
AppleScript

William R. Cook

University of Texas at Austin

wcook@cs.utexas.edu

With contributions from Warren Harris, Kurt Piersol, Dave Curbow, Donn Denman,
Edmund Lai, Ron Lichty, Larry Tesler, Donald Olson, Mitchell Gass and Eric House

Abstract
AppleScript is a scripting language and environment for the
Mac OS. Originally conceived in 1989, AppleScript allows
end users toautomatecomplex tasks andcustomizeMac
OS applications. To automate tasks, AppleScript provides
standard programming language features (control flow, vari-
ables, data structures) and sends Apple Events to invoke ap-
plication behavior. Apple Events are a variation on standard
remote procedure calls in which messages can identify their
arguments by queries that are interpreted by the remote ap-
plication. This approach avoids the need for remote object
pointers or proxies, and reduces the number of communi-
cation round trips, which are expensive in high latency en-
vironments like the early Macintosh OS. To customize an
application that uses AppleScript’s Open Scripting Architec-
ture, users attach scripts to application objects; these scripts
can then intercept and modify application behavior.

AppleScript was designed for casual users: AppleScript
syntax resembles natural language, and scripts can be cre-
ated easily by recording manual operations on a graphical
interface. AppleScript also supported internationalization in
allowing script to be presented in multiple dialects, including
English, Japanese, or French. Although the naturalistic syn-
tax is easy to read, it can make scripts much more difficult
to write.

Early adoption was hindered by the difficulty of mod-
ifying applications to support Apple Events and the Open
Scripting Architecture. Yet AppleScript is now widely used
and is an essential differentiator of the Mac OS. Apple-
Script’s communication model is a precursor to web ser-
vices, and the idea of embedded scripting has been widely
adopted.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

Copyright c© ACM [to be supplied]. . . $5.00

Categories and Subject DescriptorsD.3 [Programming
Languages]

General Terms Languages, Design, Human Factors

Keywords AppleScript, Scripting, History

1. Introduction
The development of AppleScript was a long and complex
process that spanned multiple teams, experienced several
false starts and changes of plan, and required coordination
between different projects and companies. It is difficult for
any one person, or even a small group of people, to present a
comprehensive history of such a project, especially without
official support from the company for which the work was
done. The email record of the team’s communications have
been lost, and the author no longer has access to internal
specifications and product plans.

Nevertheless, I believe that the development of Apple-
Script is a story worth telling, and I have been encouraged to
attempt it despite the inherent difficulty of the task. I can of-
fer only my own subjective views on the project, as someone
who was intimately involved with all its aspects. I apologize
in advance for errors and distortions that I will inevitably
introduce into the story, in spite of my best efforts to be ac-
curate.

I first heard the idea of AppleScript over lunch with Kurt
Piersol in February of 1991. The meeting was arranged by
our mutual friend James Redfern. I knew James from Brown,
where he was finishing his undergraduate degree after some
time off, and I was working on my PhD. James and I both
moved to California at about the same time, in 1988. We
spent a lot of time together and I had heard a little about what
he was up to, but he claimed it was secret. James arranged
the meeting because Kurt was looking for someone to lead
the AppleScript effort, and I was looking for something new
to do.

For the previous two and a half years I had been work-
ing at HP Labs. I was a member of the Abel group, which
included Walt Hill, Warren Harris, Peter Canning, and Wal-
ter Olthoff. John Mitchell consulted with us from Stanford.
The group was managed by Alan Snyder, whose formaliza-

Permission to make digital/hard copy of part of this work for personal or
classroom use is granted without fee provided that the copies are not made or
distributed for profit or commercial advantage, the copyright notice, the title of
the publication, and its date of appear, and notice is given that copying is by
permission of the ACM, Inc. To copy otherwise, to republish, to post on servers,
or to redistribute to lists, requires prior specific permission and/or a fee.
Permission may be requested from the Publications Dept., ACM, Inc., 2 Penn
Plaza, New York, NY 11201-0701, USA, fax:+1(212) 869-0481,
©2007 ACM 978-1-59593-766-7/2007/06-ART1 $5.00
DOI 10.145/1238844.1238845
http://doi.acm.org/10.1145/1238844.1238845

Permission to make digital/hard copy of part of this work for personal or
classroom use is granted without fee provided that the copies are not
made or distributed for profit or commercial advantage, the copyright
notice, the title of the publication, and its date of appear, and notice is
given that copying is by permission of the ACM, Inc. To copy
otherwise, to republish, to post on servers, or to redistribute to lists,
requires prior specific permission and/or a fee. Permission may be
requested from the Publications Dept., ACM, Inc., 2 Penn Plaza, New
York, NY 11201-0701, USA, fax:+1(212) 869-0481,
permissions@acm.org
©2007 ACM 978-1-59593-766-7/2007/06-ART1 $5.00
DOI 10.1145/1238844.1238845
http://doi.acm.org/10.1145/1238844.1238845

1-1

tion of object concepts [35] was one basis for the develop-
ment of CORBA. At HP Labs I finished writing my PhD the-
sis, A Denotational Semantics of Inheritance [14, 19], which
the Abel group used as the foundation for a number of pa-
pers. We published papers on inheritance and subtyping [18],
object-oriented abstraction [7, 16], mixins [5], F-Bounded
polymorphism [6], and a fundamental flaw in the Eiffel type
system [15]. I continued some of the work, analyzing the
Smalltalk collection hierarchy [17], after I left HP.

Near the end of 1990 HP Labs was undergoing a reorgani-
zation and I was not sure I would fit into the new plan. In ad-
dition, I was interested in making a change. I had developed
several fairly large systems as an undergraduate, including a
text editor and a graphical software design tool [39, 20] that
were used by hundreds of other students for many years. As
a graduate student I had focused on theory, but I wanted to
learn the process of commercial software development. Ap-
ple seemed like a reasonable place to try, so I agreed to talk
with Kurt.

1.1 AppleScript Vision—Over Lunch

Kurt and I hit it off immediately at lunch. Kurt Piersol is a
large, friendly, eloquent man who was looking for people to
work on the AppleScript project. Kurt graduated with a B.S.
from the University of Louisville’s Speed Scientific School.
He then worked at Xerox, building systems in Smalltalk-
80 and productizing research systems from Xerox PARC.
Kurt was hired to work on AppleScript in 1989. He was
originally asked to work on a development environment for
the new language, but eventually took on the role of steering
the project.

Kurt and I discussed the advantages or disadvantages
of command-line versus graphical user interfaces. With
command-line interfaces, commonly used on Unix, users
frequently write scripts that automate repeated sequences of
program executions. The ability to pipe the output of one
program into another program is a simple but powerful form
of inter-application communication that allows small pro-
grams to be integrated to perform larger tasks. For example,
one can write a script that sends a customized version of
a text file to a list of users. Thesed stream editor can cre-
ate the customized text file, which is then piped into the
mail command for delivery. This new script can be saved
as a mail-merge command, so that it is available for manual
execution or invocation from other scripts. One appealing
aspect of this model is its compositionality: users can create
new commands that are invoked in the same way as built-in
commands. This approach works well when atomic com-
mands all operate on a common data structure, in this case
text streams. It was not obvious that it would work for more
complex structured data, like images, databases, or office
documents, or for long-running programs that interact with
users.

With a graphical user interface (GUI) important func-
tions, including the mail-merge command described above,

are usually built into a larger product, e.g. a word processor.
A GUI application offers pre-packaged integrated function-
ality, so users need not combine basic commands to perform
common tasks. Although careful design of graphical inter-
faces eliminates the need for automation for basic use, there
are still many tasks that users perform repeatedly within a
graphical interface. The designers of the graphical interface
cannot include commands to cover all these situations —
if they did, then some users would execute these new com-
mands repeatedly. No finite set of commands can ever satisfy
all situations.

Most users are happy with GUI applications and do not
need a command-line interface or a scripting language. But
there are clearly some limitations to the GUI approach on
which Macintosh OS was based. Power users and system
integrators were frustrated by the inability to build custom
solutions by assembling multiple applications and special-
izing them to particular tasks. Allowing users to automate
the tasks that are relevant to them relieves pressure on the
graphical user interface to include more and more special-
ized features.

The vision for AppleScript was to provide a kind of
command-line interface to augment the power of GUI ap-
plications and to bring this power to casual users.

1.2 Automation and Customization

Kurt and I talked about two ways in which scripts and
GUI applications could interact: for automation and for cus-
tomization.Automationmeans that a script directs an ap-
plication to perform a sequence of actions—the actions are
performed “automatically” rather than manually. With au-
tomation, the script is in control and one or more applica-
tions respond to script requests.Customizationoccurs when
a script is invoked from within an application—the script
can perform “custom” actions that replace or augment the
normal application behavior. With customization, the appli-
cation manages and invokes scripts that users have attached
to application objects. Automation is useful even without
customization, but customization requires automation to be
useful.

We discussed whether there was sufficient benefit in pro-
viding a standard platform for scripting, when custom so-
lutions for each application might be better. Some applica-
tions already had their own macro capability or a proprietary
scripting language. However, this approach requires users to
learn a different scripting language to automate each appli-
cation. These languages typically include some variation on
the basic elements of any programming language, including
variables, loops, conditionals, data types, procedures, and
exceptions. In addition, they may include special forms or
constructs specific to the application in question. For exam-
ple, a spreadsheet language can refer to cells, sheets, equa-
tions and evaluation.

One benefit of a standard scripting platform is that appli-
cations can then beintegratedwith each other. This capa-

1-2

bility is important because users typically work with mul-
tiple applications at the same time. In 1990, the user’s op-
tions for integrating applications on the Macintosh OS were
limited to shared files or copy/paste with the clipboard. If
a repeated task involves multiple applications, there is lit-
tle hope that one application will implement a single com-
mand to perform the action. Integrating graphical applica-
tions can be done at several levels: visual integration, behav-
ioral integration, or data integration.Visual integrationin-
volves embedding one graphical component inside another;
examples include a running Java applet inside a web page, or
a specialized organization chart component displayed inside
a word-processing document.Behavioral integrationoccurs
when two components communicate with each other; exam-
ples include workflow or invocation of a spell-check com-
ponent from within a word processor.Data integrationoc-
curs whenever one application reads a file (or clipboard data)
written by another application. A given system can include
aspects of all three forms of integration.

I agreed with Kurt that the most important need at that
time was for behavioral integration. To compete with custom
application-specific scripting languages, AppleScript would
have to allow application-specific behaviors to be incorpo-
rated into the language in as natural a way as possible, while
preserving the benefits of a common underlying language.
The core of the language should support the standard fea-
tures of a programming language, including variables, pro-
cedures, and basic data types. An application then provides a
vocabulary of specific terminology that apply to the domain:
a photo-processing application would manipulate images,
pixels and colors, while a spreadsheet application would ma-
nipulate cells, sheets, and graphs. The idea of AppleScript
was to implement the “computer science boilerplate” once,
while seamlessly integrating the vocabulary of the applica-
tion domain so that users of the language can manipulate
domain objects naturally. We discussed the vision of Apple-
Script as a pervasive architecture for inter-application com-
munication, so that it is easy to integrate multiple applica-
tions with a script, or invoke the functionality of one appli-
cation from a script in another application. We hoped that
scripting would create a “network effect”, by which each
new scriptable application improves the value of scripting
for all other applications.

