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Department of Electrical Engineering and Computer Science

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

6.5840 Distributed System Engineering: Spring 2024

Exam II

Please write your name on the bottom of each page. You have 120 minutes to complete this exam.

Some questions may be much harder than others. Read them all through first and attack them in
the order that allows you to make the most progress. If you find a question ambiguous, write down
any assumptions you make. Write neatly. In order to receive full credit you must answer each
question as precisely as possible.

You may use class notes, papers, and lab material. You may read them on your laptop, but you
are not allowed to use any network. For example, you may not look at web sites, use ChatGPT, or
communicate with anyone.

The maximum number points available is 74.

Gradescope E-Mail Address:

Name:
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Grade statistics for Exam 2

max = 74

median = 60

µ = 59.61

σ = 9.13

Name:
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I Spanner

The intelligent computer HAL is using Spanner (as described in Spanner: Google’s Globally-
Distributed Database by Corbett et al.) to store data. HAL notes that read/write transactions
are being slowed down by Spanner’s commit-wait mechanism (see Section 4.2.1). HAL disables
commit-wait in his Spanner installation; as a result, everything works just as described in the paper
except that the coordinator leader does not wait until the timestamp s is guaranteed to be in the
past.

HAL uses just these three transactions:

T1:
X=1
Y=1

T2:
X=22
Y=22

T3:
print X, Y

Initially, database records X and Y both have value 0. X and Y are in different Spanner shards,
managed by different Paxos groups. T1 and T2 are read/write transactions; T3 is a read-only
transaction.

HAL starts T1; waits for Spanner to say that T1 has completed; starts T2, waits for Spanner to say
that T2 has completed; then starts T3 and observes T3’s output.

1. [5 points]: Which outputs from T3 are possible? (For each statement, circle True or
False.)

True / False : 22, 22

True / False : 1, 1

True / False : 1, 22

True / False : 0, 0

Answer: 22,22, 1,1, and 0,0 are all possible; 1,22 is not. Omitting commit-wait means that
either or both of T1 and T2 might commit with time-stamps later than the time-stamp that T3
chooses, so T3 might see the result of either T1 or T2, or neither. T3 can’t see 1,22 because
both T1 and T2 do both their writes at the same timestamp, so T3 will either see both writes
of one of the transactions, or neither.
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II Chardonnay

Consider the paper Chardonnay: Fast and General Datacenter Transactions for On-Disk Databases,
by Eldeeb et al.

A read/write Chardonnay transaction reads database record A, then reads B, and then writes C. The
system is busy with other read/write transactions at the same time, some of which might also use
A, B, and/or C.

2. [4 points]: In which situation will Chardonnay’s “dry run” mechanism yield the most
benefit? (Circle the single best answer.)

* A is hot, B is cold.

* A is cold, B is hot.

* A is cold, B is cold.

* A is hot, B is hot.

“Cold” means used rarely. “Hot” means used by many transactions.

Answer: Only the first answer (hot, cold) is correct. Chardonnay’s dry run mechanism helps
avoid situations in which a transaction holds the lock for a record that other transactions need,
while waiting to read a record from the disk. This situation arises when a read/write transaction
uses a hot record followed by a cold record.
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A system that uses Chardonnay issues just these three transactions:

T1:
X=1

T2:
Y=1

T3:
print X, Y

Initially, both database records (X and Y) start out with value 0. X and Y are in different ranges. T1
and T2 are read/write transactions. T3 is a read-only transaction (described in the paper’s Section
6). T3 does not use the the waiting idea described in the last paragraph of Section 6.2.

One client starts T1. After T1 completes, another client starts T2. After T2 completes, a third client
runs T3.

This version of Chardonnay has a bug somewhere in its code, causing T3 to print the incorrect
output 0,1.

3. [4 points]: Which of the following bugs is the most plausible explanation for T3 printing
0,1? Circle the single most correct answer.

* The epoch server is stuck: it always returns the same epoch number, and never increases it.

* The epoch server is incrementing too quickly: more than once per 10 milliseconds.

* The epoch server is working correctly except it gave T2 an epoch that was too small.

* The epoch server is working correctly except it gave T2 an epoch that was too large.

Answer: The third answer is correct. 0,1 is not a correct output because serializability
requires that if T3 observes the results of T2, and T1 finished before T2 started, then T3 is
required to also see the results of T1. If the epoch server gives T2 an epoch that’s less than
T1’s epoch, and T3 and T1 run in the same epoch, then T3 will see T2’s Y=1 but not T1’s
X=1.
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III FaRM

Consider the following statements about FaRM as described in No compromises: distributed trans-
actions with consistency, availability, and performance. For each statement, circle True or False.

4. [8 points]:

True / False : Because FaRM uses primary-backup replication for a region (instead of
Paxos), FaRM must reconfigure to remove a failed replica before FaRM can continue to
use the region.

