon return. We
consider this the default case for method parameters
(including this).

• The ownership of the block pointed to by the parame-
ter is passed to the callee permanently (e.g., arguments
to Send methods). We say that ownership of such pa-
rameters is claimed and use the annotation [Claims] on
such parameters.

With these insights, it is simple to track the status of each
pointer value at each program point of the method, via a
data-flow analysis, to determine whether a pointer is defi-
nitely owned. A complication is that the analysis must keep
track of local aliases. This issue can be dealt with using alias
types [34, 15] and we won’t comment on it further. Below
is a well-typed example.

1 static void Main() {
2 int [] in ExHeap vec = GetVector();
3 for ( int i=0; i<vec.Length; i++) { vec[i] = i ; }
4 Reverse(vec);
5 Consume(vec);
6 }
7

8 static int [] in ExHeap GetVector() {
9 int [] in ExHeap vec = new[ExHeap] int[512];

10 return vec;
11 }
12

13 static void Reverse( int [] in ExHeap vec) {
14 for ( int i=0; i<(vec.Length+1)/2; i++) {
15 int peer = vec.Length−1−i;
16 int tmp = vec[i ];
17 vec[ i ] = vec[peer ];
18 vec[peer] = tmp;
19 }
20 }
21

22 static void Consume([Claims] int [] in ExHeap vec) {
23 delete vec;
24 }

Let’s consider the ownership information inferred by the ver-
ification at each program point of the above program. At
line 1 no blocks are owned since Main has no parameters. Af-
ter line 2, the method owns the block pointed to by vec (case
2 of acquiring ownership). On line 3, the checker can cor-
rectly verify that the method owns the vector being indexed.
At line 4, we check that the method owns the argument to
the call, since that is what the method Reverse assumes of its
parameter. This check passes. After the call to Reverse, the
method still owns the block pointed to by vec, since Reverse

only took temporary ownership of its parameter. Thus at
line 5, we can verify that the method owns the argument
to Consume. Since the parameter of Consume is claimed, the
method does not own any more blocks at line 6. We have
reached the return point of the method without any owned
blocks and can thus conclude that Main does not leak any
blocks.

Method GetVector starts out without any owned blocks
(it has no tracked parameters). After line 9, the method
owns the newly allocated block pointed to by vec (case 3 of
acquiring ownership). At line 10, ownership of this block is
consumed by virtue of returning it from the method (case 2
of consumption). After that, no more blocks are owned and
thus no leaks are present.

The reasoning for Reverse is very simple. On entry, the
method owns the block pointed to by vec. We can thus
verify that all index operations act on an owned vector in
lines 14–18. At the return of Reverse, the method must still
own the block that was pointed to by vec on entry (since
it is obliged to return ownership to the caller). It does, so
ownership is reclaimed, leaving the method with no more
owned blocks and thus proving that Reverse does not leak.

Finally, on entry, method Consume owns the block pointed
to by parameter vec. The delete correctly operates on an



owned block at line 23 and consumes ownership (case 3 of
consuming ownership). The method ends without any out-
standing blocks and thus has no leaks.

To illustrate the kinds of errors that the verification will
detect, suppose that the Main method calls Consume and
Reverse in opposite order:

4 Consume(vec);
5 Reverse(vec);

The Sing# compiler emits the following error on that code.

(5,11): error CS6084: Accessing dangling reference

’Test.GetVector.returnValue’

The call to Consume consumes ownership of the block (since
the formal parameter is annotated with [Claims]) and thus at
the call to Reverse, the verification fails, since the argument
pointer does not point to an owned block.

As another potential error, suppose we omit line 23 which
deletes the vector in the Consume method. Sing# emits the
following error in that case.

(24,1): error CS6095: Leaking owned reference ’vec’

To complete our discussion of the basic ownership checking,
we need to address aliasing. If a method takes more than
one tracked pointer, the assumption is that the pointers are
distinct. The verification checks each call site to make sure
no aliasing of parameters arises.

Also, ref and out parameters are handled in the obvious
way. A ref parameter of tracked type requires ownership
of the contents of the ref parameter on entry and returns
ownership of the ptr in the ref parameter on exit of the
method. For out parameters, no ownership transfer occurs
on entry.