1.3 AppleScript Begins

Soon after, Kurt offered me a job and I accepted quickly.
This event illustrates one of the recurring characteristics of
AppleScript: the basic idea is so compelling that it is enthusi-
astically embraced by almost every software developer who
is exposed to it.

What was not immediately obvious was how difficult the
vision was to achieve—not for strictly technical reasons, but
because AppleScript required a fundamental refactoring, or
at least augmentation, of almost the entire Macintosh code
base. The demonstrable benefits of AppleScript’s vision has

led developers to persevere in this massive task for the last
twenty years; yet the work is truly Sisyphean, in that the slow
incremental progress has been interrupted by major steps
backward, first when the hardware was changed from the
Motorola 68000 chip to the IBM PowerPC, and again when
the operating system was reimplemented for Mac OS X.

At this point it is impossible to identify one individual
as the originator of the AppleScript vision. The basic idea
is simple and has probably been independently discovered
many times. The AppleScript team was successful in elab-
orating the original vision into a practical system used by
millions of people around the world.

2. Background
When I started working at Apple in April 1991 I had never
used a Macintosh computer. My first task was to understand
the background and context in which AppleScript had to be
built.

The main influences I studied were the Macintosh op-
erating system, HyperCard, and Apple Events. HyperCard
was a good source of inspiration because it was a flexible
application development environment with a scripting lan-
guage embedded within it. A previous team had designed
and implemented Apple Events to serve as the underlying
mechanism for inter-application communication. The Apple
Events Manager had to be shipped early so that it could be
included in the Macintosh System 7 OS planned for summer
1991. When I started at Apple, the Apple Event Manager
was in final beta testing. The fact that AppleScript and Apple
Events were not designed together proved to be a continuing
source of difficulties.

Macintosh systems at that time had 4 to 8 megabytes of
random-access memory (RAM) and a 40- to 60-megabyte
hard drive. They had 25-50 MHz Motorola 68000 series
processors. The entire company was internally testing Sys-
tem 7.0, a major revision of the Macintosh OS.

Applications on the Macintosh OS were designed around
a main event processing loop, which handled lower-level
keyboard and mouse events from the operating system [12].
The OS allowed an application to post a low-level event
to another application, providing a simple form of inter-
application communication. In this way one application
could drive another application, by sending synthetic mouse
and keyboard events that select menus or data and enter text
into an application. This technique was used in two utility
applications, MacroMaker and QuicKeys, which recorded
and played back low-level user interface events. It was also
used in the Macintosh help system, which could post low-
level events to show the user how to use the system. Scripts
that send low-level events are fragile, because they can fail
if the position or size of user interface elements changes
between the time the script is recorded and when it is run.
They are also limited in the actions they can perform; low-

1-3

level events can be used to change the format of the current
cell in a spreadsheet, but cannot read the contents of a cell.

In the following section I describe these systems as they
were described to me at the start of the AppleScript project,
in April 1991.

2.1 HyperCard

HyperCard [27, 30], originally released in 1987, was the
most direct influence on AppleScript. HyperCard is a com-
bination of a simple database, a collection of user interface
widgets, and an English-like scripting language. These el-
ements are organized around the metaphor of information
on a collection of index cards. A collection of such cards
is called astack. A card could contain text, pictures, but-
tons, and other graphical objects. Each object has many
properties, including location on the card, size, font, style,
etc. Cards with similar structure could use a commonback-
ground; a background defines the structure, but not the con-
tent, of multiple cards. For example, a stack for household
information might contain recipe cards and contact cards.
The recipe cards use a recipe background that includes text
fields for the recipe title, ingredients, and steps. The contact
cards use a contact background with appropriate fields, in-
cluding a photo.

HyperCard scripts are written in HyperTalk, an English-
like scripting language [28]. The language is for the most
part a standard structured, imperative programming lan-
guage. However, it introduced a unique approach to data
structures: the stack, cards, objects and properties are used
to store data. These structures are organized in a contain-
ment hierarchy: stacks contain cards, cards contain objects,
and properties exist on stacks, cards, and objects. This pre-
defined structure makes it easy to build simple stacks, but
more difficult to create custom data structures.

Scripts in a stack can refer to the objects, collections of
objects, and their properties by usingchunk expressions. A
chunk expression is best understood as a kind of query. For
example, the following chunk expression refers to the text
style property of a word element in a field of the current
card:

the textStyle of word 2
of card field ”Description”

A chunk expression can refer to properties and elements of
objects. A property is a single-valued attribute, for example
textStyle . Elements are collections of objects identified by a
type, for exampleword andcard field . Element access may
be followed by a name, index or range to select element(s)
from the collection. Properties access distributes over col-
lections; the following expression represents a a collection
of 10 text style properties:

the textStyle of character 1 to 10
of card field ”Description”

HyperCard has a built-in set of property and collection
names.

Each object has ascriptcontaining procedures defined for
that object. If the procedure name is aneventname, then the
procedure is ahandlerfor that event— it is called when the
event occurs for that object. For example, a button script may
have handlers formouseDown, mouseUp andmouseMove
events. The following handler shows the next card when a
button is released.

on mouseUp
go to next card

end mouseUp

Actions can be performed on chunk expressions to mod-
ify the stack, its cards, the objects, or their properties. For
example, clicking a button may run a script that moves to
the next card, adds/removes cards, or modifies the contents
of one or more cards. HyperCard has a set of predefined ac-
tions, includingset, go, add, close , etc. For example, the
text style can be updated to a predefined constantbold:

set the textStyle of character 1 to 10
of card field ”Description” to bold

HyperCard 2.0 was released in 1990. HyperCard was
very influential and widely used. Developers could easily
create some applications in HyperCard, but to create more
complex applications, they had to switch to more difficult
general-purpose development tools. The need for unification
of these approaches was recognized early at Apple, leading
to the formation of a research and development project to
build a new development platform for the Mac, discussed
in the next section. Looking forward, the rapid develop-
ment capabilities pioneered by HyperCard were added to
more sophisticated general-purpose development environ-
ments. This gradually reduced the need for systems like Hy-
perCard, which was discontinued in 2004.

2.2 Family Farm

Many of the ideas that eventually emerged in AppleScript
were initially explored as part of a research project code-
named Family Farm, which was undertaken in the Advanced
Technology Group (ATG) at Apple, starting in 1989. The re-
search team was led by Larry Tesler and included Mike Farr,
Mitchell Gass, Mike Gough, Jed Harris, Al Hoffman, Ruben
Kleiman, Edmund Lai, and Frank Ludolph. Larry received
a B.S. in Mathematics from Stanford University in 1965. In
1963, he founded and ran IPC, one of the first software de-
velopment firms in Palo Alto, CA. From 1968-73, he did
research at the Stanford A.I. Lab on cognitive modeling and
natural language understanding, where he designed and de-
veloped PUB, one of the first markup languages with embed-
ded tags and scripting. From 1973-80, he was a researcher
at Xerox PARC, working on object-oriented languages, user
interfaces, and desktop publishing. He joined Apple in 1980

1-4

to work on the Lisa. In 1986, he was named director of Ad-
vanced Development, and in 1987, the first VP of Advanced
Technology, a new group focused on research.

The original goal of Family Farm was to create a new
integrated development environment for the Macintosh OS.
Family Farm included work on a new system-level pro-
gramming language, an interprocess communication model,
a user-level scripting language, and object component mod-
els, in addition to other areas.

The first AppleScript specification, which was the foun-
dation for later development, was written by the Family
Farm team. This document defined the basic approach to
generalizing HyperTalk chunk expressions to create Apple-
Script object-specifiers and Apple Events (described in de-
tail below). I believe credit for these ideas must be shared
equally by the Family Farm team, which generated many
ideas, and the teams which turned these ideas into usable
systems.

As a research project that grew quickly, the organization
put in place for Family Farm turned out not to be sufficient
to build and deliver commercial products. The team was
in the research group, not the system software group; No
changes to the Macintosh system could be shipped to cus-
tomers without approval of the system software group. And
if Family Farm did get approval, they would have to follow
the strict software development, scheduling, and quality con-
trol processes enforced by the system software group. Over
time it became clear that the Family Farm team was also too
small to achieve its vision.

After about a year and a half of work, the Family Farm
project was disbanded, and new teams were created to design
and implement some of the concepts investigated by Family
Farm.

One of the main themes to emerge from Family Farm was
a focus on techniques forintegratingapplications. As men-
tioned in Section 1.2, integrating graphical applications can
be done at several levels: visual embedding, behavioral co-
ordination, or data exchange. The spin-off projects were Ap-
ple Events, AppleScript, and OpenDoc. The Apple Events
project, formed in mid-1990 from a subset of the Family
Farm team, developed the underlying communication model
on which later projects were based. Later projects involved
larger teams that pulled key members from outside Fam-
ily Farm. AppleScript was next, then OpenDoc, both within
the Developer Tools Group at Apple. AppleScript focused
on data and behavioral integration. The OpenDoc project,
which is not discussed in detail here, focused on visual inte-
gration by embedding components. Family Farm’s transition
from research to product development was a difficult one; in
the end the primary product transferred from Family Farm
to its descendants was an inspiring vision.

2.3 Apple Event Manager

The Apple Event Manager provides an inter-application
communication platform for the Macintosh. It was designed

with scripting in mind—however, the design was completed
before development of AppleScript began. When I started
at Apple in April 1991, my first job was to do a complete
code review of Apple Events, which was nearing the end of
its beta testing period. I sat in a conference room with Ed
Lai for over a week reading the code line by line and also
jumping around to check assumptions and review interre-
lationships. Ed was the primary developer of Apple Events
code. The system was written in Pascal, as was most of the
Macintosh system software of that era. The Apple Events
team was part of the Developer Tools group and was orig-
inally managed by Larry Tesler (who was also still VP in
ATG), but was later taken over by Kurt Piersol.

In designing Apple Events, Kurt, Ed and the team had
to confront a serious limitation of the Macintosh OS: in
1990, the Macintosh OS could switch processes no more
than 60 times a second. If a process performed only a few
instructions before requesting a switch, the machine would
idle until 1/60th of a second had elapsed. A fine-grained
communication model, at the level of individual procedure
or method calls between remote objects, would be far too
slow: while a script within a single application could easily
call thousands of methods in a fraction of a second, it would
take several seconds to perform the same script if every
method call required a remote message and process switch.
As a result of this limitation of the OS, traditional remote
procedure calls (RPC) could not be used. Fine-grained RPC
was used in CORBA and COM, which were being developed
at the same time.

