
Zanzibar: Google’s Consistent, Global Authorization System

Ruoming Pang,1 Ramón Cáceres,1 Mike Burrows,1 Zhifeng Chen,1 Pratik Dave,1

Nathan Germer,1 Alexander Golynski,1 Kevin Graney,1 Nina Kang,1 Lea Kissner,2∗

Jeffrey L. Korn,1 Abhishek Parmar,3∗ Christina D. Richards,1 Mengzhi Wang1

Google, LLC;1 Humu, Inc.;2 Carbon, Inc.3

{rpang,caceres}@google.com

Abstract
Determining whether online users are authorized to access
digital objects is central to preserving privacy. This pa-
per presents the design, implementation, and deployment
of Zanzibar, a global system for storing and evaluating ac-
cess control lists. Zanzibar provides a uniform data model
and configuration language for expressing a wide range of
access control policies from hundreds of client services at
Google, including Calendar, Cloud, Drive, Maps, Photos,
and YouTube. Its authorization decisions respect causal or-
dering of user actions and thus provide external consistency
amid changes to access control lists and object contents.
Zanzibar scales to trillions of access control lists and millions
of authorization requests per second to support services used
by billions of people. It has maintained 95th-percentile la-
tency of less than 10 milliseconds and availability of greater
than 99.999% over 3 years of production use.

1 Introduction

Many online interactions require authorization checks to
confirm that a user has permission to carry out an operation
on a digital object. For example, web-based photo storage
services typically allow photo owners to share some photos
with friends while keeping other photos private. Such a ser-
vice must check whether a photo has been shared with a user
before allowing that user to view the photo. Robust autho-
rization checks are central to preserving online privacy.

This paper presents Zanzibar, a system for storing per-
missions and performing authorization checks based on the
stored permissions. It is used by a wide array of services
offered by Google, including Calendar, Cloud, Drive, Maps,
Photos, and YouTube. Several of these services manage bil-
lions of objects on behalf of more than a billion users.

A unified authorization system offers important advan-
tages over maintaining separate access control mechanisms
for individual applications. First, it helps establish consistent

∗Work done while at Google.

semantics and user experience across applications. Second,
it makes it easier for applications to interoperate, for exam-
ple, to coordinate access control when an object from one ap-
plication embeds an object from another application. Third,
useful common infrastructure can be built on top of a unified
access control system, in particular, a search index that re-
spects access control and works across applications. Finally,
as we show below, authorization poses unique challenges in-
volving data consistency and scalability. It saves engineering
resources to tackle them once across applications.

We have the following goals for the Zanzibar system:

• Correctness: It must ensure consistency of access con-
trol decisions to respect user intentions.

• Flexibility: It must support a rich set of access control
policies as required by both consumer and enterprise
applications.

• Low latency: It must respond quickly because autho-
rization checks are often in the critical path of user in-
teractions. Low latency at the tail is particularly impor-
tant for serving search results, which often require tens
to hundreds of checks.

• High availability: It must reliably respond to requests
because, in the absence of explicit authorizations, client
services would be forced to deny their users access.

• Large scale: It needs to protect billions of objects
shared by billions of users. It must be deployed around
the globe to be near its clients and their end users.

Zanzibar achieves these goals through a combination of
notable features. To provide flexibility, Zanzibar pairs a sim-
ple data model with a powerful configuration language. The
language allows clients to define arbitrary relations between
users and objects, such as owner, editor, commenter, and
viewer. It includes set-algebraic operators such as inter-
section and union for specifying potentially complex access
control policies in terms of those user-object relations. For
example, an application can specify that users granted edit-
ing rights on a document are also allowed to comment on the

Proc. of 2019 USENIX Annual Technical Conference (USENIX ATC ’19) 1

document, but not all commenters are given editing rights.
At runtime, Zanzibar allows clients to create, modify, and

evaluate access control lists (ACLs) through a remote proce-
dure call (RPC) interface. A simple ACL takes the form of
“user U has relation R to object O”. More complex ACLs
take the form of “set of users S has relation R to object O”,
where S is itself specified in terms of another object-relation
pair. ACLs can thus refer to other ACLs, for example to
specify that the set of users who can comment on a video
consists of the users who have been granted viewing rights
on that specific video along with those with viewing permis-
sions on the video channel.

Group memberships are an important class of ACL where
the object is a group and the relation is semantically equiv-
alent to member. Groups can contain other groups, which
illustrates one of the challenges facing Zanzibar, namely that
evaluating whether a user belongs to a group can entail fol-
lowing a long chain of nested group memberships.

Authorization checks take the form of “does user U have
relation R to object O?” and are evaluated by a collection of
distributed servers. When a check request arrives to Zanz-
ibar, the work to evaluate the check may fan out to multiple
servers, for example when a group contains both individual
members and other groups. Each of those servers may in turn
contact other servers, for example to recursively traverse a
hierarchy of group memberships.

Zanzibar operates at a global scale along multiple dimen-
sions. It stores more than two trillion ACLs and performs
millions of authorization checks per second. The ACL data
does not lend itself to geographic partitioning because au-
thorization checks for any object can come from anywhere
in the world. Therefore, Zanzibar replicates all ACL data in
tens of geographically distributed data centers and distributes
load across thousands of servers around the world.

Zanzibar supports global consistency of access control de-
cisions through two interrelated features. One, it respects the
order in which ACL changes are committed to the underlying
data store. Two, it can ensure that authorization checks are
based on ACL data no older than a client-specified change.
Thus, for example, a client can remove a user from a group
and be assured that subsequent membership checks reflect
that removal. Zanzibar provides these ordering properties by
storing ACLs in a globally distributed database system with
external consistency guarantees [15, 18].

Zanzibar employs an array of techniques to achieve low
latency and high availability in this globally distributed en-
vironment. Its consistency protocol allows the vast majority
of requests to be served with locally replicated data, with-
out requiring cross-region round trips. Zanzibar stores its
data in normalized forms for consistency. It handles hot
spots on normalized data by caching final and intermediate
results, and by deduplicating simultaneous requests. It also
applies techniques such as hedging requests and optimizing
computations on deeply nested sets with limited denormal-

ization. Zanzibar responds to more than 95% of authoriza-
tion checks within 10 milliseconds and has maintained more
than 99.999% availability for the last 3 years.

The main contributions of this paper lie in conveying the
engineering challenges in building and deploying a consis-
tent, world-scale authorization system. While most elements
of Zanzibar’s design have their roots in previous research,
this paper provides a record of the features and techniques
Zanzibar brings together to satisfy its stringent requirements
for correctness, flexibility, latency, availability, and scalabil-
ity. The paper also highlights lessons learned from operating
Zanzibar in service of a diverse set of demanding clients.

2 Model, Language, and API

This section describes Zanzibar’s data model, configuration
language, and application programming interface (API).