In practice, the verification needs to handle null specially,
since no memory and thus no ownership is associated with
such pointers. We use a “must-be-null” analysis before check-
ing ownership in order to handle idioms such as:

1 void Consume([Claims] T∗ in ExHeap ptr) {
2 if ( ptr != null ) {
3 delete ptr ;
4 }
5 }

The analysis needs to know that ptr is null on the control
flow edge that skips the conditional block. This knowledge
lets us determine at the merge point after the conditional
(line 4) that no more resources are held.

3.1.2 Tracked pointers in the GC heap
The basic tracking is sufficient if all tracked pointers live on
the stack. However, there are situations, in which one needs
to escape the static checking of ownership or truly share
some endpoint or other block in the exchange heap among
multiple threads in the same process. To this end, Sing#
provides a predefined class TCell<T> that is a GC wrapper
for a tracked pointer. A TCell turns static verification of
memory management into dynamic checking. Its interface
is as follows:

class TCell<T> {
TCell ([Claims] T∗ in ExHeap ptr);
T∗ in ExHeap Acquire();
void Release ([Claims] T∗ in ExHeap ptr);

}

The semantics of a TCell is it can be either full (containing a
tracked pointer) or empty. On construction, a cell consumes
the argument pointer and thus starts out as full. An Acquire

operation blocks until the cell is full and then returns the
tracked pointer, leaving the cell empty. A Release blocks
until the cell is empty and then stores the argument pointer
in the cell, leaving it full. TCells can thus be used to pass
ownership of a tracked block from one thread to another
within the same process.

As mentioned above, static verification of memory man-
agement is turned into dynamic checking by a TCell. For ex-
ample, if a thread tries to acquire a cell twice and no other
thread ever releases into the cell, then the thread blocks for-
ever. Furthermore, TCells rely on the GC finalizer to delete

the contained block if the cell becomes unreachable.

3.1.3 Tracked structs
So far we only have pointers from the stack and special cells
into the exchange heap. But it is useful for pointers to link
from the exchange heap to other blocks in the exchange
heap as well. For example, the struct NetworkPacket used
in the NicDevice contract contains a byte vector in a field.
To verify code involving such fields we restrict how these
fields are accessed: to access fields of tracked structs, the
struct must be exposed using an expose statement as in the
following example.

1 void DoubleBufferSize(NetworkPacket∗ in ExHeap pkt) {
2 expose(pkt) {
3 byte [] in ExHeap old = pkt→data;
4 pkt→data = new[ExHeap] byte[old.Length∗2];
5 delete old ;
6 }
7 }

In order to check this construct, the verification must track
whether tracked structs are exposed or unexposed. An un-
exposed struct pointer satisfies the invariant that it owns
all memory blocks it points to. When the struct is ex-
posed, ownership of the pointed-to blocks is transferred to
the method context doing the expose. At the end of the
expose block, ownership of the current pointers in the fields
of the exposed struct is transferred from the method to the
struct.

Thus, in the example above, at line 2, the method owns
the block pointed to by pkt and it is unexposed. After line
2, the same block is now exposed and the method also owns
the block pointed to by pkt→data. After line 3, the method
still owns the same blocks, but old points to the same block
as pkt→data. After line 4, the method owns three blocks
pointed to by old, pkt, and pkt→data. After line 5, ownership
of old is consumed. At line 6, we unexpose the struct pointed
to by pkt which consumes the contained pointer pkt→data.
Thus, at line 7, the method owns only the block pointed to
by pkt, and its status is unexposed. Since ownerhips of this
block passes back to the caller at this point, we managed to
verify this method. If the delete statement were omitted, the
checker would complain that the old byte vector is leaking.

3.2 Vectors of tracked data
The final extension we present here is supporting vectors of
tracked data. The problem in this setting is that the verifier
cannot track the ownership status of an unbounded number
of elements in a vector. Thus, we restrict access to the vector
to one element at a time, requiring an expose of the vector



element in the same way as we exposed an entire struct.
Below is an example showing the manipulation of a vector
of network packets, using the previously defined method to
double the buffer in each packet.

void DoubleAll(NetworkPacket∗[] in ExHeap vec) {
for ( int i=0; i<vec.Length; i++) {

expose(&vec[i ]) {
DoubleBufferSize(vec[ i ]);

}
}

}

Note that expose always acts on the slot of the vector, not
the content of the slot. The invariant of a vector is that if
the vector has no exposed slot, all the contents of all slots
is owned. When exposing a slot, ownership of that slot’s
contents is transferred to the method, which can then act
on it. On exit of the expose block, the ownership of the slot’s
contents is transferred back to the vector in order to satisfy
its invariant.