The Macintosh OS needed a communication model that
allowed objects in remote applications to be manipulated
without requiring many process round-trips. The Apple
Events communication model uses a generalization of Hy-
perCard’s chunk expressions. Just as a HyperCard command
contains a verb and one or more chunk expressions in its
predefined internal language, an Apple Event contains a verb
and a set of chunk expressions that refer to objects and prop-
erties in the target application. The generalized chunk ex-
pressions are calledobject specifiers. Apple Events address
the process-switching bottleneck by making it natural to
pack more behavior into a single message, thereby reducing
the need for communication round-trips between processes.
An Apple Event is in effect a small query/update program
that is formulated in one application and then sent to another
application for interpretation.

Kurt Piersol and Mike Farr debated whether there should
be few commands that could operate on many objects,
or a large number of specific commands as in traditional
command-line interfaces. For example, on Unix there are
different commands to delete print jobs (lprm), directories
(rmdir), and processes (kill). The analogy with verbs and
nouns in English helped Kurt win the argument for few
commands (verbs) that operate on general objects (nouns).
For example, in AppleScript there is a singledelete com-

1-5

Document

Paragraph

Word

Character

Size Style

Size Style

Size Style

Name

Property

Element

A

B

A contains B

Key:
Root

Figure 1. The properties and elements in a simple object
model.

mand that can delete paragraphs or characters from a word-
processing document, or files from the file system. Having a
small number of generic verbs, includingset, copy, delete,
insert, open andclose, proved to be more extensible.

2.3.1 Object Specifiers

Object specifiers are symbolic references to objects in an
application. One application can create object specifiers that
refer to objects in another application, called thetarget.
The specifiers can then be included in an Apple Event and
sent to the target application. These symbolic references
are interpreted by the target application to locate the actual
remote objects. The target application then performs the
action specified by the verb in the Apple Event upon the
objects.

For example, a single Apple Event can be used to copy a
paragraph from one location to another in a document; the
source and target location are included in the event as object
specifiers. The content of the paragraph remains local in the
target application. Traditional RPC models would require
the client to retrieve the paragraph contents, and then send
it back to the target as a separate insertion operation.

Object specifiers provide a view of application data that
includeselementsandproperties. An element name repre-
sents a collection of values; a property has a single value.
The value of a property may be either a basic value, for ex-
ample an integer or a string, or another object. Elements are
always objects.

A simple object model is illustrated in Figure 1. A
document has multipleparagraph elements and aname
property. A paragraph hasstyle and size properties and
containsword and character elements.

The distinction between properties and elements is re-
lated to the concept of cardinality in entity-relationship mod-
eling [9] and UML class diagrams [32]. Cardinality indicates
the maximum number of objects that may be involved in
a relationship. The most important distinction is between
single-valued (cardinality of 1) relationships and multi-
valued (cardinality greater than 1). The entity-relationship
model also includes attributes, which identify scalar, prim-

itive data values. An AppleScript property is used for both
attributes and single-valued relationships. Elements are used
to describe multivalued relationships.

The name identifying a set of elements is called aclass
name, identifying a specific kind of contained object and/or
its role. For example, aFamily object might have elements
parents and children , which are elements that refer to
sets ofPerson objects. Object specifiers allow application-
specific names for elements and properties, which generalize
the fixed set of predefined names available in HyperCard.

Object specifiers also generalize HyperCard chunk ex-
pressions in other ways. One extension was the addition of
conditionsto select elements of a collection based on their
properties. This extension made object specifiers a form of
query language with significant expressive power.

Supporting Apple Events was frequently quite difficult.
To create a new scriptable application, the software architect
must design a scripting interface in addition to the traditional
GUI interface. If the existing application architecture sepa-
rates views (graphical presentations) from models (underly-
ing information representation) [34], then adding scripting
is usually possible. In this case the internal methods on the
model may be exposed to scripts. There are two reasons why
direct access to an existing object model may not be suffi-
cient:

1. Users often want to control the user interface of an appli-
cation, not just internal data of the application. Thus the
scripting interface should provide access to both the view
objects and the model objects.

2. The interfaces of the internal object model may not be
suitable as an external scripting interface. In this case
the scripting interface is usually implemented to provide
another abstract view of the internal model.

Even with a good architecture, it can be difficult to retrofit
an existing GUI application to include a second interface
for scripting. If the application does not use a model-view
architecture, then adding scripting is much more difficult.

The Apple Events team created a support library to assist
application writers in interpreting object specifiers. It inter-
prets nesting and conditions in the object specifiers, while
using application callbacks to perform primitive property
and element operations.

2.3.2 Apple Events Implementation

Object specifiers are represented in Apple Events as nested
record structures, calleddescriptors[11]. Descriptors use a
self-describing, tagged tree data structured designed to be
easily transported or stored in a flattened binary format. De-
scriptors can either contain primitive data, a list of descrip-
tors, or a labeled product of descriptors. Primitive data types
include numbers (small and large integers and floats), pic-
tures, styled and unstyled text, process IDs, files, and aliases.
All the structures, types, and record fields are identified by

1-6

four-byte type codes. These codes are chosen to be human-
readable to facilitate low-level debugging.

Each kind of object specifier is a record with fields for the
class, property name, index, and container. The container is
either another object specifier record or null, representing the
default or root container of the application. Events may be
sent synchronously or asynchronously. The default behavior
of Apple Events is stateless—the server does not maintain
state for each client session. However, Apple Events sup-
ports a simple form of transaction: multiple events can be
tagged with a transaction ID, which requires an application
to perform the events atomically or else signal an error.

Apple Events was first released with Macintosh System
7 in 1991. The entire Apple Events system was designed,
implemented, and shipped in the Macintosh OS before any
products using it were built. It was a complex problem: ap-
plications could not be built until the infrastructure existed,
but the infrastructure could not be validated until many ap-
plications had used it. In the end, the Apple Events team
adopted a “build it and they will come” approach. They de-
signed the system as well as they could to meet predicted
needs. Only a few small sample applications were developed
to validate the model. In addition, the operating system team
defined four standard events with a single simple parame-
ter: open application, open documents, print documents, and
quit. These first basic events did not use object specifiers; the
open and print events used a vector of path names as argu-
ments.

Later projects, including AppleScript, had to work around
many of the Apple Events design choices that were made
essentially within a vacuum. For example, Apple Events
included some complex optimized message that were never
used because they were too unwieldy. For example, if an
array of values all has a common prefix, this prefix can be
defined once and omitted in each element of the array. This
was originally motivated by a desire to omit repetitive type
information. This optimization is not used by AppleScript
because it is difficult to detect when it could be used, and the
reduction in message length provided by the optimization
does not significantly affect performance.

3. The AppleScript Language
My primary task was to lead the design and implementation
of the AppleScript language. After I decided to join Apple
I mentioned the opportunity to Warren Harris. I enjoyed
working with Warren at HP and thought he would be a great
addition to the AppleScript effort. Warren has a BS and
MS inree EE from the University of Kansas. At HP Warren
was still working on his “Abel Project Posthumous Report”,
which contained all the ideas we had discussed, but had not
time to complete, while working together at HP Labs [25].
Warren talked to Kurt and eventually decided to join the
AppleScript team as a software engineer. He quickly became
the co-architect and primary implementor of the language.

3.1 Requirements

AppleScript is intended to be used by all users of the Mac-
intosh OS. This does not imply that all users would use Ap-
pleScript to the same degree or in the same way—there is
clearly a wide range of sophistication in users of the Mac-
intosh OS, and many of them have no interest in, or need
for, learning even the simplest form of programming lan-
guage. However, these users couldinvokescripts created by
other users, so there were important issues of packaging of
scripts, in addition to developing them. More sophisticated
users might be able torecordor modifya script even if they
could not write it. Finally, it should be possible for non-
computer specialists towrite scripts after some study.

The language was primarily aimed atcasualprogram-
mers, a group consisting of programmers from all experi-
ence levels. What distinguishes casual programming is that
it is infrequent and in service of some larger goal—the pro-
grammer is trying to get something else done, not create a
program. Even an experienced software developer can be a
casual programmer in AppleScript.

The team recognized that scripting is a form of program-
ming and requires more study and thought than using a
graphical interface. The team felt that the language should
be easy enough to learn and use to make it accessible to
non-programmers, and that such users would learn enough
programming as they went along to do the things that they
needed to do.

Programs were planned to be a few hundred lines long
at most, written by one programmer and maintained by a
series of programmers over widely spaced intervals. Scripts
embedded inside an application were also expected to be
small. In this case, the application provides the structure
to interconnect scripts; one script may send messages to
an application object that contains another script. Because
scripts are small, compilation speed was not a significant
concern. Readability was important because it was one way
to check that scripts did not contain malicious code.

In the early ’90s computer memory was still expensive
enough that code size was a significant issue, so the Ap-
pleScript compiler and execution engine needed to be as
small as possible. Portability was not an issue, since the lan-
guage was specifically designed for the Macintosh OS. Per-
formance of scripts within an application was not a signifi-
cant concern, because complex operations like image filter-
ing or database lookup would be performed by applications
running native code, not by scripts. Due to the high latency
of process switches needed for communication, optimization
of communication costs was the priority.

3.2 Application Terminologies

An application terminologyis a dictionary that defines the
names of all the events, properties, and elements supported
by an application. A terminology can define names as plural

1-7

reference ::=
propertyName

| ‘beginning’
| ‘end’
| ‘before’ term
| ‘after ’ term
| ‘some’ singularClass
| ‘ first ’ singularClass
| ‘ last ’ singularClass
| term (‘ st ’ | ‘nd’ | ‘ rd ’ | ‘ th ’) anyClass
| ‘middle’ anyClass
| plural [‘ from’ term toOrThrough term]
| anyClass term [toOrThrough term]
| singularClass ‘before’ term
| singularClass ‘after ’ term
| term (‘of ’ | ‘ in ’ | ‘’ s ’) term
| term (‘whose’ | ‘where’ | ‘that’) term

plural ::= pluralClass | ‘every’ anyClass
toOrThrough ::= ‘to’ | ‘thru’ | ‘through’

call ::= message ‘(’ expr∗ ‘)’
| message [‘ in ’ | ‘of ’] [term] arguments
| term name arguments

message ::= name | terminologyMessage
arguments ::= (preposition expression | flag | record)∗
flag ::= (‘with’ | ‘without’) [name]+
record ::= ‘given’ (name ‘:’ expr)∗
preposition ::=

‘to’ | ‘from’ | ‘thru’ | ‘through’
| ‘by’ | ‘on’ | ‘ into ’ | terminologyPreposition

Figure 2. AppleScript grammar for object references and
message sends.

or masculine/feminine, and this information can be used by
the custom parser for a dialect.

One of the main functions of AppleScript is to send and
receive Apple Events (defined in Section 2.3). Sending an
Apple Event is analogous to an object-oriented message
send, while handling an Apple Event is done by defining a
method whose name is an Apple Event. One view of this
arrangement is that each application is an object that re-
sponds to a variety of messages containing complex argu-
ment types. AppleScript encourages a higher-level view in
which each application manages a set of objects to which
messages may be sent.