2.1 Relation Tuples
In Zanzibar, ACLs are collections of object-user or object-
object relations represented as relation tuples. Groups are
simply ACLs with membership semantics. Relation tuples
have efficient binary encodings, but in this paper we repre-
sent them using a convenient text notation:

⟨tuple⟩ ::= ⟨object⟩‘#’⟨relation⟩‘@’⟨user⟩

⟨object⟩ ::= ⟨namespace⟩‘:’⟨object id⟩

⟨user⟩ ::= ⟨user id⟩ | ⟨userset⟩

⟨userset⟩ ::= ⟨object⟩‘#’⟨relation⟩

where ⟨namespace⟩ and ⟨relation⟩ are predefined in client
configurations (§2.3), ⟨object id⟩ is a string, and ⟨user id⟩
is an integer. The primary keys required to identify a relation
tuple are ⟨namespace⟩, ⟨object id⟩, ⟨relation⟩, and ⟨user⟩.
One feature worth noting is that a ⟨userset⟩ allows ACLs to
refer to groups and thus supports representing nested group
membership.

Table 1 shows some example tuples and corresponding se-
mantics. While some relations (e.g. viewer) define access
control directly, others (e.g. parent, pointing to a folder)
only define abstract relations between objects. These ab-
stract relations may indirectly affect access control given
userset rewrite rules specified in namespace configs (§2.3.1).

Defining our data model around tuples, instead of per-
object ACLs, allows us to unify the concepts of ACLs and
groups and to support efficient reads and incremental up-
dates, as we will see in §2.4.

2.2 Consistency Model
ACL checks must respect the order in which users modify
ACLs and object contents to avoid unexpected sharing be-
haviors. Specifically, our clients care about preventing the

Proc. of 2019 USENIX Annual Technical Conference (USENIX ATC ’19) 2

Example Tuple in Text Notation Semantics

doc:readme#owner@10 User 10 is an owner of doc:readme

group:eng#member@11 User 11 is a member of group:eng

doc:readme#viewer@group:eng#member Members of group:eng are viewers of doc:readme

doc:readme#parent@folder:A#... doc:readme is in folder:A

Table 1: Example relation tuples. “#...” represents a relation that does not affect the semantics of the tuple.

“new enemy” problem, which can arise when we fail to re-
spect the ordering between ACL updates or when we apply
old ACLs to new content. Consider these two examples:

Example A: Neglecting ACL update order

1. Alice removes Bob from the ACL of a folder;
2. Alice then asks Charlie to move new documents to

the folder, where document ACLs inherit from folder
ACLs;

3. Bob should not be able to see the new documents,
but may do so if the ACL check neglects the ordering
between the two ACL changes.

Example B: Misapplying old ACL to new content

1. Alice removes Bob from the ACL of a document;
2. Alice then asks Charlie to add new contents to the

document;
3. Bob should not be able to see the new contents, but

may do so if the ACL check is evaluated with a stale
ACL from before Bob’s removal.

Preventing the “new enemy” problem requires Zanzibar to
understand and respect the causal ordering between ACL or
content updates, including updates on different ACLs or ob-
jects and those coordinated via channels invisible to Zanz-
ibar. Hence Zanzibar must provide two key consistency
properties: external consistency [18] and snapshot reads
with bounded staleness.

External consistency allows Zanzibar to assign a times-
tamp to each ACL or content update, such that two causally
related updates x ≺ y will be assigned timestamps that reflect
the causal order: Tx < Ty. With causally meaningful times-
tamps, a snapshot read of the ACL database at timestamp
T , which observes all updates with timestamps ≤ T , will re-
spect ordering between ACL updates. That is, if the read
observes an update x, it will observe all updates that happen
causally before x.

Furthermore, to avoid applying old ACLs to new contents,
the ACL check evaluation snapshot must not be staler than
the causal timestamp assigned to the content update. Given a
content update at timestamp Tc, a snapshot read at timestamp

≥ Tc ensures that all ACL updates that happen causally be-
fore the content update will be observed by the ACL check.

To provide external consistency and snapshot reads with
bounded staleness, we store ACLs in the Spanner global
database system [15]. Spanner’s TrueTime mechanism as-
signs each ACL write a microsecond-resolution timestamp,
such that the timestamps of writes reflect the causal ordering
between writes, and thereby provide external consistency.
We evaluate each ACL check at a single snapshot timestamp
across multiple database reads, so that all writes with times-
tamps up to the check snapshot, and only those writes, are
visible to the ACL check.

To avoid evaluating checks for new contents using stale
ACLs, one could try to always evaluate at the latest snapshot
such that the check result reflects all ACL writes up to the
check call. However, such evaluation would require global
data synchronization with high-latency round trips and lim-
ited availability. Instead, we design the following protocol to
allow most checks to be evaluated on already replicated data
with cooperation from Zanzibar clients:

1. A Zanzibar client requests an opaque consistency token
called a zookie for each content version, via a content-
change ACL check (§2.4.4) when the content modifi-
cation is about to be saved. Zanzibar encodes a current
global timestamp in the zookie and ensures that all prior
ACL writes have lower timestamps. The client stores
the zookie with the content change in an atomic write to
the client storage. Note that the content-change check
does not need to be evaluated in the same transaction as
the application content modification, but only has to be
triggered when the user modifies the contents.

2. The client sends this zookie in subsequent ACL check
requests to ensure that the check snapshot is at least as
fresh as the timestamp for the content version.

External consistency and snapshot reads with staleness
bounded by zookie prevent the “new enemy” problem. In
Example A, ACL updates A1 and A2 will be assigned times-
tamps TA1 < TA2, respectively. Bob will not be able to see
the new documents added by Charlie: if a check is evalu-
ated at T < TA2, the document ACLs will not include the
folder ACL; if a check is evaluated at T ≥ TA2 > TA1, the
check will observe update A1, which removed Bob from the

Proc. of 2019 USENIX Annual Technical Conference (USENIX ATC ’19) 3

folder ACL. In Example B, Bob will not see the new contents
added to the document. For Bob to see the new contents, the
check must be evaluated with a zookie ≥ TB2, the timestamp
assigned to the content update. Because TB2 > TB1, such a
check will also observe the ACL update B1, which removed
Bob from the ACL.

The zookie protocol is a key feature of Zanzibar’s consis-
tency model. It ensures that Zanzibar respects causal order-
ing between ACL and content updates, but otherwise grants
Zanzibar freedom to choose evaluation timestamps so as to
meet its latency and availability goals. The freedom arises
from the protocol’s at-least-as-fresh semantics, which allow
Zanzibar to choose any timestamp fresher than the one en-
coded in a zookie. Such freedom in turn allows Zanzibar to
serve most checks at a default staleness with already repli-
cated data (§3.2.1) and to quantize evaluation timestamps to
avoid hot spots (§3.2.5).

2.3 Namespace Configuration
Before clients can store relation tuples in Zanzibar, they
must configure their namespaces. A namespace configura-
tion specifies its relations as well as its storage parameters.
Each relation has a name, which is a client-defined string
such as viewer or editor, and a relation config. Storage pa-
rameters include sharding settings and an encoding for object
IDs that helps Zanzibar optimize storage of integer, string,
and other object ID formats.

2.3.1 Relation Configs and Userset Rewrites

While relation tuples reflect relationships between objects
and users, they do not completely define the effective ACLs.
For example, some clients specify that users with editor

permissions on each object should have viewer permission
on the same object. While such relationships between rela-
tions can be represented by a relation tuple per object, storing
a tuple for each object in a namespace would be wasteful and
make it hard to make modifications across all objects. In-
stead, we let clients define object-agnostic relationships via
userset rewrite rules in relation configs. Figure 1 demon-
strates a simple namespace configuration with concentric re-
lations, where viewer contains editor, and editor con-
tains owner.