3.2.1 Discussion
The expose blocks shown in the previous sections have no
impact on the generated code or the instructions executed
at runtime. The exposing and unexposing of vectors and
structs are only hints for the static analysis on how to prove
the code safe. All checking of ownership invariants is per-
formed statically at compile time. The only runtime opera-
tions in conjunction with ownership are acquires and releases
of TCells.

As mentioned earlier, channel endpoints are just point-
ers into the exchange heap and are thus tracked like other
blocks in the exchage heap. Additionally, the verifier stat-
ically tracks the protocol state of each endpoint. This is
again a relatively simple matter if we specify the protocol
state of each endpoint whenever a message acquires own-
ership of them. Thus, we require endpoint arguments and
results of methods to specify the protocol state of the end-
point. Similarly, message declarations must specify the state
of endpoints they transport and TCells specify the state of
the endpoints they encapsulate.

The verifier computes for each program point and each
owned endpoint the possible protocol states of the endpoint.
At Send calls, the verifier checks that the endpoint is in a
state where the message can be sent. At Select calls, the
verifier determines if the cases are exhaustive, i.e., whether
there is a case for every message combination on the end-
points.

In summary, the static tracking ensures the following system-
wide invariants:

• Each block in the exchange heap has at most one own-
ing thread at any point in time.

• Blocks in the exchange heap are only accessed by their
owner. (thus no access after free or transfer of owner-
ship)

• A block not owned by a thread is owned by a TCell

and thus effectively by the garbage collector’s finalizer
thread.

• The sequence of messages observed on channels corre-
spond to the channel contract.

ExHeap

P Q

C.Exp* peer;
WH waithandle;
int state;
int Tag0;
C.M Msg_M0;
C.N Msg_N0;

C.Imp* peer;
WH waithandle;
int state;
int Tag0;
C.E Msg_E0;
C.F Msg_F0;

imp exp

Figure 3: Channel representation in memory

4. IMPLEMENTATION
This section describes the runtime data and code represen-
tation for channels and switch receive statements.

4.1 Channel representation
Channel endpoints are represented as rep structs in the ex-
change heap. Each endpoint struct has a general part man-
aged by the kernel and a contract-specific part. The kernel
managed part contains a pointer to the channel peer, a spe-
cial waithandle for signalling message arrival, and a boolean
indicating whether this end of the channel has been closed.

A channel contract C is compiled into two rep structs C.Exp

and C.Imp. Besides the kernel managed part, these structs
contain a numeric field capturing the current protocol state
of the endpoint, tag fields, and message argument buffers.
Figure 3 shows a channel in memory.

The messages and protocol states of a channel (including
implicit intermediate states in message sequences) are as-
signed numeric values. Then we compute maps C QI Exp and
C QI Imp mapping protocol states to a queue index, thereby
capturing how many messages are (maximally) waiting to
be received at that protocol state. The queue index is com-
puted by examining the protocol state machine and noting
the maximal number of message receipts since the last send
in the state machine.

For each queue index i, the endpoint contains a tag field
Tagi. The tag fields describe whether messages are present in
the queue as follows: if a C.Exp endpoint is in protocol state
X and C QI Exp(X) = i, we can determine whether a message
has arrived on it by examining field Tagi. If the field is 0,
no message is ready. Otherwise, the field value indicates the
message tag that is present. Thus, if we are to send message
m in state X on endpoint C.Imp, the sending code uses the
queue index C QI Exp(X) = i for the peer endpoint, and then
stores the message tag for m in the peer’s Tagi field. After
storing the tag, the sender signals the waithandle on the peer.
The reasoning in the other direction is symmetric.

The message data is handled similarly to the message
tag. The compiler emits a struct type C.M for each mes-
sage m whose fields are the message arguments. For each
queue index i in an endpoint, if message m could be re-
ceived in a state mapping to i, we add a message buffer
field Msg Mi in the endpoint structure. Sending message
m now involves also storing the message arguments in the
peers Msg Mi field, prior to setting the message tag Tagi.
On multi-processors/cores, a memory barrier is needed af-



ter storing the message arguments and prior to setting the
message tag.