AppleScript also provides special syntax for manipulat-
ing Apple Event object specifiers, which are called “object
references” in AppleScript documentation. When an oper-
ation is performed on an object reference, an Apple Event
is created containing the appropriate verb and object spec-
ifier. Thus AppleScript needed to provide a concise syntax
for expressing Apple Events. These AppleScript expressions
create object specifiers:

the first word of paragraph 22
name of every figure of document ‘‘taxes ’’
the modification date of every file whose size > 1024

The first example is a reference to a particular word of a
paragraph. The second refers to the collection of names
associated with all figures in a document named “taxes”. The
last one refers to the modification dates of large files.

For example, the object referencename of window 1
identifies the name of the first window in an application.
Object references are like first-class pointers that can be
dereferenced or updated. An object reference is automati-
cally dereferenced when a primitive value is needed:

print the name of window 1

The primitive value associated with an object reference can
be updated:

set the name of window 1 to ‘‘Taxes’’

These examples illustrate that object specifiers can act as
both l-values and r-values.

Figure 2 includes the part of the AppleScript grammar
relating to object specifiers. The grammar makes use of four
nonterminals that represent symbols from the application
terminology: for property, singularClass , pluralClass ,
andanyClass. As mentioned in Section 2.3.1, a terminology
has properties and elements, which are identified by a class
name. Property names are identified by lexical analysis and
passed to the parser. For class names the terminology can in-
clude both plural and singular forms or a generic “any” form.
For example,name is a property,window is a singular class,
and windows is a plural class. The grammar then accepts
windows from 1 to 10 andevery window from 1 to 10,

Figure 2 also summarizes the syntax of messages. Argu-
ments can be given by position or name after thegiven key-
word. In addition, a set of standard prepositions can be used
as argument labels. This allows messages of the form:

copy paragraph 1 to end of document

The first parameter isparagraph 1, and the second argu-
ment is a prepositional argument namedto with value
end of document.

One of the most difficult aspects of the language design
arose from the fundamental ambiguity of object references:
an object reference is itself a first-class value, but it also de-
notes a particular object (or set of objects) within an applica-
tion. In a sense an object reference is like a symbolic pointer,
which can be dereferenced to obtain its value; the referenced
value can also be updated or assigned through the object
reference. The difficulties arose because of a desire to hide
the distinction between a reference and its value. The solu-
tion to this problem was to dereference them automatically
when necessary, and require special syntax to create an ob-
ject reference instead of accessing its value. The expression
a reference to o creates a first-class reference to an object

1-8

described byo. Although the automatic dereferencing han-
dles most cases, a script can explicitly dereferencer using
the expressionvalue of r. The examples above can be ex-
pressed using a reference value:

set x to a reference to the name of window 1

The variablex can then be used in place of the original
reference. The following statements illustrate the effect of
operations involvingx:

print the value of x
print x
set the value of x to ‘‘ Taxes ’’
set x to ‘‘ Taxes ’’

The first and second statements both print the name of the
window. In the first statement the dereference is explicit, but
in the second it happens implicitly becauseprint expects a
string, not a reference. The third statement changes the name
of the window, while the last one changes the values of the
variablex but leaves the window unchanged.

An object reference can be used as a base for further
object specifications.

set x to a reference to window 1
print the name of x

Figure 3 and 4 describe the custom terminology dictio-
nary for iChat, a chat, or instant messaging, program for the
Macintosh. It illustrates the use of classes, elements, proper-
ties, and custom events. Terminologies for large applications
are quite extensive: the Microsoft Word 2004 AppleScript
Reference is 529 pages long, and the Adobe Photoshop CS2
AppleScript Scripting Reference is 251 pages. They each
have dozens of classes and hundreds of properties.

In addition to the terminology interpreted by individ-
ual applications, AppleScript has its own terminology to
identify applications on multiple machines. The expression
application ‘‘ name’’ identifies an application. The expres-
sion application ‘‘ appName’’ of machine ‘‘machineName’’
refers to an application running on a specific machine. A
block of commands can be targeted at an application using
the tell statement:

tell application ‘‘ Excel ’’ on machine x
put 3.14 into cell 1 of row 2 of window 1

end

This is an example of a statictell command, because
the name of the target application is known statically, at
compile time. The target of thetell statement can also be
a dynamic value rather than an application literal. In this
case the terminology is not loaded from the application. To
communicate with a dynamic application using a statically
specified terminology, a dynamictell can be nested inside
a statictell ; the outer one sets the static terminology, while
the inner one defines the dynamic target. This brings up the
possibility that applications may receive messages that they

Class application : iChat application

Plural form: applications
Elements: account, service , window, document
Properties:

idle time integer
Time in seconds that I have been idle.

image picture
My image as it appears in all services.

status message string
My status message, visible to other people
while I am online.

status string
My status on all services:
away/offline/available.

Class service: An instant-messaging service

Plural form: services
Elements: account
Properties:

status string
The status of the service.:
disconnecting/connected/connecting/disconnected.

id string
The unique id of the service.

name string
The name of the service.

image picture
The image for the service.

Classaccount: An account on a service
Plural form: accounts
Properties:

status string
away/offline/available/idle/unknown.

id string
The account’s service and handle. For ex-
ample: AIM:JohnDoe007.

handle string
The account’s online name.

name string
The account’s name as it appears in the
buddy list.

status message
The account’s status message.

capabilities list
The account’s messaging capabilities.

image picture
The account’s custom image.

idle time integer
The time in seconds the account has been
idle.

Figure 3. iChat Suite: Classes in the iChat scripting termi-
nology [13].

1-9

Events

log in service
Log in a service with an account. If the account password
is not in the keychain the user will be prompted to enter
one.

log out service
Logs out of a service, or all services if none is specified.

sendmessageto account
Send account a text message or video invitation.

Figure 4. iChat Suite: Events in the iChat scripting termi-
nology [13].

do not understand. In such situations, the application should
return an error.

Integration of multiple applications opens the possibility
that a single command may involve object references from
multiple applications. The target of a message is determined
by examining the arguments of the message. If all the argu-
ments are references to the same application, then that appli-
cation is the target. But if the arguments contain references
to different applications, one of the applications must be cho-
sen as the target. Since applications can interpret only their
own object specifiers, the other object references must be
evaluated to primitive values, which can then be sent to the
target application.

copy the name of the first window
of application ”Excel”

to the end of the first paragraph
of app ”Scriptable Text Editor”

This example illustrates copying between applications
without using the global clipboard. AppleScript picks the
target for an event by examining the first object reference in
the argument list. If the argument list contains references to
other applications, the values of the references are retrieved
and passed in place of the references in the argument list.

Standard events and reference structures are defined in
theApple Event Registry. The Registry is divided into suites
that apply to domains of application. Suites contain spec-
ifications for classes and their properties, and events. Cur-
rently there are suites for core operations, text manipulation,
databases, graphics, collaboration, and word services (spell-
checking, etc.).

Jon Pugh, with a BSCS from Western Washington Uni-
versity in 1983, was in charge of the Apple Events registry.
He also helped out with quality assurance and evangelism.
Since then he has worked on numerous scriptable applica-
tions, and created “Jon’s Commands,” a shareware library of
AppleScript extensions.

Terminologies also provide natural-language names for
the four-letter codes used within an Apple Event. This meta-
data is stored in an application as a resource. As discussed in

Section 3.4 below, the terminology resources in an applica-
tion are used when parsing scripts targeting that application.

3.3 Programming Language Features

AppleScript’s programming language features include vari-
ables and assignment, control flow, and basic data struc-
tures. Control flow constructs include conditionals, a vari-
ety of looping constructs, subroutines, and exceptions. Sub-
routines allow positional, prepositional, and keyword para-
meters. Data structures include records, lists, and objects.
Destructuring bind, also known as pattern matching, can be
used to break apart basic data structures. Lists and records
are mutable. AppleScript also supports objects and a simple
transaction mechanism.

AppleScript has a simple object model. Ascript object
containspropertiesandmethods. Methods are dynamically
dispatched, so script objects support a simple form of object-
oriented programming. The following simple script declara-
tion binds the nameCounter to a new script object represent-
ing a counter:

script Counter
property count : 0
to increment

set count to count + 1
return count

end increment
end script

A script declaration can be placed inside a method to
create multiple instances. Such a method is called a factory
method, and is similar to a constructor method in Java.
Since script can access any lexically enclosing variables, all
the objects created by a factory have access to the state of
the object that constructed them. The resulting pattern of
object references resembles the class/metaclass system in
Smalltalk [23], although in much simpler form.

AppleScript’s object model is a prototype model similar
to that employed by Self [37], as opposed to the container-
based inheritance model of HyperTalk. Script objects sup-
port single inheritance by delegating unhandled commands
to the value in theirparent property [36]. JavaScript later
adopted a model similar to AppleScript.

The top level of every script is an implicit object decla-
ration. Top-level properties arepersistent, in that changes to
properties are saved when the application running the script
quits. A standalone script can be stored in a script file and
executed by opening it in the Finder. Such a script can di-
rect other applications to perform useful functions, but may
also call other script files. Thus, script files provide a simple
mechanism for modularity.

AppleScript provides no explicit support for threading or
synchronization. However, the application hosting a script
can invoke scripts from multiple threads: the execution
engine was thread-safe when run by the non-preemptive
scheduling in the original Macintosh OS. It is not safe when

1-10

English the first character of every word whose style is bold
Japanese
French le premier caractère de tous les mots dont style est gras
Professional { words | style == bold }.character[1]

Figure 5. Illustration of dialects.

run on multiple preemptive threads on Mac OS X. Script
objects can also be sent to another machine, making mobile
code possible.

3.4 Parsing and Internationalization

The AppleScript parser integrates the terminology of ap-
plications with its built-in language constructs. For ex-
ample, when targeting the Microsoft ExcelTM application,
spreadsheet terms are known by the parser—nouns likecell
and formula, and verbs like recalculate . The statement
tell application ‘‘ Excel ’’ introduces a block in which
the Excel terminology is available. The terminology can
contain names that are formed from multiple words; this
means that the lexical analyzer must be able to recognize
multiple words as a single logical identifier. As a result,
lexical analysis depends upon the state of the parser: on en-
tering a tell block, the lexical analysis tables are modified
with new token definitions. The tables are reset when the
parser reaches the end of the block. This approach increases
flexibility but makes parsing more difficult. I believe the
added complexity in lexing/parsing makes it more difficult
for users to write scripts.

Apple also required that AppleScript, like most of its
other products, support localization, so that scripts could be
read and written in languages other than English. Scripts are
stored in a language-independent internal representation. A
dialect defines a presentation for the internal language. Di-
alects contain lexing and parsing tables, and printing rou-
tines. A script can be presented using any dialect—so a script
written using the English dialect can be viewed in Japanese.
Examples are given in Figure 5. For complete localization,
the application terminologies must also include entries for
multiple languages. Apple developed dialects for Japanese
and French. A “professional” dialect, which resembles Java,
was created but not released.

There are numerous difficulties in parsing a programming
language that resembles a natural language. For example,
Japanese does not have explicit separation between words.
This is not a problem for language keywords and names
from the terminology, but special conventions were required
to recognize user-defined identifiers. Other languages have
complex conjugation and agreement rules that are difficult to
implement. Nonetheless, the internal representation of Ap-
pleScript and the terminology resources contain information
to support these features.