True / False : FaRM can use short leases (10ms by default) because it has communication
and scheduling optimizations to renew leases quickly.

True / False : A transaction that modifies only one object will never abort.

True / False : Read-only transactions require only the validate step of the Commit phase in
Figure 4.

Answer: True, True, False, True. The first statement is true because FaRM requires a response
from all replicas, thus it must reconfigure to remove the failed replica before it can continue with
the affected shard. The third statement is false because another transaction may modify the one
object causing this transaction’s validation phase to fail (because the other transaction will have
incremented the object’s version number).
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IV Ray

Consider the following Ray program, which creates a sqrt task task for each number in the list
mylist. The creation yields a DFut and the caller waits for the tasks to complete by calling get
on each future. The code is as follows:

# A call to sqrt_task yields a DFut
@ray.remote
def sqrt_task(n):

# sqrt is a python function, which returns the square root of its argument
return sqrt(n)

def sqrts0(n_list):
# start tasks and collect futures
l = [ ] # list holding DFuts
for i in n_list: # iterate over list of numbers

l.append(sqrt_task(i))

r = [ ]
for f in l:

r.append(get(f)) # collect the result

return r

print(sqrts0(mylist)) # invoke sqrts0 with a list of numbers and print result

Assume Ray behaves in the way described in Ownership: a distributed futures system for fine-
grained tasks by Wang et al., and Ray is running on a cluster of computers.

5. [4 points]:

Will the sqrt computations complete in the order that sqrts0 appends to r? (Briefly
explain your answer)

Answer: No. The sqrt tasks run concurrently with each other, and may finish in an arbitrary
order. All that is guaranteed is that the task has finished executing (at least once) by the time
get(f) returns.
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Alyssa creates a function sqrts1 whose body is the same as sqrts0, but is declared as a remote
task. She then modifies the program to invoke many sqrts1’s, each with a large distinct, non-
overlapping slice of the number list. The code is as follows:

@ray.remote
def sqrts1(n_list):

...
# same code as sqrts0
...
return r

f0 = sqrts1(mylist[...])
f1 = sqrts1(mylist[...])
f2 = sqrts1(mylist[...])
...

print(get(f0))
print(get(f1))
...

6. [4 points]:

Ben is worried that the above program creates so many sqrt tasks tasks that Ray will be
bottle-necked by managing the tasks and the futures they yield. Briefly explain why Ray can
manage many tasks in parallel for the above program?

Answer: The worker machine that invokes sqrts1(...) is the owner of the metadata for the
value returned by each sqrts1 call. The many workers that execute sqrts1() each indepen-
dently own the metadata for their sqrt task’s, resulting in no one machine being required to
manage all the sqrt tasks.
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V Memcache at Facebook

Ben Bitdiddle runs a web site. Ben reads the paper Scaling Memcache at Facebook by Nishtala
et al., and thinks that the design is too complex. So Ben decides to ignore the paper’s design: he
doesn’t use leases, mcrouter, pools, etc. Ben uses only the mechanisms described below.

Ben has just a single region, with some web servers, some memcache servers, and a single database
server. Ben programs each of his web servers to use the following client code to read and write
data:

read(k):
if v = memcache_get(k) succeeds

return v
else

return database_get(k)

write(k, v):
database_put(k, v)
memcache_put(k, v)

Note that read() does not insert anything into memcache, and note that write() always in-
serts the new data into memcache, whether it was already cached or not. Ben knows this may be
wasteful, since it may cause memcache to cache data that’s never read, but he doesn’t mind.

7. [5 points]: Sadly, Ben sees that read()s sometimes return stale data for a long time
after the write() of a newer value has succeeded and returned. Explain how this could
happen.

Answer: If there are concurrent writes by different clients to the same key, the calls to
database put() may execute in a different order that the calls to memcache put(), so that
memcache and the database end up with different values. This condition can persistent for a long
time: until the next time a client writes the same key.
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VI Lab 4

Ben implements the RPC handlers and the applier in Lab 4 as follows. The RPC handlers for Get,
Put, and Append take the following steps:

A. Submit a command to the Raft library via Start. The command includes the client ID,
request ID, operation type, and arguments.

B. Loop to wait until the reply for that command to show up in the reply table, which maps from
client IDs to the replies of clients’ latest requests. Each reply contains the request ID and the
result to that request. If Raft’s leadership changes during the loop, return ErrWrongLeader.

C. Return the result stored in the reply table.

The applier detail is irrelevant to this question and is shown on the next page.

8. [4 points]:

Ben observes that Get does not modify the application state. He changes Get’s RPC han-
dler to read the key-value table and return immediately to the client the result. Does this
implementation preserve linearizability? (Briefly explain your answer.)