4.2 Channel teardown
As is apparent from Figure 3, channel endpoints are partially
shared, since the sender needs to access the peer endpoint
to store message tags and message arguments, as well as
to signal the waithandle. In fact, the cross-linked endpoint
structure forming a channel is the sole mechanism for trans-
fering information from one process to another.

In order to implement the desired failure semantics where
sends can occur as long as the sending endpoint is not closed,
we need to keep the channel data structure alive as long
as there is at least one of the two parties still using the
channel. We thus reference-count the endpoint structures.
The ref-count starts at 2 for both ends, since there are ex-
actly two references from the user processes, one to each
endpoint, and one reference from each endpoint to its peer.
The reference count never goes beyond two. When one side
deletes an endpoint, we decrement its reference count and
also that of its peer. When the reference count of an end-
point drops to 0, its memory and the associated waithandle

are reclaimed. This scheme makes has the advantage that
beyond the atomic decrement, no thread synchronization is
needed during sends/receives or tear-down.

4.3 Block accounting
Normally terminating processes are guaranteed to free all ex-
change heap memory owned by the process by virtue of the
static verification that accounts for every block manipulated
and thus prevents such blocks from leaking. However, a sys-
tem needs to be able to shutdown a process abruptly without
letting the process clean up. Thus, in order to reclaim the
blocks in the exchange heap that the process owned at the
moment of its abrupt demise, the system must be able to
find these blocks.

Our implementation uses a short header per block in the
exchange heap containing its size and the owning process id.
The size is used for vector operations in determining how
many elements are in the vector. The owning process id
is maintained by channel send operations as follows: When
sending on an endpoint e, we determine the owning pro-
cess pid of the peer f of e. Note that there is no race in
determining the receivers pid, since the invariant discussed
in Section 2.6 guarantees that an endpoint that is about
to receive cannot be sent itself and thus its owning process
cannot change. Once the receiver’s identity is known, the
sending thread changes the owning process id of all mes-
sage arguments recursively. This traversal code is generated
automatically by the compiler.

Additionally, the memory manager for exchange heap blocks
keeps a list of all used blocks. The list is traversed by a
background clean-up thread to reclaim blocks owned by non-
existant processes.

4.4 Switch receive
For each switch receive statement, the compiler generates a
static 2-dimensional integer array representing the message
patterns that make up the cases. The matrix has k rows and
n columns, where k is the number of cases in the switch, and
n is the number of distinct endpoints used overall the cases.
The matrix contains a non-zero entry in position (i, j), if the
ith case contains a pattern for message m on the jth end-

point. The entry’s value is the tag for message m. Each row
thus indicates which messages must be received on which
endpoints for that case to be enabled. Given this pattern
matrix, the compiler compiles the switch receive statement
into the following schematic code:

Endpoint∗[] endpoints = new Endpoint∗[]{ep1 ,..., epn};
int enabled case = Endpoint.Select(pattern , endpoints );
switch ( enabled case ) {

case 0:
// declare locals for bound message arguments
// receive messages for case 0 on endpoints
...
break;

case 1:
// declare locals for bound message arguments
// receive messages for case 1 on endpoints
...
break;

...
}

To make this more concrete, let’s see how the following ex-
ample is compiled:

switch receive {
case a.M(int x) && b.Q(char[] in ExHeap vec):

block0

case b.R(int y):
block1

case a.ChannelClosed():
block2

case b.ChannelClosed():
block3

}

The patterns mention 2 endpoints a and b. Assuming the
compiler numbers them in that order, the pattern matrix
for the switch is:

a b
case 0 M tag Q tag
case 1 0 R tag
case 2 -1 0
case 3 0 -1

The special ChannelClosed patterns are given tag -1. The code
generated is shown in Listing 2. On line 1, we construct
an array containing the endpoints involved in the pattern.2

Then we call a static method Select , passing the pattern ma-
trix and the endpoint array. This call will block until either
a case is satisfied, returning the case number, or until it de-
termines that none of the cases can be satisfied, returning -1.
Note that the RecvX calls on lines 7,8, and 13 will not block,
since the Select call will only return that case if the neces-
sary messages are present at the head of the corresponding
endpoints.