The AppleScript parser was created using Yacc [29], a
popular LALR parser generator. Poor error messages are a

common problem with LALR parsing [1]. I wrote a tool
that produces somewhat better error messages by including
a simplified version of the follow set at the point where the
error occurred. The follow set was simplified by replacing
some common sets of symbols (like binary operators) with
a generic name, so that the error message would be “ex-
pected binary operator” instead of a list of every binary op-
erator symbol. Despite these improvements, obscure error
messages continue to be one of the biggest impediments to
using AppleScript.

3.5 AppleScript Implementation

During the design of AppleScript in mid-1991, we consid-
ered building AppleScript on top of an existing language
or runtime. We evaluated Macintosh Common Lisp (MCL),
Franz Lisp, and Smalltalk systems from ParcPlace and Dig-
italk. These were all good systems, but were not suitable as
a foundation for AppleScript for the same reason: there was
not sufficient separation between the development environ-
ment and the runtime environment. Separating development
from execution is useful because it a allows compiled script
to be executed in a limited runtime environment with low
overhead. The full environment would be needed only when
compiling or debugging a script.

Instead, we developed our own runtime and compiler. The
runtime includes a garbage collector and byte-code inter-
preter. The compiler and runtime were loaded separately to
minimize memory footprint.

One AppleScript T-shirt had the slogan “We don’t patch
out the universe”. Many projects at Apple were implemented
by “patching”: installing new functions in place of kernel
operating system functions. The operating system had no
protection mechanisms, so any function could be patched.
Patches typically had to be installed in a particular order, or
else they would not function. In addition, a bug in a patch
could cause havoc for a wide range of applications.

AppleScript did not patch any operating system func-
tions. Instead the system was carefully packaged as a thread-
safe QuickTime component. QuickTime components are a
lightweight dynamic library mechanism introduced by the
QuickTime team. Only one copy of the AppleScript com-
piler and runtime was loaded and shared by all applica-
tions on a machine. The careful packaging is one of the rea-
sons AppleScript was able to continue running unchanged
through numerous operating system upgrades, and even onto
the PowerPC.

1-11

Integers
Lists

Strings

Compile

GetSource

Display

Data

CoerceFromDesc

CoerceToDesc

Execute

Storage
Format

Load

Store

ExecuteEvent

Text
Objects

Commands
Script
Text

Data
Key: Interface

…
…

Scripts

Figure 6. Overview of the Open Scripting API.

The AppleScript runtime is implemented in C++. The en-
tire system, including dialects, is 118K lines of code, includ-
ing comments and header files. Compiling the entire Apple-
Script runtime took over an hour on the machines used by
the development team. After the alpha milestone, the devel-
opment team was not allowed to produce official builds for
the testing team. Instead, the code had to be checked in and
built by a separate group on a clean development environ-
ment. This process typically took 8 to 12 hours, because the
process was not fully automated, so there was sometimes a
significant lag between identifying a bug and delivering a fix
to the quality assurance team. This was a significant source
of frustration for the overall team.

4. Script Management
Open Scripting Architecture (OSA) allows any application
to manipulate and execute scripts [11]. The Open Scripting
API is centered around the notion of ascript, as shown in
Figure 6. A script is either a data value or a program. Many
of the routines in the API are for translating between scripts
and various external formats.Compile parses script text and
creates a script object, whileGetSource translates a script
object back into human-readable script text.Display trans-
lates a value into a printed representation. When applied to
a string, e.g.‘‘ Gustav’’ , GetSource returns a program lit-
eral ‘‘ Gustav’’ , while Display just returns the textGustav.
CoerceFromDesc and CoerceToDesc convert AppleScript
values to and from Apple Event descriptors.Load andStore
convert to/from compact binary byte-streams that can be in-
cluded in a file.

TheExecute function runs a script in a context. A context
is a script that contains bindings for global variables.

At its simplest, the script management API supports the
construction of a basic script editor that can save scripts as
stand-alone script applications.

The OSA API does not include support for debugging,
although this was frequently discussed by the team. How-
ever, other companies have worked around this problem and
created effective debugging tools (Section 6.3).

4.1 Embedding

The script management API also supports attaching scripts
to objects in an existing application. Such scripts can be trig-
gered during normal use of the application. This usage is
supported by theExecuteEvent function, which takes as in-
put a script and an Apple Event. The event is interpreted as a
method call to the script. The corresponding method decla-
ration in the script is invoked. In this way an application can
pass Apple Events to scripts that are attached to application
objects.

Embedded scripts allow default application behavior to
be customized, extended, or even replaced. For example, the
Finder can run a script whenever a file is added to a folder,
or an email package can run a script when new mail is re-
ceived. Scripts can also be attached to new or existing menu
items to add new functionality to an application. By em-
bedding a universal scripting languages, application devel-
opers do not need to build proprietary scripting languages,
and users do not need to learn multiple languages. Users
can also access multiple applications from a single script.
AppleScript demonstrated the idea that a single scripting
language could be used for all applications, while allowing
application-specific behaviors to be incorporated so that the
language was specialized for use in each application.

Embedding can also be used to create entire applications.
In this case there is no predefined application structure to
which scripts are attached. Instead, the user builds the ap-
plication objects — for data and user interfaces, and then at-
taches scripts to them. Several application development tools
based on AppleScript are described in Section 6.

4.2 Multiple Scripting Languages

Halfway through the development of AppleScript, Apple
management decided to allow third-party scripting lan-
guages to be used in addition to AppleScript. A new API
for managing scripts and scripting language runtime engines
had to be designed and implemented. These changes con-
tributed to delays in shipping AppleScript. However, they
also led to a more robust architecture for embedding.

In February of 1992, just before the first AppleScript al-
pha release, Dave Winer convinced Apple management that
having one scripting language would not be good for the
Macintosh. At that time, Dave Winer was an experienced
Macintosh developer, having created one of the first outliner
applications, ThinkTank. In the early 1990s, Dave created an
alternative scripting system, called Frontier. Before I joined
the project, Apple had discussed the possibility of buying
Frontier and using it instead of creating its own language.
For some reason the deal fell through, but Dave continued
developing Frontier. Apple does not like to take business
away from developers, so when Dave complained that the
impending release of AppleScript was interfering with his
product, Apple decided the AppleScript should be opened up
to multiple scripting languages. The AppleScript team mod-

1-12

ified the OSA APIs so that they could be implemented by
multiple scripting systems, not just AppleScript. As a result,
OSA is a generic interface between clients of scripting ser-
vices and scripting systems that support a scripting language.
Each script is tagged with the scripting system that created it,
so clients can handle multiple kinds of script without know-
ing which scripting system they belong to.

Dave Winer’s Frontier is a complete scripting and ap-
plication development environment that eventually became
available as an Open Scripting component. Dave went on
to participate in the design of web services and SOAP [4].
Tcl, JavaScript, Python and Perl have also been packaged as
Open Scripting components.

4.3 Recording Events as Scripts

The AppleScript infrastructure supports recording of events
in recordableapplications, which publish events in response
to user actions. Donn Denman, a senior software engineer
on the AppleScript team with a BS in Computer Science
and Math from Antioch College, designed and implemented
much of the infrastructure for recording. At Apple he worked
on Basic interpreters. He was involved in some of the early
discussions of AppleScript, worked on Apple Events and ap-
plication terminologies in AppleScript. In addition, Donn
created MacroMaker, a low-level event record and play-
back system for Macintosh OS System 5. Working on Mar-
coMaker gave Donn a lot of experience in how recording
should work.

Recording allows automatic generation of scripts for re-
peated playback of what would otherwise be repetitive tasks.
Recorded scripts can be subsequently generalized by users
for more flexibility. This approach to scripting alleviates the
“staring at a blank page” syndrome that can be so crippling
to new scripters. Recording is also useful for learning the
terminology of basic operations of an application, because it
helps users to connect actions in the graphical interface with
their symbolic expression in script.

Recording high-level events is different from recording
low-level events of the graphical user interface. Low-level
events include mouse and keyboard events. Low-level events
can also express user interface actions, e.g. “perform Open
menu item in the File menu”, although the response to this
event is usually to display a dialog box, not to open a par-
ticular file. Additional low-level events are required to ma-
nipulate dialog boxes by clicking on interface elements and
buttons. Low-level events do not necessarily have the same
effect if played back on a different machine, or when dif-
ferent windows are open. High-level events are more robust
because they express the intent of an action more directly.
For example, a high-level event can indicate which file to
open.

Recording is supported by a special mode in the Apple
Event manager, based on the idea that a user’s actions in
manipulating a GUI interface can be described by a corre-
sponding Apple Event. For example, if the user selects the

File Open menu, then finds and selects a file named “Re-
suḿe” in a folder named “Personal”, the corresponding Ap-
ple Event would be a FileOpen event containing the path
“Personal:Resuḿe”. To be recordable, an application must
post Apple Events that describe the actions a user performs
with the GUI.

Recordable applications can be difficult to build, since
they must post an Apple Event describing each operation
performed by a user. The AppleScript team promoted an ar-
chitecture that turned this difficulty into a feature. We advo-
cated that applications should be factored into two parts, a
GUI and a back end, where the only communication from
the GUI to the back end is via Apple Events. With this ar-
chitecture, all the core functionality of the application must
be exposed via Apple Events, so the application is inher-
ently scriptable. The GUI’s job becomes one of translating
low-level user input events (keystrokes and mouse move-
ments) into high-level Apple Events. An application built in
this way is inherently recordable; the Apple Event manager
simply records the Apple Events that pass from the GUI to
the back end. If an application is already scriptable, it can
be made recordable by arranging for the user interface to
communicate with the application model only through Ap-
ple Events.

The reality of recording is more complex, however. If
there is atype Apple Event to add characters into a docu-
ment, the GUI must forward each character immediately to
the back end so that the user will see the result of typing.
During recording, if the user types “Hello” the actions will
record an undesirable script:

type ‘‘ H”
type ‘‘ e”
type ‘‘ l”
type ‘‘ l”
type ‘‘ o”

It would be better to recordtype ‘‘ Hello”. To get this
effect, the GUI developer could buffer the typing and send
a single event. But then the user will not see the effect of
typing immediately. AppleEvents has the ability to specify
certain events asrecord-only, meaning that it is a summary
of a user’s actions and should not be executed. Creating such
summaries makes developing a recordable application quite
difficult.

In 2006 twenty-five recordable applications were listed
on Apple’s website and in the AppleScript Sourcebook [8],
one of several repositories of information about AppleScript.
Some, but fewer than half, of the major productivity appli-
cations are recordable. Recordable applications include Mi-
crosoft Word and Excel, Netscape Navigator, Quark Express
(via a plugin) and CorelDRAW.