Userset rewrite rules are defined per relation in a names-
pace. Each rule specifies a function that takes an object ID as
input and outputs a userset expression tree. Each leaf node
of the tree can be any of the following:

• this: Returns all users from stored relation tuples for
the ⟨object#relation⟩ pair, including indirect ACLs ref-
erenced by usersets from the tuples. This is the default
behavior when no rewrite rule is specified.

• computed userset: Computes, for the input object,
a new userset. For example, this allows the userset ex-
pression for a viewer relation to refer to the editor

userset on the same object, thus offering an ACL inher-

name: "doc"

relation { name: "owner" }

relation {

name: "editor"

userset_rewrite {

union {

child { _this {} }

child { computed_userset { relation: "owner" } }

} } }

relation {

name: "viewer"

userset_rewrite {

union {

child { _this {} }

child { computed_userset { relation: "editor" } }

child { tuple_to_userset {

tupleset { relation: "parent" }

computed_userset {

object: $TUPLE_USERSET_OBJECT # parent folder

relation: "viewer"

} } }

} } }

Figure 1: Simple namespace configuration with concentric
relations on documents. All owners are editors, and all ed-
itors are viewers. Further, viewers of the parent folder are
also viewers of the document.

itance capability between relations.
• tuple to userset: Computes a tupleset (§2.4.1)

from the input object, fetches relation tuples matching
the tupleset, and computes a userset from every fetched
relation tuple. This flexible primitive allows our clients
to express complex policies such as “look up the parent
folder of the document and inherit its viewers”.

A userset expression can also be composed of multiple
sub-expressions, combined by operations such as union, in-
tersection, and exclusion.

2.4 API

In addition to supporting ACL checks, Zanzibar also pro-
vides APIs for clients to read and write relation tuples, watch
tuple updates, and inspect the effective ACLs.

A concept used throughout these API methods is that of
a zookie. A zookie is an opaque byte sequence encoding a
globally meaningful timestamp that reflects an ACL write, a
client content version, or a read snapshot. Zookies in ACL
read and check requests specify staleness bounds for snap-
shot reads, thus providing one of Zanzibar’s core consistency
properties. We choose to use an opaque cookie instead of the
actual timestamp to discourage our clients from choosing ar-
bitrary timestamps and to allow future extensions.

Proc. of 2019 USENIX Annual Technical Conference (USENIX ATC ’19) 4

2.4.1 Read

Our clients read relation tuples to display ACLs or group
membership to users, or to prepare for a subsequent write.
A read request specifies one or multiple tuplesets and an op-
tional zookie.

Each tupleset specifies keys of a set of relation tuples. The
set can include a single tuple key, or all tuples with a given
object ID or userset in a namespace, optionally constrained
by a relation name. With the tuplesets, clients can look up
a specific membership entry, read all entries in an ACL or
group, or look up all groups with a given user as a direct
member. All tuplesets in a read request are processed at a
single snapshot.

With the zookie, clients can request a read snapshot no
earlier than a previous write if the zookie from the write re-
sponse is given in the read request, or at the same snapshot as
a previous read if the zookie from the earlier read response
is given in the subsequent request. If the request doesn’t
contain a zookie, Zanzibar will choose a reasonably recent
snapshot, possibly offering a lower-latency response than if
a zookie were provided.

Read results only depend on contents of relation tuples and
do not reflect userset rewrite rules. For example, even if the
viewer userset always includes the owner userset, reading
tuples with the viewer relation will not return tuples with
the owner relation. Clients that need to understand the ef-
fective userset can use the Expand API (§2.4.5).

2.4.2 Write

Clients may modify a single relation tuple to add or remove
an ACL. They may also modify all tuples related to an object
via a read-modify-write process with optimistic concurrency
control [21] that uses a read RPC followed by a write RPC:

1. Read all relation tuples of an object, including a per-
object “lock” tuple.

2. Generate the tuples to write or delete. Send the writes,
along with a touch on the lock tuple, to Zanzibar, with
the condition that the writes will be committed only if
the lock tuple has not been modified since the read.

3. If the write condition is not met, go back to step 1.

The lock tuple is just a regular relation tuple used by
clients to detect write races.

2.4.3 Watch

Some clients maintain secondary indices of relation tuples
in Zanzibar. They can do so with our Watch API. A watch
request specifies one or more namespaces and a zookie rep-
resenting the time to start watching. A watch response con-
tains all tuple modification events in ascending timestamp
order, from the requested start timestamp to a timestamp en-
coded in a heartbeat zookie included in the watch response.
The client can use the heartbeat zookie to resume watching
where the previous watch response left off.

2.4.4 Check

A check request specifies a userset, represented by
⟨object#relation⟩, a putative user, often represented by an au-
thentication token, and a zookie corresponding to the desired
object version. Like reads, a check is always evaluated at a
consistent snapshot no earlier than the given zookie.

To authorize application content modifications, our clients
send a special type of check request, a content-change check.
A content-change check request does not carry a zookie and
is evaluated at the latest snapshot. If a content change is
authorized, the check response includes a zookie for clients
to store along with object contents and use for subsequent
checks of the content version. The zookie encodes the evalu-
ation snapshot and captures any possible causality from ACL
changes to content changes, because the zookie’s timestamp
will be greater than that of the ACL updates that protect the
new content (§2.2).

2.4.5 Expand

The Expand API returns the effective userset given an
⟨object#relation⟩ pair and an optional zookie. Unlike the
Read API, Expand follows indirect references expressed
through userset rewrite rules. The result is represented by
a userset tree whose leaf nodes are user IDs or usersets
pointing to other ⟨object#relation⟩ pairs, and intermediate
nodes represent union, intersection, or exclusion operators.
Expand is crucial for our clients to reason about the com-
plete set of users and groups that have access to their ob-
jects, which allows them to build efficient search indices for
access-controlled content.

3 Architecture and Implementation

Figure 2 shows the architecture of the Zanzibar system.
aclservers are the main server type. They are organized
in clusters and respond to Check, Read, Expand, and Write
requests. Requests arrive at any server in a cluster and that
server fans out the work to other servers in the cluster as
necessary. Those servers may in turn contact other servers to
compute intermediate results. The initial server gathers the
final result and returns it to the client.

Zanzibar stores ACLs and their metadata in Spanner
databases. There is one database to store relation tuples for
each client namespace, one database to hold all namespace
configurations, and one changelog database shared across all
namespaces. aclservers read and write those databases in
the course of responding to client requests.
watchservers are a specialized server type that respond

to Watch requests. They tail the changelog and serve a
stream of namespace changes to clients in near real time.

Zanzibar periodically runs a data processing pipeline to
perform a variety of offline functions across all Zanzibar data
in Spanner. One such function is to produce dumps of the re-
lation tuples in each namespace at a known snapshot times-

Proc. of 2019 USENIX Annual Technical Conference (USENIX ATC ’19) 5

read

write

Zanzibar serving cluster

Check, Read,
Expand, Write

aclserver aclserver

aclserver aclserver

client

watchserver

...