The implementation of Select is relatively simple. For
each row of the pattern matrix, it queries each endpoint for
which there is a non-null entry in the row for the status of
the endpoint. The endpoint returns either the tag of the first

2Our implementation avoids the allocation by reusing a
thread-local array after the first switch receive of a given
size.



1 Endpoint∗[] endpoints = new Endpoint∗[]{a,b};
2 int enabled case = Endpoint.Select(pattern , endpoints );
3 switch ( enabled case ) {
4 case 0:
5 int x;
6 char [] in ExHeap vec;
7 a.RecvM(out x);
8 b.RecvQ(out vec);
9 block0

10

11 case 1:
12 int y;
13 b.RecvR(out y);
14 block1
15

16 case 2:
17 block2
18

19 case 3:
20 block3
21

22 default :
23 throw new Exception(”Unsatisfiable switch receive ”);
24 }

Listing 2: Generated code for switch receive

message, or -1 if there is no message and the peer endpoint
is closed, or 0, if there is no message and the peer endpoint
is not closed. Given this information, Select can determine if
a case is satisfied and whether the case can still be satisfied
by the arrival of new messages.

If no case is satisfied, but some cases are still satisfiable in
the future, Select waits on the waithandles of all endpoints
involved in the switch. When woken due to a new message
arrival or channel closure, the patterns are scanned again.3

Note that the implementation uses no locking or other
synchronization beyond the signalling of new messages via
the waithandles. This lock-free implementation is again en-
abled by the global invariants provided by our ownership
model: only a single thread can use a given endpoint in a
switch receive at any time. Thus, we are guaranteed that
when Select determines a case is satisfiable, the state of
its endpoints won’t change until the thread enters the cor-
responding case and removes the messages at the head of
the endpoints involved. If multiple threads were to be able
to receive on a single endpoint, the implementation would
be much more involved, since it must atomically determine
which case is satisfied and dequeue the corresponding mes-
sages.

5. EXTENSIONS
In practice, we use a couple of extensions to the channel
mechanisms described so far. In this section, we briefly men-
tion them as well as other ongoing work.

5.1 Endpoint sets and maps
Threads often need to handle an apriori unknown number of
endpoints. This arises most frequently in services that have
numerous connections to clients. In order to handle these
situations, Sing# provides an endpoint set abstraction. An
endpoint set contains endpoints that are all of the same type
and in the same prototol state. Threads can create sets, add

3Only the pattern column of the endpoint that caused the
wakeup is scanned in practice.

proxyQ

Kiwi Barnowl

P proxyP Q

C C

NetStack

NIC

NetStack

NIC

Figure 4: Cross machine channel via TCP proxy

endpoints, and use these sets in switch receive statements to
wait for messages on any of the endpoint in a set. When an
endpoint has a matching message, the endpoint is removed
from the set and bound in the case branch.

Endpoint maps are similar to sets, but associate arbitrary
data with each endpoint in the set.

5.2 Channel contract hierarchies
Channel contracts can form hierarchies such that a contract
can extend another contract by adding more message se-
quences than the parent contract. In order for this to be
sound, restrictions must be in place for when such exten-
sions are allowed and how the corresponding types of end-
points can be cast to each other. A formal study of channel
contract inheritance is the topic of an upcoming paper.

5.3 Process local channels
The channel implementation described does not require the
two channel endpoints to be in different processes. The
channels work just as well between threads of the same pro-
cess. If such intra-process channels are declared as such,
they can support a wider range of exchangeable types, since
GC’ed objects could be safely transmitted over such chan-
nels.

5.4 Cross machine channels
The Singularity OS includes a TCP/IP stack and network
interface drivers. Thus, communicating with other machines
on the network is no different than on Unix or Windows. An
obvious question though is whether the strongly typed Sin-
gularity channels can be extended to cross machine bound-
aries. Although we haven’t implemented this feature, we
believe it to be straight-forward as depicted in Figure 4. A
process P on machine Kiwi wants to talk to a process Q on
machine Barnowl using channel contract C. From the con-
tract C we should be able to automatically produce proxy
processes proxyQ and proxyP that marshall and unmarshall
messages to and from the network and dynamically check the
protocol of incoming network messages. The clients P and
Q talk to the proxies over strongly typed channels, oblivi-
ous (up to latency) to the fact that they are communicating
remotely. The semantics of our channels poses no immedi-
ate problem due to the fact that sends never block and that
the channel failure is communicated only on receives. Thus,
when proxies determine that the TCP connection has failed,
they can just close the channel the their clients.