Answer: No. Get could return a stale result if Raft the leadership changes. For instance, if
a client submits an Append to the old leader and succeeds, and then submits a Get to the new
leader, the Get result could miss the appended value if the new leader handles the Get before
applying the Append.
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The applier takes the following steps:

D. Read a command from the apply channel.

E. De-duplicate the command with the reply table: if the request ID in the reply table for the
client is greater than or equal to that in the command, then skip the command.

F. Apply the command and insert the result to the reply table.

9. [4 points]:

Separately from the previous change, Ben modifies his implementation to perform de-duplication
early in the RPC handlers. Concretely, he removes step E in the applier, and adds an addi-
tional step at the start of the RPC handlers (i.e., before step A) as follows:

If the request ID in the reply table for the client is greater than or equal to that in the RPC
arguments, return the result stored in the reply table.

Does this implementation preserve linearizability? (Briefly explain your answer.)

Answer: No. An operation could be applied twice if the client re-sends it before the first RPC is
applied.
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VII AWS Lambda

Consider the guest lecture about the paper On-demand container loading in AWS Lambda by
Brooker et al. For each of the following statements, indicate whether it is true or false.

10. [8 points]:

True / False : AWS Lambda is attractive to customers because it allows them to run cloud
computations without having to provision a machine.

True / False : Many containers of AWS Lambda customers don’t contain unique chunks
because customers upload the same container multiple times.

True / False : AWS Lambda may deduplicate popular chunks less than unpopular chunks.

True / False : AWS Lambdas use LRU-K to ensure that if many infrequently-used Lambdas
are running at the same time, they don’t evict the chunks of frequently-used Lambdas.

Answer: True, True, True, True. The third option is true because AWS does this to reduce the
blast radius of popular chunks (see Section 3.3).
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VIII Boki

Consider Figure 6(a) in Boki: Stateful Serverless Computing with Shared Logs by Jia and Witchel.
The left column describes how Boki makes the execution of a workflow of serverless functions
with database side-effects exactly-once.

Alyssa notices that if Boki reruns a workflow it will append a record to the workflow’s LogBook,
even if an append of an earlier failed execution already logged the record. Alyssa proposes to
change the pattern of append-read to read-append-read: that is, she modifies Boki to read before
an append to see if the append already logged its record; if so, it uses the first value returned by the
read and skips the subsequent append and read. (If not, Boki executes as before, doing an append
followed by read.)

For example, Alyssa changes write as follows:

def write(table, key, val):
tag = hashLogTag([ID, STEP])
# first read
rec = logReadNext(tag: tag, minSeqnum: 0)
# if no record, then append and read again
if rec == None:

logAppend([tags: [tag], data: [table, key, val])
rec = logReadNext(tag: tag, minSeqnum: 0)

rawDBWRITE(...) # same call as before
STEP = STEP + 1

11. [5 points]:

Alyssa runs one workflow on her modified Boki. The workflow crashes during its execution
and then restarts from the beginning and completes. With Alyssa’s modification will write
preserve exactly-once semantics? (Briefly explain your answer.)

Answer: It will preserve exactly-once semantics. In the case that logReadNext() re-
turns something non-None initially, it will always return that same log record. So even if
write() did a logAppend(), the final logReadNext() would have the same value as the
logReadNext() that is executed before logAppend().
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IX SUNDR

Consider the straw-man design in the paper Secure Untrusted Data Repository (SUNDR) by Li et
al.

Users A, B, and C share a SUNDR server. The server may be malicious, though the server does
not know any of the private keys. User A creates a new file aaa in the SUNDR file system. After
that, user B looks for file aaa, but does not see the file. After that, user C creates a new empty file
ccc.

There is no client activity other than what is described here. None of the stronger consistency ideas
from the paper’s Section 3.2 are in use. All three users are honest and run correct SUNDR client
software.

All three users now use the ls command to check whether they can see file ccc. All three users’
client SUNDR implementations report that the data they receive from SUNDR passes all validity
checks. Nevertheless, a malicious SUNDR server can cause a number of different outcomes.

12. [6 points]: What combinations are possible for which users can see ccc? For each
statement, circle True if the SUNDR server could cause the indicated results, and False if
not.

True / False : All three users can see ccc.

True / False : Only A and B can see ccc, but not C.

True / False : Only A and C can see ccc, but not B.

True / False : Only B and C can see ccc, but not A.

True / False : Only C can see ccc, but not A or B.

True / False : None of the users can see ccc.

Answer: The correct answers are A and C but not B, B and C but not A, and only C. We know that
the server has forked A and B from the fact that B cannot see aaa. So A and B have seen different
operation histories, and each has appended an operation to the history it saw, and remembered that
operation. Thus, when C asks the server for the current history (before C creates ccc), the SUNDR
server can show C A’s fork of the history, B’s fork, or perhaps the history as of before A’s creation
of aaa. As a result, after C creates ccc, ccc will be visible to A (but not B), to B (but not A), and to
C alone, respectively.
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X PBFT

Consider the PBFT protocol as described in the paper Practical Byzantine Fault Tolerance by
Castro and Liskov.