Spanner global database system

client

Watch

read/write append tail

changelognamespace
configs

read/write

namespace 1
relation tuples

namespace N
relation tuples

periodic offline
pipeline

dump

namespace
snapshots

Leopard
indexing system

readWatch

optimized set
computation

Figure 2: Zanzibar architecture. Arrows indicate the direction of data flow.

tamp. Another is to garbage-collect tuple versions older than
a threshold configured per namespace.

Leopard is an indexing system used to optimize operations
on large and deeply nested sets. It reads periodic snapshots
of ACL data and watches for changes between snapshots. It
performs transformations on that data, such as denormaliza-
tion, and responds to requests from aclservers.

The rest of this section presents the implementation of
these architectural elements in more detail.

3.1 Storage
3.1.1 Relation Tuple Storage

We store relation tuples of each namespace in a separate
database, where each row is identified by primary key (shard
ID, object ID, relation, user, commit timestamp). Multi-
ple tuple versions are stored on different rows, so that we
can evaluate checks and reads at any timestamp within the
garbage collection window. The ordering of primary keys
allows us to look up all relation tuples for a given object ID
or (object ID, relation) pair.

Our clients configure sharding of a namespace according
to its data pattern. Usually the shard ID is determined solely
by the object ID. In some cases, for example, when a names-
pace stores groups with very large numbers of members, the
shard ID is computed from both object ID and user.

3.1.2 Changelog

Zanzibar also maintains a changelog database that stores a
history of tuple updates for the Watch API. The primary
keys are (changelog shard ID, timestamp, unique update ID),
where a changelog shard is randomly selected for each write.

Every Zanzibar write is committed to both the tuple stor-

age and the changelog shard in a single transaction. We des-
ignate the Spanner server hosting the changelog shard as the
transaction coordinator to minimize blocking of changelog
reads on pending transactions.

3.1.3 Namespace Config Storage

Namespace configs are stored in a database with two ta-
bles. One table contains the configs and is keyed by names-
pace IDs. The other is a changelog of config updates and is
keyed by commit timestamps. This structure allows a Zanz-
ibar server to load all configs upon startup and monitor the
changelog to refresh configs continuously.

3.1.4 Replication

To reduce latency, Zanzibar data is replicated to be close to
our clients. Replicas exist in dozens of locations around the
world, with multiple replicas per region. The 5 voting repli-
cas are in eastern and central United States, in 3 different
metropolitan areas to isolate failures but within 25 millisec-
onds of each other so that Paxos transactions commit quickly.

3.2 Serving
3.2.1 Evaluation Timestamp

As noted in §2.4, clients can provide zookies to ensure a
minimum snapshot timestamp for request evaluation. When
a zookie is not provided, the server uses a default staleness
chosen to ensure that all transactions are evaluated at a times-
tamp that is as recent as possible without impacting latency.

On each read request it makes to Spanner, Zanzibar re-
ceives a hint about whether or not the data at that timestamp
required an out-of-zone read and thus incurred additional la-
tency. Each server tracks the frequency of such out-of-zone
reads for data at a default staleness as well as for fresher

Proc. of 2019 USENIX Annual Technical Conference (USENIX ATC ’19) 6

and staler data, and uses these frequencies to compute a bi-
nomial proportion confidence interval of the probability that
any given piece of data is available locally at each staleness.

Upon collecting enough data, the server checks to see if
each staleness value has a sufficiently low probability of in-
curring an out-of-zone read, and thus will be low-latency. If
so, it updates the default staleness bound to the lowest “safe”
value. If no known staleness values are safe, we use a two-
proportion z-test to see if increasing the default will be a sta-
tistically significant amount safer. In that case, we increase
the default value in the hopes of improving latency. This
default staleness mechanism is purely a performance opti-
mization. It does not violate consistency semantics because
Zanzibar always respects zookies when provided.

3.2.2 Config Consistency

Because changes to namespace configs can change the re-
sults of ACL evaluations, and therefore their correctness,
Zanzibar chooses a single snapshot timestamp for con-
fig metadata when evaluating each client request. All
aclservers in a cluster use that same timestamp for the
same request, including for any subrequests that fan out from
the original client request.

Each server independently loads namespace configs from
storage continuously as they change (§3.1.3). Therefore,
each server in a cluster may have access to a different range
of config timestamps due to restarts or network latency.
Zanzibar must pick a timestamp that is available across all
of them. To facilitate this, a monitoring job tracks the times-
tamp range available to every server and aggregates them,
reporting a globally available range to every other server.
On each incoming request the server picks a time from this
range, ensuring that all servers can continue serving even if
they are no longer able to read from the config storage.

3.2.3 Check Evaluation

Zanzibar evaluates ACL checks by converting check requests
to boolean expressions. In a simple case, when there are
no userset rewrite rules, checking a user U against a userset
⟨object#relation⟩ can be expressed as

CHECK(U,⟨object#relation⟩) =
∃ tuple ⟨object#relation@U⟩

∨∃ tuple ⟨object#relation@U ′⟩, where
U ′ = ⟨object′#relation′⟩ s.t. CHECK(U,U ′).

Finding a valid U ′ = ⟨object′#relation′⟩ involves evaluat-
ing membership on all indirect ACLs or groups, recursively.
This kind of “pointer chasing” works well for most types of
ACLs and groups, but can be expensive when indirect ACLs
or groups are deep or wide. §3.2.4 explains how we han-
dle this problem. Userset rewrite rules are also translated to
boolean expressions as part of check evaluation.

To minimize check latency, we evaluate all leaf nodes of
the boolean expression tree concurrently. When the outcome

of one node determines the result of a subtree, evaluation of
other nodes in the subtree is cancelled.

Evaluation of leaf nodes usually involves reading relation
tuples from databases. We apply a pooling mechanism to
group reads for the same ACL check to minimize the number
of read RPCs to Spanner.

3.2.4 Leopard Indexing System

Recursive pointer chasing during check evaluation has diffi-
culty maintaining low latency with groups that are deeply
nested or have a large number of child groups. For se-
lected namespaces that exhibit such structure, Zanzibar han-
dles checks using Leopard, a specialized index that supports
efficient set computation.

A Leopard index represents a collection of named sets us-
ing (T,s,e) tuples, where T is an enum representing the set
type and s and e are 64-bit integers representing the set ID
and the element ID, respectively. A query evaluates an ex-
pression of union, intersection, or exclusion of named sets
and returns the result set ordered by the element ID up to a
specified number of results.

To index and evaluate group membership, Zanzibar repre-
sents group membership with two set types, GROUP2GROUP
and MEMBER2GROUP, which we show here as functions
mapping from a set ID to element IDs:

• GROUP2GROUP(s)→{e}, where s represents an ances-
tor group and e represents a descendent group that is
directly or indirectly a sub-group of the ancestor group.

• MEMBER2GROUP(s) → {e}, where s represents an in-
dividual user and e represents a parent group in which
the user is a direct member.

To evaluate whether user U is a member of group G, we
check whether

(MEMBER2GROUP(U) ∩ GROUP2GROUP(G)) ̸= /0

Group membership can be considered as a reachability
problem in a graph, where nodes represent groups and users
and edges represent direct membership. Flattening group-to-
group paths allows reachability to be efficently evaluated by
Leopard, though other types of denormalization can also be
applied as data patterns demand.