5.5 Running unverified code
To run on Singularity, applications must currently be ex-
pressible in verifiable MSIL. This requirement makes it im-



Cost (CPU Cycles)
Singularity Linux Windows

Process-kernel
call

78 324 445

Thread yield 401 900 763
2 thread wait-set
ping pong

2,156 2,390 3,554

2 thread message
ping pong

2,462 10,758 12,806

Table 1: Micro benchmark performance

practical to port existing software written in C++ or other
unverifiable languages. We are currently investigating the
combination of language-based safety with hardware pro-
tected address spaces in order to isolate unverified code from
verified code using hardware sandboxes.

6. EXPERIENCE
The channel implementation described in this paper has
been in use in Singularity for the last 8 months. The code
base relies on 43 different channel contracts with roughly
500 distinct messages, and 135 different protocol states.

Passing ownership of memory blocks and endpoints over
channels is used frequently. Among the 500 messages, 146
carry pointers into the exchange heap, and 42 messages carry
channel endpoints themselves. Thus, the ability to config-
ure the communication network dynamically by transferring
endpoints is quite important.

The static verification of ownership has so far delivered on
the promise of eliminating errors related to dangling pointer
accesses and leaks of exchange heap blocks. We use two
redundant verifiers checking the ownership: one running as
part of compilation of the source language to MSIL [1], and
a second verifier checking the MSIL. This redunancy helps
shake out errors in the verification itself that would allow
ownership errors to pass the compilation undetected.

One serious shortcoming of our current implementation is
that we do not check exceptional program paths. This short-
coming stems from the fact that we don’t have exception
specifications in our code base. Without exception specifi-
cations on methods, the analysis of exceptional paths would
lead to too many programs being rejected. We are actively
working on specifying exceptional behaviors and integrating
them with the ownership programming model and verifica-
tion.

6.1 Performance
This section contains micro benchmarks comparing the per-
formance of Singularity channel operations against other
systems. All systems ran on AMD Athlon 64 3000+ (1.8
GHz) on an NVIDIA nForce4 Ultra chipset and 1GB RAM.
We used Red Hat Fedora Core 4 (kernel version 2.6.11-
1.1369 FC4), and Windows XP (SP2). Singularity ran with
a concurrent mark-sweep collector in the kernel, a non-con-
current mark-sweep collector in processes (including drivers),
and a minimal round-robin scheduler.

Table 1 reports the cost of simple operations in Singularity
and two other systems. On the Linux system, the process-
kernel call was getpid(), on Windows, it was GetProces-
sId(), and on Singularity, it was ProcessService.GetCycles-
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Figure 5: Send-receive cost vs. buffer size

PerSecond(). All these calls operate on a readily available
data structure in the respective kernels. The Linux thread
test ran on user-space scheduled pthreads. Kernel sched-
uled threads performed significantly worse. The “wait-set
ping pong” test measured the cost of switching between two
threads in the same process through a synchronization ob-
ject. The “2 message ping pong” measured the cost of send-
ing a 1-byte message from one process to another and then
back to the original process. On Linux, we used sockets,
on Windows, we used a named pipe, and on Singularity, we
used a channel.

As the numbers show, Singularity is quite competitive
with systems that have been tuned for years. Particularly
encouraging are the message ping pong numbers on Singu-
larity as they show that the cost of using a channel between
distinct processes is only about 15% slower than the cost
of the wait-set ping pong on two threads of the same pro-
cess. Channels on Singularity outperform the mechanisms
available on other systems by factors of 4 to 5. These im-
provements don’t even factor in the ability to pass pointers
rather than copies of memory blocks.

Figure 5 shows the cost in cycles for sending and receiving
a block of memory ranging from 1 byte to 64K. As expected,
the cost on Singularity is constant around 1200 cycles. On
the other systems, the cost starts to increase around buffer
sizes of 1K. These measurements do not show the perfor-
mance improvements possible if buffers of page size or larger
(4K on x86) are remapped rather than copied. Such an
optimization would of course require another IPC interface
rather than sockets and named pipes.