One of the inherent difficulties of recording is the am-
biguity of object specification. As the language of events
becomes more rich, there may be many ways to describe a
given user action. Each version might be appropriate for a

1-13

given situation, but the system cannot pick the correct action
without knowing the intent of the user. For example, when
closing a window, is the user closing the front window or
the window specifically named “Example”? This is a well-
known problem in research on programming by example,
where multiple examples of a given action can be used to dis-
ambiguate the user’s intent. Allen Cypher did fundamental
research on this problem while at Apple. He built a prototype
system called Eager that anticipated user actions by watch-
ing previous actions [21, 22]. AppleScript does not have
built-in support for analyzing multiple examples. There are
also ambiguities when recording and embedding are com-
bined: if a recorded event causes a script to execute, should
the original event or the events generated by the script be
recorded? Application designers must decide what is most
appropriate for a given situation. Cypher worked with Dave
Curbow in writing guidelines to help developers make these
difficult choices [26].

Recording can also be used for other purposes. For ex-
ample, a help system can include step-by-step instructions
defined by a script. The steps can be played as normal
scripts, or the user can be given the option of performing
the steps manually under the supervision of the help system.
By recording the user’s actions, the help system can pro-
vide feedback or warnings when the user’s actions do not
correspond to the script.

5. Development Process
Unlike most programming languages, AppleScript was de-
signed within a commercial software development project.
The team members are listed in Figure 7. AppleScript was
designed by neither an individual nor a committee; the
team used a collaborative design process, with significant
user testing and evaluation. The project leaders guided the
process and made final decisions: there was lively debate
within the group about how things should work. The ex-
tended team included project management, user interface
design and testing, documentation, and product marketing.

The AppleScript project had a strong quality assurance
(QA) team. They created a large test suite which was run
against nightly builds. From a management viewpoint, the
QA group also had significant control over the project, be-
cause they were required to give final approval of a release.

The project was code-named “Gustav” after Donn’s mas-
sive Rottweiler dog. The dog slimed everything it came in
contact with, and was the impetus behind a T-shirt that read
“Script Happens”. The project tag line was “Pure Guava”
because Gary Bond was designing a t-shirt that said “Apple-
Script: Pure Gold” and Warren Harris got him to change it
to Pure Guava after the Ween album he was in love with at
the time.

AppleScript and the associated tools were designed and
implemented between 1990 and 1993. Figure 8 gives a time-
line of the development process. The line labeled “changes”

Jens Alfke
Developer

Greg Anderson
Developer,
Scriptable Finder

Mike Askins
Engineering Project Man-
ager

Gary Bond
QA

Scott Bongiorno
QA, User Testing

B. Bruce Brinson
Developer

Kevin Calhoun
Manager

Jennifer Chaffee
User Interface Design

Dan Clifford
Developer

William Cook
Architect, Developer,
Manager

Sean Cotter
Documentation

Dave Curbow
User Interface Design

Donn Denman
Developer

Sue Dumont
Developer, QA

Mike Farr
Marketing

Mitch Gass
Documentation

Laura Clark Hamersley
Marketing

Warren Harris
Architect, Developer

Eric House QA, Developer

Ron Karr

QA, Apple Events Devel-
oper

Edmund Lai

Developer, Apple Events

Ron Lichty

Manager, Finder

Bennet Marks

Developer

Mark Minshull

Manager

Kazuhisa Ohta

Developer, Dialects

Donald Olson

QA, Manager

Chuck Piercey

Marketing

Kurt Piersol

Architect

James Redfern

QA, Developer

Brett Sher

Developer, QA

Laile Di Silvestro

QA, Developer

Sal Soghoian

Product Manager

Francis Stanbach

Developer,

Scriptable Finder

Kazuhiko Tateda

Japanese Dialect

Larry Tesler

Manager, VP

Mark Thomas

Evangelist

Susan Watkins

Marketing

Figure 7. AppleScript and related project team members.

1-14

0

20

40

60

80

100

120

140

160

180

200

6/
1/

91
7/

1/
91

7/
31

/9
1

8/
30

/9
1

9/
29

/9
1

10
/2

9/
91

11
/2

8/
91

12
/2

8/
91

1/
27

/9
2

2/
26

/9
2

3/
27

/9
2

4/
26

/9
2

5/
26

/9
2

6/
25

/9
2

7/
25

/9
2

8/
24

/9
2

9/
23

/9
2

10
/2

3/
92

11
/2

2/
92

12
/2

2/
92

1/
21

/9
3

2/
20

/9
3

3/
22

/9
3

4/
21

/9
3

5/
21

/9
3

6/
20

/9
3

7/
20

/9
3

8/
19

/9
3

9/
18

/9
3

10
/1

8/
93

11
/1

7/
93

12
/1

7/
93

1/
16

/9
4

2/
15

/9
4

f1

F
in

al

f3

b1

Beta

b2
b3

b5
b4

AppleScript 1.0

a1

a17

a10

a3
AppleScript 1.1

Alpha

b2

f1
b5

b3

Develoment

Beta

Alpha

D
ev

.

a6

a4

a1

F
in

al

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

changes

N
um

be
r

of
 fi

le
 c

ha
ng

es
N

um
ber of release candidate builds

Figure 8. Development statistics: number of file changes and candidate builds.

shows the cumulative number of files changed during de-
velopment (the scale is on the left). The second line shows
the cumulative number of candidate release builds. The fi-
nal candidate builds were created by Apple source control
group from a clean set of sources and then given to the test-
ing team. By placing source code control between develop-
ment and testing, Apple ensured that each build could be
recreated on a clean development environment with archived
sources. Note that the number of file changes in the alpha or
beta phases starts off slowly, then increases until just before
the next milestone, when changes are no longer allowed un-
less absolutely necessary.

The AppleScript Beta was delivered in September 1992.
In April 1993 the AppleScript 1.0 Developer’s Toolkit
shipped, including interface declaration files (header files),
sample code, sample applications and the Scripting Lan-
guage Guide.

The first end-user version, AppleScript 1.1, was released
in September 1993 and included with System 7 Pro. In De-
cember 1993, the 1.1 Developer’s Toolkit and Scripting Kit
versions both released. In 1994, AppleScript was included
as part of System 7.5.

In January 1993, Apple management decided that the
next version of AppleScript had to have more features than
AppleScript 1.1, but that the development must be done
with half the number of people. Since this was not likely

to lead to a successful development process, Warren and I
decided to leave Apple. Without leadership, the AppleScript
group was disbanded. Many of the team members, including
Jens Alfke, Donn Denman, and Donald Olson, joined Kurt
Piersol on the OpenDoc team, which was working on visual
integration of applications. AppleScript was integrated into
the OpenDoc framework.

5.1 Documentation

Internal documentation was ad hoc. The team made exten-
sive use of an early collaborative document managemen-
t/writing tool called Instant Update, that was used in a wiki-
like fashion, a living document constantly updated with the
current design. Instant Update provides a shared space of
multiple documents that were viewed and edited simultane-
ously by any number of users. Each user’s text was color-
coded and time-stamped. I have not been able to recover a
copy of this collection of documents.

No formal semantics was created for the language, de-
spite the fact that my PhD research and work at HP Labs
was focused entirely on formal semantics of programming
languages. One reason was that only one person on the team
was familiar with formal semantics techniques, so writing a
formal semantics would not be an effective means of com-
munication. In addition, there wasn’t much point in develop-
ing a formal semantics for the well-known features (objects,

1-15

inheritance, lexical closures, etc.), because the goal for this
aspect of the language was to apply well-known constructs,
not define new ones. There was no standard formal seman-
tic framework for the novel aspects of AppleScript, espe-
cially the notion of references for access to external objects
residing in an application. The project did not have the lux-
ury of undertaking extensive research into semantic founda-
tions; its charter was to develop and ship a practical language
in a short amount of time. Sketches of a formal semantics
were developed, but the primary guidance for language de-
sign came from solving practical problems and from user
studies, rather than from a priori formal analysis.

The public documentation was developed by professional
writers who worked closely with the team throughout the
project. The primary document isInside Macintosh: Inter-
application Communication, which includes details on the
Apple Event Manager and Scripting Components [11]. The
AppleScript language is also thoroughly documented [2],
and numerous third-party books have been written about
it, for examples see [31, 24]. Mitch Gass and Sean Cotter
documented Apple Events and AppleScript for external use.
Mitch has a bachelor’s degrees in comparative literature and
computer science, and worked at Tandem and Amiga before
joining Apple. Mitch worked during the entire project to
provide that documentation, and in the process managed to
be a significant communication point for the entire team.

5.2 User Testing

Following Apple’s standard practice, we user-tested the lan-
guage in a variety of ways. We identified novice users and
asked them, “What do you think this script does?” The fol-
lowing questions illustrate the kinds of questions asked dur-
ing user testing.

Part I. Please answer the following multiple choice ques-
tions about AppleScript.

3. Given the handler:

on doit from x to y with z
return (x ∗ y) + z

end doit

What does the following statement evaluate to?

doit with 3 from 8 to 5

a) 29

b) 43

c) error

d) other:

Part II. Please state which of the following AppleScript
statements you prefer.

8. a) put ‘‘ a ’’, {‘‘ b ’’, ‘‘ c ’’} into x
b) put {‘‘ a ’’, {‘‘ b ’’, ‘‘ c ’’}} into x

9. a) window named ‘‘fred’’
b) window ‘‘ fred ’’

10. a) window 1
b) window #1

11. a) word 34
b) word #34

12. a) ‘‘ apple ’’ < ‘‘betty ’’
b) ‘‘ apple ’’ comes before ‘‘betty ’’

Part III. This section shows sequences of commands and
then asks questions about various variables after they are
executed.

15. Given the commands:

put {1, 2, 3} into x
put x into y
put 4 into item 1 of x

What is x?

a) {1, 2, 3}
b) {4, 2, 3}
c) error

d) other:

What is y?

a) {1, 2, 3}
b) {4, 2, 3}
c) error

d) other:

Part IV. In this section, assume that all AppleScript state-
ments refer towindow 1, which contains the following
text:

this is a test
of the emergency broadcast system

18. What does the following statement evaluate to?

count every line of window 1

a) 2

b) 4, 5

c) 9

d) 14, 33

e) 47

f) error

g) other:

1-16

What does the following statement evaluate to?

count each line of window 1

a) 2

b) 4, 5

c) 9

d) 14, 33

e) 47

f) error

g) other:

21. What does the following statement evaluate to?

every line of window 1
whose first character = ‘‘x ’’

a) {}
b) error

c) other:

One result of user testing concerned the choice of verb
for assignment commands. The average user thought that
after the commandput x into y the variablex no longer
retained its old value. The language was changed to use
copy x into y instead. We also conducted interviews and
a round-table discussion about what kind of functionality
users would like to see in the system. In the summer of 1992,
Apple briefed 50 key developers and collected reactions. The
user interface team conducted controlled experiments of the
usability of the language in early 1993, but since these took
place during the beta-testing period, they were too late in the
product development cycle to have fundamental impact.

6. AppleScript Applications and Tools
Much of the practical power of AppleScript comes from
the applications and tools that work with scripts and han-
dle events. From the viewpoint of AppleScript, applications
are large, well-designed and internally consistent libraries
of specialized functionality and algorithms. So, when used
with a database application, AppleScript can perform data-
oriented operations. When used with a text layout applica-
tion, AppleScript can automate typesetting processes. When
used with a photo editing application, AppleScript can per-
form complex image manipulation.