The Leopard system consists of three discrete parts: a
serving system capable of consistent and low-latency oper-
ations across sets; an offline, periodic index building system;
and an online real-time layer capable of continuously updat-
ing the serving system as tuple changes occur.

Index tuples are stored as ordered lists of integers in
a structure such as a skip list, thus allowing for efficient
union and intersections among sets. For example, evaluat-
ing the intersection between two sets, A and B, requires only
O(min(|A|, |B|)) skip-list seeks. The index is sharded by el-
ement IDs and can be distributed across multiple servers.
Shards are usually served entirely from memory, but they

Proc. of 2019 USENIX Annual Technical Conference (USENIX ATC ’19) 7

can also be served from a mix of hot and cold data spread
between memory and remote solid-state devices.

The offline index builder generates index shards from a
snapshot of Zanzibar relation tuples and configs, and repli-
cates the shards globally. It respects userset rewrite rules and
recursively expands edges in an ACL graph to form Leop-
ard index tuples. The Leopard servers continously watch for
new shards and swap old shards with new ones when they
become available.

The Leopard system described thus far is able to effi-
ciently evaluate deeply and widely nested group member-
ship, but cannot do so at a fresh and consistent snapshot
due to offline index generation and shard swapping. To sup-
port consistent ACL evaluation, Leopard servers maintain an
incremental layer that indexes all updates since the offline
snapshot, where each update is represented by a (T,s,e, t,d)
tuple, where t is the timestamp of the update and d is a dele-
tion marker. Updates with timestamps less than or equal to
the query timestamp are merged on top of the offline index
during query processing.

To maintain the incremental layer, the Leopard incremen-
tal indexer calls Zanzibar’s Watch API to receive a tem-
porally ordered stream of Zanzibar tuple modifications and
transforms the updates into a temporally ordered stream of
Leopard tuple additions, updates, and deletions. Generat-
ing updates for the GROUP2GROUP tuples requires the incre-
mental indexer to maintain group-to-group membership for
denormalizing the effects of a relation tuple update to poten-
tially multiple index updates.

In practice, a single Zanzibar tuple addition or deletion
may yield potentially tens of thousands of discrete Leop-
ard tuple events. Each Leopard serving instance receives the
complete stream of these Zanzibar tuple changes through the
Watch API. The Leopard serving system is designed to con-
tinuously ingest this stream and update its various posting
lists with minimal impact to query serving.

3.2.5 Handling Hot Spots

The workload of ACL reads and checks is often bursty and
subject to hot spots. For example, answering a search query
requires conducting ACL checks for all candidate results,
whose ACLs often share common groups or indirect ACLs.
To facilitate consistency, Zanzibar avoids storage denormal-
ization and relies only on normalized data (except for the
cases described in §3.2.4). With normalized data, hot spots
on common ACLs (e.g., popular groups) may overload the
underlying database servers. We found the handling of hot
spots to be the most critical frontier in our pursuit of low
latency and high availability.

Zanzibar servers in each cluster form a distributed cache
for both reads and check evaluations, including intermediate
check results evaluated during pointer chasing. Cache en-
tries are distributed across Zanzibar servers with consistent
hashing [20]. To process checks or reads, we fan out re-

quests to the corresponding Zanzibar servers via an internal
RPC interface. To minimize the number of internal RPCs,
for most namespaces we compute the forwarding key from
the object ID, since processing a check on ⟨object#relation⟩
often involves indirect ACL checks on other relations of the
same object and reading relation tuples of the object. These
checks and reads can be processed by the same server since
they share the same forwarding key with the parent check
request. To handle hot forwarding keys, we cache results at
both the caller and the callee of internal RPCs, effectively
forming cache trees. We also use Slicer [12] to help dis-
tribute hot keys to multiple servers.

We avoid reusing results evaluated from a different snap-
shot by encoding snapshot timestamps in cache keys. We
choose evaluation timestamps rounded up to a coarse granu-
larity, such as one or ten seconds, while respecting staleness
constraints from request zookies. This timestamp quantiza-
tion allows the vast majority of recent checks and reads to be
evaluated at the same timestamps and to share cache results,
despite having microsecond-resolution timestamps in cache
keys. It is worth noting that rounding up timestamps does
not affect Zanzibar’s consistency properties, since Spanner
ensures that a snapshot read at timestamp T will observe all
writes up to T —this holds even if T is in the future, in which
case the read will wait until TrueTime has moved past T .

To handle the “cache stampede” problem [3], where con-
current requests create flash hot spots before the cache is
populated with results, we maintain a lock table on each
server to track outstanding reads and checks. Among re-
quests sharing the same cache key only one request will be-
gin processing; the rest block until the cache is populated.

We can effectively handle the vast majority of hot spots
with distributed caches and lock tables. Over time we made
the following two improvements.

First, direct membership checks of a user for an object and
relation (i.e. ⟨object#relation@user⟩) are usually handled by
a single relation tuple lookup. However, occasionally a very
popular object invites many concurrent checks for different
users, causing a hot spot on the storage server hosting rela-
tion tuples for the object. To avoid these hot spots, we read
and cache all relation tuples of ⟨object#relation⟩ for the hot
object, trading read bandwidth for cacheability. We dynam-
ically detect hot objects to apply this method to by tracking
the number of outstanding reads on each object.

Second, indirect ACL checks are frequently cancelled
when the result of the parent ACL check is already deter-
mined. This leaves the cache key unpopulated. While ea-
ger cancellation reduces resource usage significantly, it neg-
atively affects latency of concurrent requests that are blocked
by the lock table entry. To prevent this latency impact, we
delay eager cancellation when there are waiters on the corre-
sponding lock table entry.

Proc. of 2019 USENIX Annual Technical Conference (USENIX ATC ’19) 8

3.2.6 Performance Isolation

Performance isolation is indispensable for shared services
targeting low latency and high availability. If Zanzibar or
one of its clients occasionally fails to provision enough re-
sources to handle an unexpected usage pattern, the following
isolation mechanisms ensure that performance problems are
isolated to the problematic use case and do not adversely af-
fect other clients.

First, to ensure proper allocation of CPU capacity, Zanz-
ibar measures the cost of each RPC in terms of generic
cpu-seconds, a hardware-agnostic metric. Each client has
a global limit on maximum CPU usage per second; its RPCs
will be throttled if it exceeds the limit and there is no spare
capacity in the overall system.

Each Zanzibar server also limits the total number of out-
standing RPCs to control its memory usage. Likewise it lim-
its the number of oustanding RPCs per client.

Zanzibar further limits the maximum number of concur-
rent reads per (object, client) and per client on each Spanner
server. This ensures that no single object or client can mo-
nopolize a Spanner server.

Finally, we use different lock table keys for requests from
different clients to prevent any throttling that Spanner applies
to one client from affecting other clients.

3.2.7 Tail Latency Mitigation

Zanzibar’s distributed processing requires measures to ac-
commodate slow tasks. For calls to Spanner and to the Leop-
ard index we rely on request hedging [16] (i.e. we send
the same request to multiple servers, use whichever response
comes back first, and cancel the other requests). To reduce
round-trip times, we try to place at least two replicas of
these backend services in every geographical region where
we have Zanzibar servers. To avoid unnecessarily multiply-
ing load, we first send one request and defer sending hedged
requests until the initial request is known to be slow.