7. RELATED WORK
There is a long history in the systems community of drawing
on programming languages and safety guarantees to make
systems more reliable, maintainable, and/or more perfor-
mant. For example, SOLO was written in concurrent Pas-
cal instead of assembly [19]. Early work around the Mesa
language focused on memory safety through garbage collec-
tion, type safety, and modularity as well as features such
as coroutines and recursion that would be burdensome to
implement without runtime and language support [18, 30,
35]. The SPIN micro-kernel used Modula-3 to grant appli-
cation specific extensions to run directly in the kernel to
optimize performance [7]. These systems had very weak iso-



lation guarantees between processes, usually sharing a single
heap managed by a single VM. In contrast, our processes are
strongly isolated and can be killed and reclaimed individu-
ally.

Many systems and languages support channel-based inter-
process communication. An early system using messages to
communicate between tasks is DEMOS [6] on the CRAY-1.
Channels (links in DEMOS) were unidirectional and could
be passed over other channels. Hardware protection and
copying was used to prevent inappropriate access and shar-
ing rather than compile-time checking.

Channels in programming languages are typically uni-
directional streams of uniform type, for example in the lan-
guage OCCAM [26]. Other examples of languages with
stream based communication types are CML [31], Newsqueak
[29], and Limbo [13]. However, in contrast to the present
work, none of the above cited work attempts to statically
verify that exchanged data blocks are unshared without the
need to copy memory.

Recent work on writing an operating system in OCCAM
[4] has extended the language to support mobile data, which
corresponds to what we call tracked data in this paper [5].
The main difference with the present work is that we have in-
tegrated mobile semantics into a main-stream OO-language
without compromising safety or aliasing. Furthermore, the
OCCAM channels are synchronous, uni-directional, and uni-
formly typed, whereas the channels described here are asyn-
chronous, bi-directional and governed by channel protocols.
Their reported message transfer times are extremely efficient
(∼ 80 cycles). The factor of 20 in increased performance over
our approach is achieved by exploiting further invariants
their system has over ours. The scheduling in their kernel is
purely cooperative and assumes a single processor, whereas
we assume a pre-emptive scheduler in a multicore/multi-cpu
environment. Furthermore, an OCCAM thread waits on a
single channel, whereas our threads can be blocked on any
number of wait conditions, which causes more accounting on
waking a thread. Our implementation also has to cooperate
with two garbage collectors, the process’ own, and the ker-
nel’s. On process-kernel boundaries, we push special stack
markers that allow the respective GC’s to avoid scanning
stack frames they don’t own. Finally, their implementation
uses the channel as the synchronization event itself, whereas
we currently use primitive events to implement the channel
synchronization. We believe that we can further improve
our channel performance by careful optimizations for the
common case.

On the systems side, much research has gone into tech-
niques to avoid copying of memory in the IO-system. For ex-
ample, IO-Lite [28], uses read-only buffers accessed through
mutable buffer aggregates to allow wide sharing of the buffers
among different parts of the system. Buffer aggregates al-
low splicing together various regions of buffers. The IO-
Lite approach uses VM pages and page protection to enforce
read-only access. The main drawback of IO-Lite appears to
be the need to know, during buffer allocation, which other
processes will share the page in order to avoid remapping
of pages and fragmentation. In comparison, the statically
enforced mutual exclusion of access to buffers described in
this paper does not suffer from page granularity restrictions.
Similarly, the IPC mechanism in L4 micro kernel [20] is
based on hardware protection and is only zero-copy if entire
pages are transferred by remapping. Otherwise, the cost is

proportional to the size of transferred buffers. Compared
with measurements for L4 on the Alpha, our message round
trip times are faster than L4’s for all transfer sizes above 64
bytes (which L4 passes in registers).

The lack of read-only sharing in our system is one of its
main drawbacks at the moment. We plan to address this
issue in future work by incorporating ideas from IO-Lite
while retaining a purely software based protection approach.

Ennals et al. use linear types to pass ownership of buffers
in a language for packet processing compiled to network pro-
cessors [14], thereby proving isolation between the sender
and receiver statically as we do. Our resource tracking is
rather similar to linear types and can be formalized using
separation logic [32].