Since new libraries can be created to cover any applica-
tion domain, only the most basic data types were supported
in AppleScript directly. For example, string handling was
minimal in AppleScript. AppleScript’s capabilities were ini-
tially limited by the availability of scriptable applications.
Success of the project required that many applications and
diverse parts of the operating system be updated to support
scripting.

A second benefit of pervasive scripting is that it can be
used to provide a uniform interface to the operating sys-
tem. With Unix, access to information in a machine is idio-
syncratic, in the sense that one program was used to list
print jobs, another to list users, another for files, and another
for hardware configuration. I envisioned a way in which all
these different kinds of information could be referenced uni-
formly.

A uniform naming modelallows every piece of infor-
mation anywhere in the system, be it an application or the
operating system, to be accessed and updated uniformly.
Application-specific terminologies allow applications to be
accessed uniformly; an operating system terminology would
provide access to printer queues, processor attributes, or net-
work configurations. Thus, the language must support mul-
tiple terminologies simultaneously so that a single script can
access objects from multiple applications and the operating
system at the same time.

6.1 Scriptable Finder

Having a scriptable Finder was a critical requirement for
AppleScript, since the Finder provides access to most system
resources. However, it was difficult to coordinate schedules
and priorities because the Finder and AppleScript teams
were in different divisions within Apple. The Finder team
was also pulled in many directions at once.

As a result, Finder was not fully scriptable when Apple-
Script shipped in 1992. The Finder team created a separate
library, called the “Finder scripting extension”, to provide
some additional Finder script commands. The Finder had
been rewritten in C++ from the ground up for System 7 to
be extensible. But extensions relied on internal C++ dispatch
tables, so the Finder was not dynamically extensible: it had
to be recompiled for each extension. The Finder extension
mechanism had been designed so that Finder functionality
could grow incrementally. It was the mechanism for adding
large quantities of new functionality to support a specific
project.

It was not until 1997 that a scriptable Finder was released.
A year later the Finder supported embedding, which greatly
increased its power. Embedding allowed scripts to be trig-
gered from within the Finder in response to events, for ex-
ample opening a folder or emptying the trash.

6.2 Publishing Workflow

Automation of publishing workflows is a good illustration
of AppleScript and scriptable applications. Consider the au-
tomation of a catalog publishing system. An office-products
company keeps all its product information in a FileMaker
ProTM database that includes descriptions, prices, special of-
fer information, and a product code. The product code iden-
tifies a picture of the product in a KudosTM image database.
The final catalog is a QuarkXPressTM document that is ready
for printing. Previously, the catalog was produced manually,

1-17

a task that took a team of twenty up to a month for a single
catalog.

An AppleScript script automates the entire process. The
script reads the price and descriptive text from the FileMaker
Pro database and inserts it into appropriate QuarkXPress
fields. The script applies special formatting: it deletes the
decimal point in the prices and superscripts the cents (e.g.
3499). To make the text fit precisely in the width of the en-
closing box, the script computes a fractional expansion fac-
tor for the text by dividing the width of the box by the width
of the text (this task was previously done with a calculator).
It adjusts colors and sets the first line of the description in
boldface type. Finally, it adds special markers like “Buy 2
get 1 free” and “Sale price $1799” where specified by the
database.

Once this process is automated, one person can produce
the entire catalog in under a day, a tiny fraction of the time
taken by the manual process. It also reduced errors during
copying and formatting. Of course, creating and maintaining
the scripts takes time, but the overall time is significantly
reduced over the long run.

6.3 Scripting Tools

AppleScript included a simple and elegant script editor cre-
ated by Jens Alfke, who had graduated from Caltech and
worked with Kurt Piersol at Xerox Parc on Smallktalk-80
applications. Jens was one of the key developers on the Ap-
pleScript team; he focused on tools, consistency of the APIs
and usability of the overall system.

Soon after AppleScript was released, more powerful
script development environments were created outside Ap-
ple. They addressed one of the major weaknesses of Apple-
Script: lack of support for debugging. One developer outside
Apple who took on this challenge is Cal Simone, who has
also been an unofficial evangelist for AppleScript since its
inception. Cal createdScripter, which allows users to single-
step through a script. It works by breaking a script up into
individual lines that are compiled and executed separately.
The enclosingtell statements are preserved around each
line as it is executed. Scripter also allows inspection of local
variables and execution of immediate commands within the
context of the suspended script.Script Debuggeruses a dif-
ferent technique: it adds a special Apple Event between each
line of a script. The Apple Event is caught by the debugger
and the processing of the script is suspended. The current
values of variables can then be inspected. To continue the
script, the debugger simply returns from the event.

AppleScript also enables creation of sophisticated inter-
face builders. The interface elements post messages when
a user interacts with them. The user arranges the elements
into windows, menus, and dialogs. Scripts may be attached
to any object in the interface to intercept the messages be-
ing sent by the interface elements and provide sophisticated
behavior and linking between the elements. Early applica-
tion builders included FrontmostTM , a window and dialog

builder, and AgentBuilderTM , which specialized in commu-
nication front-ends. Version 2.2 of HyperCard, released in
1992, included support for OSA, so that AppleScript or any
OSA language could be used in place of HyperTalk.

Two major application builders have emerged recently.
FaceSpan, originally released in 1994, has grown into a full-
featured application development tool. FaceSpan includes
an integrated script debugger. Apple released AppleScript
Studio in 2002 as part of its XCode development platform.
A complete application can be developed with a wide range
of standard user interface elements to which scripts can be
attached. AppleScript Studio won Macworld Best of Show
Awards at the 2001 Seybold Conference in San Francisco.

In 2005 Apple released Automator, a tool for creating
sequences of actions that define workflows. Automator se-
quences are not stored or executed as AppleScripts, but can
contain AppleScripts as primitive actions. The most inter-
esting thing about Automator is that each action has an input
and an output, much like a command in a Unix pipe. The
resulting model is quite intuitive and easy to use for simple
automation tasks.

Although Apple Events are normally handled by appli-
cations, it is also possible to installsystem event handlers.
When an Apple Event is delivered to an application, the ap-
plication may handle the event or indicate that it was not han-
dled. When an application does not handle an event, the Ap-
ple Event manager searches for a system event handler. Sys-
tem event handlers are packaged inscript extensions(also
known as OSAX) and are installed on the system via Script-
ing Additions that are loaded when the system starts up.

6.4 Scriptable Applications

Eventually, a wide range of scriptable applications became
available: there are currently 160 scriptable applications
listed on the Apple web site and the AppleScript source-
book [8]. Every kind of application is present, including
word processors, databases, file compression utilities, and
development tools. Many of the most popular applications
are scriptable, including Microsoft Office, Adobe Photo-
shop, Quark Expression, FileMaker, and Illustrator. In ad-
dition, most components of the Mac OS are scriptable,
including the Finder, QuickTime Player, Address Book,
iTunes, Mail, Safari Browser, AppleWorks, DVD Player,
Help Viewer, iCal, iChat, iSync, iPhoto, and control panels.

Other systems also benefitted from the infrastructure cre-
ated by AppleScript. The Macintosh AVTM speech recogni-
tion system uses AppleScript, so any scriptable application
can be driven using speech.

7. Evolution
After version 1.1, the evolution of AppleScript was driven
primarily by changes in the Macintosh OS. Since Apple-
Script was first released, the operating system has undergone
two major shifts, first when Apple moved from the Motorola

1-18

68000 to the PowerPC chip, and then when it moved from
the Classic Macintosh OS to the Unix-based OS X. Few
changes were made to the language itself, while scriptable
applications and operating system components experienced
rapid expansion and evolution. A detailed history with dis-
cussion of new features, bugs, and fixes can be found in the
AppleScript Sourcebook [8], which we summarize here.

The first upgrade to AppleScript, version 1.1.2, was cre-
ated for Macintosh OS 8.0, introduced in July 1997. De-
spite the rigorous source code configuration process (see
Section 5), Apple could not figure out how to compile the
system and contracted with Warren Harris to help with the
job. A number of bugs were fixed and some small enhance-
ments were made to conform to Macintosh OS 8.0 standards.
At the same time several system applications and extensions
were changed in ways that could break old scripts. The most
important improvement was a new scriptable Finder, which
eliminated the need for a Finder scripting extension.

In 1997 AppleScript was at the top of the list of features
to eliminate in order to save money. Cal Simone, mentioned
in Section 6.3, successfully rallied customers to rescue Ap-
pleScript.

In October 1998 Apple released AppleScript 1.3 with
UNICODE support recompiled as a native PowerPC exten-
sion; however, the Apple Events Manager was still emulated
as Motorola 68000 code. The dialect feature was no longer
supported; English became the single standard dialect. This
version came much closer to realizing the vision of uni-
form access to all system resources from scripts. At least
30 different system components, including File Sharing, Ap-
ple Video Player and Users & Groups, were now scriptable.
New scriptable applications appeared as well, including Mi-
crosoft Internet Explorer and Outlook Express.

The PowerPC version of AppleScript received an Eddy
Award from MacWorld as “Technology of the Year” for
1998 and was also demonstrated in Steve Jobs’ Seybold
1998 address. In 2006, MacWorld placed AppleScript as
#17 on its list of the 30 most significant Mac products ever.
AppleScript was a long-term investment in fundamental in-
frastructure that took many years to pay dividends.

The most significant language changes involved thetell
statement. For example, themachine class used to identify
remote applications was extended to accept URLs (see Sec-
tion 3.2), allowing AppleScript control of remote applica-
tions via TCP/IP.

When Mac OS X was released in March 2001, it included
AppleScript 1.6. In porting applications and system compo-
nents to OS X, Apple sometimes sacrificed scripting support.
As a result, there was a significant reduction in the number of
scriptable applications after the release of OS X. Full script-
ability is being restored slowly in later releases.

In October 2006, Google reported an estimated 8,570,000
hits for the word “AppleScript”.

8. Evaluation
AppleScript was developed by a small group with a short
schedule, a tight budget and a big job. There was neither
time nor money to fully research design choices.

AppleScript and Apple Events introduced a new approach
to remote communication in high-latency environments [33].
Object references are symbolic paths, or queries, that iden-
tify one or more objects in an application. When a command
is applied to an object reference, both the command and the
object reference are sent (as an Apple Event containing an
object specifier) to the application hosting the target object.
The application interprets the object specifier and then per-
forms the action on the specified objects.

In summary, AppleScript views an application as a form
of object-oriented database. The application publishes a
specialized terminology containing verbs and nouns that
describe the logical structure and behavior of its objects.
Names in the terminology are composed using a standard
query language to create programs that are executed by the
remote application. The execution model does not involve
remote object references and proxies as in CORBA. Rather
than send each field access and method individually to the
remote application and creating proxies to represent inter-
mediate values, AppleScript sends the entire command to
the remote application for execution. From a pure object-
oriented viewpoint, the entire application is the only real ob-
ject; the “objects” within it are identified only by symbolic
references, or queries.