To determine the appropriate hedging delay threshold,
each server maintains a delay estimator that dynamically
computes an Nth percentile latency based on recent mea-
surements. This mechanism allows us to limit the additional
traffic incurred by hedging to a small fraction of total traffic.

Effective hedging requires the requests to have similar
costs. In the case of Zanzibar’s authorization checks, some
checks are inherently more time-consuming than others be-
cause they require more work. Hedging check requests
would result in duplicating the most expensive workloads
and, ironically, worsening latency. Therefore we do not
hedge requests between Zanzibar servers, but rely on the pre-
viously discussed sharding among multiple replicas and on
monitoring mechanisms to detect and avoid slow servers.

10.0 k

100.0 k

1.0 M

10.0 M

Sun Mon Tue Wed Thu Fri Sat

Safe QPS Recent QPS

Figure 3: Rate of Check Safe and Check Recent requests
over a 7-day period in December 2018.

4 Experience

Zanzibar has been in production use for more than 5 years.
Throughout that time, the number of clients using Zanzibar
and the load they place on Zanzibar have grown steadily.
This section discusses our experience operating Zanzibar as
a globally distributed authorization system.

Zanzibar manages more than 1,500 namespaces defined
by hundreds of client applications. The size of a namespace
configuration file serves as a rough measure of the complex-
ity of the access control policy implemented by that names-
pace. These configuration files range from tens of lines to
thousands of lines, with the median near 500 lines.

These namespaces contain more than 2 trillion relation tu-
ples that occupy close to 100 terabytes. The number of tuples
per namespace ranges over many orders of magnitude, from
tens to a trillion, with the median near 15,000. This data is
fully replicated in more than 30 locations around the world
to maintain both proximity to users and high availability.

Zanzibar serves more than 10 million client queries per
second (QPS). Over a sample 7-day period in December
2018, Check requests peak at roughly 4.2M QPS, Read at
8.2M, Expand at 760K, and Write at 25K. Queries that read
data are thus two orders of magnitude more frequent than
those that write data.

Zanzibar distributes this load across more than 10,000
servers organized in several dozen clusters around the world.
The number of servers per cluster ranges from fewer than
100 to more than 1,000, with the median near 500. Clusters
are sized in proportion to load in their geographic regions.

4.1 Requests
We divide requests into two categories according to the re-
quired data freshness, which can have a large impact on la-
tency and availability of the requests. Specifically, Check,
Read, and Expand requests carry zookies to specify lower
bounds on evaluation timestamps. When a zookie timestamp
is higher than that of the most recent data replicated to the
region, the storage reads require cross-region round trips to
the leader replica to retrieve fresher data. As our storage

Proc. of 2019 USENIX Annual Technical Conference (USENIX ATC ’19) 9

1 ms

10 ms

100 ms

Sun Mon Tue Wed Thu Fri Sat

50%
99%

95%
99.9%

Figure 4: Latency of Check Safe responses at different per-
centiles over a 7-day period in December 2018.

is configured with replication heartbeats with 8-second in-
tervals, we divide our requests into two categories: Safe re-
quests have zookies more than 10 seconds old and can be
served within the region most of time, while Recent requests
have zookies less than 10 seconds old and often require inter-
region round trips. We report separate statistics for each.

Figure 3 shows the rate of Check Safe and Check Recent
requests over 7 days. Both exhibit a diurnal cycle. The rate
of Safe requests is about two orders of magnitude larger than
that of Recent requests, which allows Zanzibar to serve the
vast majority of ACL checks locally.

4.2 Latency

Zanzibar’s latency budget is generally a small fraction of the
few hundreds of milliseconds of total response time that its
clients must provide to be viable interactive services. Con-
sider for example a client that performs authorization checks
on multiple documents before it can show the results of a
search on those documents.

We measure latency on the server side using live traffic
because (1) latency is heavily influenced by our caching and
de-duplication mechanisms so that it is only realistically re-
flected by live traffic, and (2) accurately measuring latency
from clients requires well-behaving clients. Provisioning of
client jobs is outside of Zanzibar’s control and sometimes
client jobs are overloaded.

Figure 4 shows the latency of Check Safe responses over
7 days. At the 50th, 95th, 99th, and 99.9th percentiles it
peaks at roughly 3, 11, 20, and 93 msec, respectively. This
performance meets our latency goals for an operation that is
frequently in the critical path of user interactions.

Table 2 summarizes the latency distributions of Check,
Read, Expand, and Write responses over the same 7 days. As
intended, the more frequently used Safe versions of Check,
Read, and Expand are significantly faster than the less fre-
quently used Recent versions. Writes are the least frequently
used of all the APIs, and the slowest because they always
require distributed coordination among Spanner servers.

Latency in milliseconds, µ (σ)

API 50%ile 95%ile 99%ile

Sa
fe

Check 3.0 (0.091) 9.46 (0.3) 15.0 (1.19)

Read 2.18 (0.031) 3.71 (0.094) 8.03 (3.28)

Expand 4.27 (0.313) 8.84 (0.586) 34.1 (4.35)

R
ec

en
t

Check 2.86 (0.087) 60.0 (2.1) 76.3 (2.59)

Read 2.21 (0.054) 40.1 (2.03) 86.2 (3.84)

Expand 5.79 (0.224) 45.6 (3.44) 121.0 (2.38)

Write 127.0 (3.65) 233.0 (23.0) 401.0 (133.0)

Table 2: Mean and standard deviation of RPC response la-
tency over a 7-day period in December 2018.

4.3 Availability
We define availability as the fraction of “qualified” RPCs
the service answers successfully within latency thresholds:
5 seconds for a Safe request, and 15 seconds for a Recent re-
quest as leader re-election in Spanner may take up to 10 sec-
onds. For an RPC to be qualified, the request must be well-
formed and have a deadline longer than the latency threshold.
In addition, the client must stay within its resource quota.

For these reasons, we cannot measure availability directly
with live traffic, as our clients sometimes send RPCs with
short deadlines or cancel their in-progress RPCs. Instead,
we sample a small fraction of valid requests from live traffic
and replay them later with our own probers. When replaying
the requests, we set the timeout to be longer than the avail-
ability threshold. We also adjust the request zookie, if one
is specified, so that the relative age of the zookie remains
the same as when the request was received in the live traffic.
Finally, we run 3 probers per cluster and exclude outliers to
eliminate false alarms caused by rare prober failures.

To compute availability, we aggregate success ratios over
90-day windows averaged across clusters. Figure 5 shows
Zanzibar’s availability as measured by these probers. Avail-
ability has remained above 99.999% over the past 3 years of
operation at Google. In other words, for every quarter, Zanz-
ibar has less than 2 minutes of global downtime and fewer
than 13 minutes when the global error ratio exceeds 10%.