Supporting safe, explicit memory management in program-
ming languages has been studied in Vault [12] and Cyclone
[25]. The verification technique employed in Sing# builds
on this earlier work. Type systems based on ownership hi-
erarchies [9] or lexically-scoped regions [36] are not strong
enough to prove the necessary non-aliasing properties at ar-
bitrary ownership transfer points, e.g., when memory must
be freed or transferred to other processes.

Real-time Java [8] is a version of Java for real-time con-
strained systems. It provides programers with memory ar-
eas that have a stack based lifetime. The explicit mem-
ory management in RTSJ is runtime verified, not statically
checked as in our work, i.e., storing a pointer to an object
in a memory area might cause a runtime error as opposed
to a compile-time error if the target object lives beyond the
memory area’s lifetime. Scoped types [37] proposes a set of
rules that statically guarantee the absence of such errors.
Still, life-times of memory areas have lexical scopes whereas
in our work, a block can get allocated by a process, get trans-
ferred to another process, and live beyond the lifetime of the
allocating process. Furthermore, our memory model guar-
antees that every block is accessed by at most one thread at
a time, thus providing statically enforced mutual exclusion.
RTSJ to the best of our knowledge does not provide such
features.

Guava [3] is a Java dialect providing statically guaranteed
mutual exclusion through true monitors. Guava’s stronger
exclusion guarantees over Java enable compilers to optmize
code more aggressively. Guava achieves mutual exclusion
through hierarchical ownership domains [9] called regions.
As discussed above, these techniques do not allow true own-
ership transfer as described in this paper. As a result, Guava
relies on deep copying of data structures. It also does not ad-
dress the cross process transmission of data, nor does it have
any notion of message passing. As such, the ideas in Guava
are very much orthogonal to those presented here and one
could imagine combining these system, so that e.g., tracked
data could be transferred between ownership domains with-
out the need to copy it.

The Erlang language has been successfully used in the
telecommunication industry [2]. It is based on a purely func-
tional programming model in which all data is read-only and
sharing cannot cause unwanted side effects. Depending on
the runtime system employed [33], message data is either
copied or processes share pointers into shared heaps. The
latter scenario makes garbage collection a global affair. Er-
lang runtime systems can benefit from the tracked data ap-
proach of Sing# by keeping garbage collection process-local
without the need to copy messages.



Compared to the channels described in this paper, Erlang
uses port based communication and messages can be re-
ceived out of order. The language does not statically guard
against “message not understood errors”, but a global static
analysis ensuring that processes handle all messages sent to
them is described in [11].

Specifying and statically checking the interaction among
communicating threads via protocols is the subject of nu-
merous studies [24, 21, 17, 27, 16]. From a theoretical view
point, the work on session types for inter-process commu-
nication by Gay et al. [17] is closely related to ours. The
session types have the same expressive power as our channel
contracts and their type system also keeps track of aliases
to determine proper ownership management of endpoints.

8. CONCLUSION
To our knowledge, this work is the first to integrate a full-
fledged garbage-collected language with statically verified
channel contracts and safe zero-copy passing of memory
blocks. The main novelty of the work is the enabling of
simple and efficient implementation techniques for channel
communication due to the system-wide invariants guaran-
teed by the static verification. Our channel contracts are
expressive and support passing channel endpoints and other
memory blocks as message arguments with zero-copy over-
head.

The message-based programming model is well supported
by the language through a switch receive statement which
allows blocking on complicated message patterns. The static
checking prevents ownership errors and helps programmers
handle all possible message combinations, thereby avoiding
“message not-understood errors”. The runtime semantics
restricts channel failure to be observed on receives only, thus
eliminating handling of error conditions at send operations
where it is inconvenient.

Our programming experience with the language and chan-
nel implementation has been positive. Programmers on the
team, initially skeptical of the value of contracts, now find
them useful in preventing or detecting mistakes. The chan-
nel contracts provide a clean separation of concerns between
interacting components and help in understanding the sys-
tem architecture at a higher level.

8.1 Future Work
We already mentioned the need to deal with exceptional
control flow in the static verification. We are also develop-
ing extensions to the channel contracts that enable static
prevention of deadlock in the communication of processes.
Finally, we are investigating how to build abstractions over
channel objects and communication while retaining their
asynchronous nature and the static checking of the protocol.
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