After completing AppleScript, I learned about COM
and was impressed with its approach to distributed object-
oriented programming. Its consistent use of interfaces en-
ables interoperability between different systems and lan-
guages. Although interface negotiation is complex, invoking
a method through an interface is highly optimized. This ap-
proach allows fine-grained objects that are tightly coupled
through shared binary interfaces. For many years I believed
that COM and CORBA would beat the AppleScript com-
munication model in the long run. However, recent develop-
ments have made me realize that this may not be the case.

AppleScript uses a large-granularity messaging model
that has many similarities to the web service standards that
began to emerge in 1999 [10]. Both are loosely coupled and
support large-granularity communication. Apple Events data
descriptors are similar to XML in that they describe arbi-
trary labeled tree structures without fixed semantics. Apple-
Script terminologies are similar to web service description
language (WSDL) files. It is perhaps not an accident that
Dave Winer, who worked extensively with AppleScript and
Apple Events, is also one of the original developers of web
service models. There may be useful lessons to be learned
for web services, given that AppleScript represents a sig-
nificant body of experience with large-granularity messag-
ing. One difference is that AppleScript includes a standard
query model for identifying remote objects. A similar ap-

1-19

proach could be useful for web services. As I write in 2006,
I suspect that COM and CORBA will be overwhelmed by
web services, although the outcome is far from certain now.

AppleScript is also similar to traditional database inter-
faces like ODBC [38]. In AppleScript the query model is
integrated directly into the language, rather than being exe-
cuted as strings as in ODBC. A similar approach has been
adopted by Microsoft for describing queries in .NET lan-
guages [3].

User tests revealed that casual users don’t easily under-
stand the idea of references, or having multiple references to
the same value. It is easier to understand a model in which
values are copied or moved, rather than assigning references.
The feedback from user tests in early 1993 was too late in the
development cycle to address this issue with anything more
than a cosmetic change, to usecopy instead ofset for as-
signment.

Writing scriptable applications is difficult. Just as user
interface design requires judgment and training, creating a
good scripting interface requires a lot of knowledge and
careful design. It is too difficult for application developers
to create terminologies that work well in the naturalistic
grammar. They must pay careful attention to the linguistic
properties of the names they choose.

The experiment in designing a language that resembled
natural languages (English and Japanese) was not success-
ful. It was assumed that scripts should be presented in “nat-
ural language” so that average people could read and write
them. This lead to the invention of multi-token keywords
and the ability to disambiguate tokens without spaces for
Japanese Kanji. In the end the syntactic variations and flex-
ibility did more to confuse programmers than to help them
out. It is not clear whether it is easier for novice users to
work with a scripting language that resembles natural lan-
guage, with all its special cases and idiosyncrasies. The main
problem is that AppleScript only appears to be a natural
language: in fact, it is an artificial language, like any other
programming language. Recording was successful, but even
small changes to the script may introduce subtle syntactic er-
rors that baffle users. It is easy to read AppleScript, but quite
hard to write it.

When writing programs or scripts, users prefer a more
conventional programming language structure. Later ver-
sions of AppleScript dropped support for dialects. In hind-
sight, we believe that AppleScript should have adopted the
Professional Dialect that was developed but never shipped.

Finally, readability was no substitute for an effective se-
curity mechanism. Most people just run scripts—they don’t
read or write them.

9. Conclusion
AppleScript is widely used today and is a core technol-
ogy of Mac OS X. Many applications, including Quark Ex-
press, Microsoft Office, and FileMaker, support scripting.

Small scripts are used to automate repetitive tasks. Larger
scripts have been developed for database publishing, docu-
ment preparation, and even web applications.

There are many interesting lessons to be learned from
AppleScript. On a technical level, its model of pluggable
embedded scripting languages has become commonplace.
The communication mechanism of Apple Events, which is
certainly inferior to RPC mechanisms for single-machine or
in-process interactions, may turn out to be a good model
for large-granularity communication models such as web
services. Many of the current problems in AppleScript can
be traced to the use of syntax based on natural language;
however, the ability to create pluggable dialects may provide
a solution in the future, by creating a new syntax based on
conventional programming languages.

Acknowledgments
Thanks to Jens Alfke, Paul Berkowitz, Bill Cheeseman,
Chris Espinosa, Michael Farr, Steve Goldband Tom Ham-
mer, David Hoerl, Alexander Kellett, Wayne Malkin, Matt
Neuburg, Chuck Piercey, Hamish Sanderson, and Stephen
Weyl, for discussions about this paper. Special thanks to
Andrew Black and Kathleen Fisher for their guidance, en-
couragement, flexibility, and careful reading of my work in
progress.

References
[1] Alfred V. Aho and Jeffrey D. Ullman. Principles of

Compiler Design (Addison-Wesley series in computer science
and information processing). Addison-Wesley Longman
Publishing Co., Inc., Boston, MA, USA, 1977.

[2] Apple Computer Inc.AppleScript Language Guide. Addison-
Wesley, 1993.

[3] Gavin Bierman, Erik Meijer, and Wolfram Schulte. The
essence of data access in cω. In European Conference on
Object-Oriented Programming. Springer Verlag, 2005.

[4] Don Box, David EhneBuske, Gopal Kakivaya, Andrew
Layman, Noah Mendelsohn, Henrik Frystyk Nielson, Satish
Thatte, and Dave Winer. Simple object access protocol 1.1.
http://www.w3.org/TR/SOAP.

[5] Gilad Bracha and William Cook. Mixin-based inheritance.
In Proc. of ACM Conf. on Object-Oriented Programming,
Systems, Languages and Applications, pages 303–311, 1990.

[6] Peter Canning, William Cook, Walt Hill, John Mitchell,
and Walter Olthoff. F-bounded polymorphism for object-
oriented programming. InProc. of Conf. on Functional
Programming Languages and Computer Architecture, pages
273–280, 1989.

[7] Peter Canning, William Cook, Walt Hill, and Walter Olthoff.
Interfaces for strongly-typed object-oriented programming.
In Proc. of ACM Conf. on Object-Oriented Programming,
Systems, Languages and Applications, pages 457–467, 1989.

[8] Bill Cheeseman. Applescript sourcebook.http://www.
AppleScriptSourcebook.com.

1-20

[9] Peter P. Chen. The entity-relationship model — toward a
unified view of data.ACM Transactions on Database Systems
(TODS), 1(1):9–36, 1976.

[10] Roberto Chinnici, Martin Gudgin, Jean-Jacques Moreau, and
Sanjiva Weerawarana. Web Services Description Language
Version 1.2, July 2002. W3C Working Draft 9.

[11] Apple Computer.Inside Macintosh: Interraplication Com-
munication. Addison-Wesley, 1991.

[12] Apple Computer. Inside Macintosh: Macintosh Toolbox
Essentials. Addison-Wesley, 1991.

[13] Apple Computer. ichat 2.0 dictionary. FooDoo Lounge web
site by Richard Morton, 2002-2005.

[14] William Cook. A Denotational Semantics of Inheritance.
PhD thesis, Brown University, 1989.

[15] William Cook. A proposal for making Eiffel type-safe. In
Proc. European Conf. on Object-Oriented Programming,
pages 57–70. British Computing Society Workshop Series,
1989. Also inThe Computer Journal, 32(4):305–311, 1989.

[16] William Cook. Object-oriented programming versus abstract
data types. InProc. of the REX Workshop/School on the
Foundations of Object-Oriented Languages, volume 173 of
Lecture Notes in Computer Science. Springer-Verlag, 1990.

[17] William Cook. Interfaces and specifications for the Smalltalk
collection classes. InProc. of ACM Conf. on Object-Oriented
Programming, Systems, Languages and Applications, 1992.

[18] William Cook, Walt Hill, and Peter Canning. Inheritance is
not subtyping. InProc. of the ACM Symp. on Principles of
Programming Languages, pages 125–135, 1990.

[19] William Cook and Jens Palsberg. A denotational semantics
of inheritance and its correctness. InProc. of ACM Conf.
on Object-Oriented Programming, Systems, Languages and
Applications, pages 433–444, 1989.

[20] William R. Cook and Victor Law. An algorithm editor for
structured design (abstract). InProc. of the ACM Computer
Science Conference, 1983.

[21] Allen Cypher. Eager: programming repetitive tasks by
example. InCHI ’91: Proceedings of the SIGCHI conference
on Human factors in computing systems, pages 33–39, New
York, NY, USA, 1991. ACM Press.

[22] Allen Cypher, editor.Watch What I Do – Programming by
Demonstration. MIT Press, Cambridge, MA, USA, 1993.
Full text available at web.media.mit.edu/ lieber/PBE/.

[23] A. Goldberg and D. Robson.Smalltalk-80: the Language and
Its Implementation. Addison-Wesley, 1983.

[24] A. Goldstein. AppleScript: The Missing Manual. O’Reilly,
2005.

[25] Warren Harris. Abel posthumous report. HP Labs, 1993.

[26] Apple Computer Inc. Scripting interface guidelines. Techni-
cal Report TN2106, Apple Computer Inc.

[27] Apple Computer Inc.HyperCard User’s Guide. Addison
Wesley, 1987.

[28] Apple Computer Inc.HyperCard Script Language Guide:

The HyperTalk Language. Addison Wesley, 1988.

[29] Steven C. Johnson. Yacc: Yet another compiler compiler.
In UNIX Programmer’s Manual, volume 2, pages 353–387.
Holt, Rinehart, and Winston, New York, NY, USA, 1979.

[30] S. Michel. HyperCard: The Complete Reference. Osborne
Mc-GrawHill, 1989.

[31] M. Neuburg. AppleScript : The Definitive Guide. O’Reilly,
2003.

[32] Object Management Group.OMG Unified Modeling
Language Specification Version 1.5, March 2003.

[33] David A. Patterson. Latency lags bandwith.Commun. ACM,
47(10):71–75, 2004.

[34] Trygve Reenskaug. Models — views — controllers.
Technical report, Xerox PARC, December 1979.

[35] Alan Snyder. The essence of objects: Concepts and terms.
IEEE Softw., 10(1):31–42, 1993.

[36] Lynn Andrea Stein, Henry Lieberman, and David Ungar.
A shared view of sharing: The treaty of orlando. In Won
Kim and Frederick H. Lochovsky, editors,Object-Oriented
Concepts, Databases and Applications, pages 31–48. ACM
Press and Addison-Wesley, 1989.

[37] D. Ungar and R.B. Smith. Self: The power of simplicity.
In Proc. of ACM Conf. on Object-Oriented Programming,
Systems, Languages and Applications, pages 227–242, 1987.

[38] Murali Venkatrao and Michael Pizzo. SQL/CLI – a new
binding style for SQL.SIGMOD Record, 24(4):72–77, 1995.

[39] Steven R. Wood. Z — the 95% program editor. In
Proceedings of the ACM SIGPLAN SIGOA symposium on
Text manipulation, pages 1–7, New York, NY, USA, 1981.
ACM Press.

1-21