4.4 Internals
Zanzibar servers delegate checks and reads to each other
based on consistent hashing, and both the caller and the
callee sides of the delegated operations cache the results to
prevent hot spots (§3.2.5). At peak, Zanzibar handles 22 mil-
lion internal “delegated” RPCs per second, split about evenly
between reads and checks. In-memory caching handles ap-
proximately 200 million lookups per second at peak, 150
million from checks and 50 million from reads. Caching for

Proc. of 2019 USENIX Annual Technical Conference (USENIX ATC ’19) 10

100.0000%

99.9990%

99.9995%

Dec '15 Dec '16 Dec '17 Dec '18

Safe Recent

Figure 5: Zanzibar’s availability over the past three years has
remained above 99.999%.

checks has a 10% hit rate on the delegate’s side, with an ad-
ditional 12% saved by the lock table. Meanwhile, caching
on the delegator’s side has a 2% hit rate with an additional
3% from the lock table. While these hit rates appear low,
they prevent 500K internal RPCs per second from creating
hot spots.

Delegated reads see higher hit rates on the delegate’s
side—24% on the cache and 9% on the lock table—but
the delegator’s cache is hit less than 1% of the time. For
super-hot groups, Zanzibar further optimizes by reading and
caching the full set of members in advance—this happens for
0.1% of groups but further prevents hot spots.

This caching, along with aggressive pooling of read re-
quests, allows Zanzibar to issue only 20 million read RPCs
per second to Spanner. The median of these requests reads
1.5 rows per RPC, but at the 99th percentile they each read
close to 1 thousand rows.

Zanzibar’s Spanner reads take 0.5 msec at the median, and
2 msec at the 95th percentile. We find that 1% of Spanner
reads, or 200K reads per second, benefit from hedging. We
note that Zanzibar uses an instance of Spanner that runs in-
ternally to Google, not an instance of Cloud Spanner [6].

The Leopard index is performing 1.56M QPS at the me-
dian, or 2.22M QPS at the 99th percentile, based on data ag-
gregated over 7 days. Over the same 7 days, Leopard servers
respond in fewer than 150 µsec at the median, or under 1
msec at the 99th percentile. Leopard’s incremental layer dur-
ing those 7 days writes roughly 500 index updates per second
at the median, and approximately 1.5K updates per second at
the 99th percentile.

4.5 Lessons Learned
Zanzibar has evolved to meet the varied and heavy demands
of a growing set of clients, including Google Calendar,
Google Cloud, Google Drive, Google Maps, Google Photos,
and YouTube. This section highlights lessons learned from
this experience.

One common theme has been the importance of flexibility
to accommodate differences between clients. For example:

• Access control patterns vary widely: Over time we have
added features to support specific clients. For instance,

we added computed userset to allow inferring an
object’s owner ID from the object ID prefix, which re-
duces space requirements for clients such as Drive and
Photos that manage many private objects. Similarly, we
added tuple to userset to represent object hierar-
chy with only one relation tuple per hop. The bene-
fits are both space reduction and flexibility—it allows
clients such as Cloud both to express ACL inheritance
compactly and to change ACL inheritance rules without
having to update large numbers of tuples. See §2.3.1.

• Freshness requirements are often but not always loose:
Clients often allow unspecified, moderate staleness dur-
ing ACL evaluation, but sometimes require more pre-
cisely specified freshness. We designed our zookie pro-
tocol around this property so that we can serve most
requests from a default, already replicated snapshot,
while allowing clients to bound the staleness when
needed. We also tuned the granularity of our snap-
shot timestamps to match clients’ freshness require-
ments. The resulting coarse timestamp quanta allow
us to perform the majority of authorization checks on
a small number of snapshots, thus greatly reducing the
frequency of database reads. See §3.2.1.

Another theme has been the need to add performance opti-
mizations to support client behaviors observed in production.
For example:

• Request hedging is key to reducing tail latency: Clients
that offer search capabilities to their users, such as
Drive, often issue tens to hundreds of authorization
checks to serve a single set of search results. We in-
troduced hedging of Spanner and Leopard requests to
prevent an occasional slow operation from slowing the
overall user interaction. See §3.2.7.

• Hot-spot mitigation is critical for high availability:
Some workloads create hot spots in ACL data that can
overwhelm the underlying database servers. A com-
mon pattern is a burst of ACL checks for an object that
is indirectly referenced by the ACLs for many differ-
ent objects. Specific instances arise from the search
use case mentioned above, where the documents in the
search indirectly share ACLs for a large social or work
group, and Cloud use cases where many objects indi-
rectly share ACLs for the same object high in a hier-
archy. Zanzibar handles most hot spots with general
mechanisms such as its distributed cache and lock ta-
ble, but we have found the need to optimize specific
uses cases. For example, we added cache prefetching
of all relation tuples for a hot object. We also delayed
cancellation of secondary ACL checks when there are
concurrent requests for the same ACL data. See §3.2.5.

• Performance isolation is indispensable to protect
against misbehaving clients: Even with hot-spot mit-
igation measures, unexpected and sometimes unin-

Proc. of 2019 USENIX Annual Technical Conference (USENIX ATC ’19) 11

tended client behaviors could still overload our sys-
tem or its underlying infrastructure. Examples include
when clients launch new features that prove unexpect-
edly popular or exercise Zanzibar in unintended ways.
Over time we have added isolation safeguards to ensure
that there are no cascading failures between clients or
between objects of the same client. These safeguards
include fine-grained cost accounting, quotas, and throt-
tling. See §3.2.6.

5 Related Work

Zanzibar is a planet-scale distributed ACL storage and eval-
uation system. Many of its authorization concepts have been
explored previously within the domains of access control and
social graphs, and its scaling challenges have been investi-
gated within the field of distributed systems.

Access control is a core part of multi-user operating sys-
tems. Multics [23] supports ACLs on segments and direc-
tories. ACL entries consist of a principal identifier and a
set of permissions bits. In the first edition of UNIX [9],
file flags indicate whether owner and non-owner can read or
write the file. By the 4th edition, the permissions bits had
been expanded to read/write/execute bits for owner, group,
and others. POSIX ACLs [4] add an arbitrary list of users
and groups, each with up to 32 permissions bits. VMS [7, 8]
supports ACL inheritance for files created within a direc-
tory tree. Zanzibar’s data model supports permissions, users,
groups, and inheritance as found in the above systems.

Taos [24, 10] supports compound principals that incor-
porate how an identity has been transformed as it passes
through a distributed system. For example, if user U logged
into workstation W to access file server S, S would see re-
quests authenticated as “W for U” rather than just U . This
would allow one to write an ACL on a user’s e-mail that
would be accessible only to the user, and only if being ac-
cessed via the mail server. Abadi et al. discuss in [11]
a model of group-based ACLs with support for compound
identities. Their notion of “blessings” are similar to Zanz-
ibar tuples. However, Zanzibar adopts a unified represen-
tation for ACLs and groups using usersets, while they are
separate concepts in [11].

Role-based access control (RBAC), first proposed in [17],
introduced the notion of roles, which are similar to Zanzibar
relations. Roles can inherit from each other and imply per-
missions. A number of Zanzibar clients have implemented
RBAC policies on top of Zanzibar’s namespace configura-
tion language.

A discussion of ACL stores in 2019 would be remiss with-
out mentioning the Identity and Access Management (IAM)
systems offered commercially by Amazon [1], Google [5],
Microsoft [2], and others. These systems allow customers of
those companies’ cloud products to configure flexible access
controls based on various features such as: assigning users to

roles or groups; domain-specific policy languages; and APIs
that allow the creation and modification of ACLs. What all
of these systems have in common is unified ACL storage and
an RPC-based API, a philosophy also core to Zanzibar’s de-
sign. Google’s Cloud IAM system [5] is built as a layer on
top of Zanzibar’s ACL storage and evaluation system.