13. [5 points]:

PBFT chooses the primary for a view deterministically based on the view number. What
could go wrong if PBFT were to use Raft’s voting algorithm to select a primary for a view?
(Briefly explain your answer.)

Answer: Raft’s voting algorithm does not result in a single leader-per-term under byzantine
faults. Consider a 7 node system with 2 Byzantine nodes. The nodes that vote for A for term
T are A, B, C, D, and allow A to conclude it is leader. The nodes that vote for D for term T
are E, F, G, D, and allow D to conclude it is leader. Of these, only D is Byzantine and has
equivocated by voting for both A and D. All the other nodes may vote this way while acting
non-byzantine. This results in two primaries for a single term and violates the assumptions
that the rest of pbft builds on.
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XI Bitcoin

Section 4 of Nakamoto’s Bitcoin paper explains that the difficulty of mining is determined by the
number of required leading zeros in the SHA-256 hash of the block. The paper also says that
Bitcoin automatically varies the difficulty of mining (the number of required leading zeros) by ob-
serving the recent average rate of new block mining, relative to the target block every ten minutes;
if blocks have been generated too quickly, the difficulty is increased; if too slowly, decreased. All
honest Bitcoin peers use the same algorithm to determine the difficulty.

Ben dreams of being able to buy tickets to the latest Taylor Swift concert. To obtain the money
required, Ben has been running the Bitcoin peer software on his laptop, but he hasn’t been earn-
ing mining rewards very quickly, because his laptop is only the winning miner very infrequently.
Hoping to realize his dream faster, Ben modifies his copy of the Bitcoin peer software so that the
difficulty determination algorithm always yields a low difficulty, with the result that his peer can
mine new blocks very quickly, often before any other Bitcoin miner produces a given new block in
the chain.

14. [5 points]: It turns out that Ben won’t actually earn any bitcoins with this scheme.
Explain why not.

Answer: Bitcoin peers that run correct software will check that any proposed new block has a
hash with the expected number of leading zeros. Those peers are running the correct difficulty-
determining algorithm, so they will reject Ben’s blocks because their hashes have too few leading
zeros.
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6.5840 Spring 2024, Exam II Page 17 of 19

XII 6.5840

15. [1 points]: Which lectures/papers should we omit in future years?

– Spanner (3)
– Chardonnay (22)
– FaRM (8)
– DynamoDB (7)
– Ray (9)
– Memcache at Facebook (3)
– AWS Lambda (20)
– Boki (62)
– SUNDR (6)
– PBFT (7)
– Bitcoin (1)

16. [1 points]: Porcupine, the linearizability checker used in the labs, comes with a visu-
alizer that displays in a web browser the entire history of client operations, and highlights
non-linearizable errors, if any. Circle the one closest to your experience with the visualizer.

– I don’t know its existence. (46)
– I’ve used it, but it isn’t particularly helpful to me. (25)
– I’ve used it, and sometimes I understand the result but sometimes don’t. (19)
– I’ve used it, and it successfully explains to me why the result is non-linearizable. (7)
– I’ve used it, and it significantly improves my debugging experience. (2)
– Other (please briefly describe your experience): (2)

17. [1 points]: Do you have any feedback for us about 6.5840?

• (7) less dependence between labs, and want to see/use correct Raft for later labs

• (6) labs about systems/papers other than Raft (e.g. distributed transactions)

• (5) better class notes (e.g. slides)
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• (4) better debugging tools (e.g. logging, better visualization)

• (4) TA recitation/office hours for papers specifically + exam review

• (4) guidance on how to read papers/which parts of papers

• (4) stronger tests for earlier labs

• (4) clearer answers to lecture questions

• (2) more office hours

• (2) study fewer papers more deeply

• (3) examples or demos of real world systems

• (2) more lab instructions

• (2) liked emails answering pre-lecture questions

• extra lecture for lab 5

• want more fundamental lecture on formal verification

• lecture on CRDTs, seems like a big topic in distributed systems

• update sundr to a newer system

• ethereum paper get higher priority

• bring back ethereum

• want more time on BFT

• extra credit for lab challenge exercises

• skip lab 2

• want all labs due at end of semester, no late penalty

• want questions due night before instead of the minute before lecture

• survey students to determine how hard labs are

• find a better lecture question for bitcoin

• more grading weight on labs

• the amazon papers were a bit vague in describing precise system/algorithm
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• really liked guest AWS lectures

• more conceptual checks on new papers

• want more practice Qs for new paper

End of Exam II
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