TAO [13] is a distributed datastore for Facebook’s social
graph. Several Zanzibar clients also use Zanzibar to store
their social graphs. Both Zanzibar and TAO provide au-
thorization checks to clients. Both are deployed as single-
instance services, both operate at a large scale, and both
are optimized for read-only operations. TAO offers eventual
global consistency with asynchronous replication and best-
effort read-after-write consistency with synchronous cache
updates. In contrast, Zanzibar provides external consistency
and snapshot reads with bounded staleness, so that it respects
causal ordering between ACL and content updates and thus
protects against the “new enemy” problem.

Lamport clocks [22] provide partially ordered vector
timestamps that can be used to determine the order of events.
However, Lamport clocks require explicit participation of
all “processes”, where in Zanzibar’s use cases some of the
“processes” can be external clients or even human users. In
contrast, Zanzibar relies on its underlying database system,
Spanner [15], to offer both external consistency and snapshot
reads with bounded staleness. In particular, Zanzibar builds
on Spanner’s TrueTime abstraction [15] to provide lineariz-
able commit timestamps encoded as zookies.

At the same time, Zanzibar adds a number of features on
top of those provided by Spanner. For one, the zookie proto-
col does not let clients read or evaluate ACLs at an arbitrary
snapshot. This restriction allows Zanzibar to choose a snap-
shot that facilitates fast ACL evaluation. In addition, Zanz-
ibar provides resilience to database hotspots (e.g. authoriza-
tion checks on a suddenly popular video) and safe pointer
chasing despite potentially deep recursion (e.g. membership
checks on hierarchical groups).

The Chubby distributed lock service [14] offers reliable
storage, linearizes writes, and provides access control, but it
lacks features needed to support Zanzibar’s use cases. In
particular, it does not support high volumes of data, effi-
cient range reads, or reads at a client-specified snapshot with
bounded staleness. Its cache invalidation mechanism also
limits its write throughput.

Finally, ZooKeeper offers a high-performance coordina-
tion service [19] but also lacks features required by Zanz-
ibar. Relative to Chubby, it can handle higher read and write
rates with more relaxed cache consistency. However, it does
not provide external consistency for updates across different
nodes since its linearizability is on a per-node basis. It also
does not provide snapshot reads with bounded staleness.

Proc. of 2019 USENIX Annual Technical Conference (USENIX ATC ’19) 12

6 Conclusion

The Zanzibar authorization system unifies access control
data and logic for Google. Its simple yet flexible data model
and configuration language support a variety of access con-
trol policies from both consumer and enterprise applications.

Zanzibar’s external consistency model is one of its most
salient features. It respects the ordering of user actions, yet
at the same time allows authorization checks to be evaluated
at distributed locations without global synchronization.

Zanzibar employs other key techniques to provide scal-
ability, low latency, and high availability. For example, it
evaluates deeply or widely nested group membership with
Leopard, a specialized index for efficient computation of set
operations with snapshot consistency. As another example, it
combines a distributed cache with a mechanism to dedupli-
cate in-flight requests. It thus mitigates hot spots, a critical
production issue when serving data on top of normalized,
consistent storage. These measures together result in a sys-
tem that scales to trillions of access control rules and millions
of authorization requests per second.

7 Acknowledgments

Many people have made technical contributions to Zanzibar.
We thank previous and recent members of the development
team, including Dan Barella, Miles Chaston, Daria Jung,
Alex Mendes da Costa, Xin Pan, Scott Smith, Matthew Stef-
fen, Riva Tropp, and Yuliya Zabiyaka. We also thank previ-
ous and current members of the Site Reliability Engineering
team, including Randall Bosetti, Hannes Eder, Robert Geis-
berger, Tom Li, Massimo Maggi, Igor Oks, Aaron Peterson,
and Andrea Yu.

In addition, a number of people have helped to improve
this paper. We received insightful comments from David Ba-
con, Carolin Gäthke, Brad Krueger, Ari Shamash, Kai Shen,
and Lawrence You. We are also grateful to Nadav Eiron and
Royal Hansen for their support. Finally, we thank the anony-
mous reviewers and our shepherd, Eric Eide, for their con-
structive feedback.

References

[1] Amazon Web Services Identity and Access Manage-
ment. https://aws.amazon.com/iam/. Accessed:
2019-04-16.

[2] Azure Identity and Access Management. https:

//www.microsoft.com/en-us/cloud-platform/

identity-management. Accessed: 2019-04-16.

[3] Cache stampede. https://en.wikipedia.org/

wiki/Cache_stampede. Accessed: 2019-04-16.

[4] DCE 1.1: Authentication and Security Services. http:
//pubs.opengroup.org/onlinepubs/9668899.
Accessed: 2019-04-16.

[5] Google Cloud Identity and Access Management.
https://cloud.google.com/iam/. Accessed:
2019-04-16.

[6] Google Cloud Spanner. https://cloud.google.

com/spanner/. Accessed: 2019-04-16.

[7] HP OpenVMS System Management Utilities Refer-
ence Manual. https://support.hpe.com/hpsc/

doc/public/display?docId=emr_na-c04622366.
Accessed: 2019-04-16.

[8] OpenVMS Guide to System Security. http:

//www.itec.suny.edu/scsys/vms/ovmsdoc073/

V73/6346/6346pro_006.html#acl_details.
Accessed: 2019-04-16.

[9] Unix Manual. https://www.bell-labs.com/usr/

dmr/www/pdfs/man22.pdf. Accessed: 2019-04-16.

[10] ABADI, M., BURROWS, M., LAMPSON, B., AND
PLOTKIN, G. A calculus for access control in dis-
tributed systems. ACM Trans. Program. Lang. Syst. 15,
4 (Sept. 1993), 706–734.

[11] ABADI, M., BURROWS, M., PUCHA, H., SADOVSKY,
A., SHANKAR, A., AND TALY, A. Distributed au-
thorization with distributed grammars. In Essays Ded-
icated to Pierpaolo Degano on Programming Lan-
guages with Applications to Biology and Security -
Volume 9465 (New York, NY, USA, 2015), Springer-
Verlag New York, Inc., pp. 10–26.

[12] ADYA, A., MYERS, D., HOWELL, J., ELSON, J.,
MEEK, C., KHEMANI, V., FULGER, S., GU, P., BHU-
VANAGIRI, L., HUNTER, J., PEON, R., KAI, L.,
SHRAER, A., MERCHANT, A., AND LEV-ARI, K.
Slicer: Auto-sharding for datacenter applications. In
12th USENIX Symposium on Operating Systems De-
sign and Implementation (OSDI 16) (Savannah, GA,
2016), USENIX Association, pp. 739–753.

[13] BRONSON, N., AMSDEN, Z., CABRERA, G.,
CHAKKA, P., DIMOV, P., DING, H., FERRIS, J., GIA-
RDULLO, A., KULKARNI, S., LI, H., MARCHUKOV,
M., PETROV, D., PUZAR, L., SONG, Y. J., AND
VENKATARAMANI, V. TAO: Facebook’s distributed
data store for the social graph. In Proceedings of the
2013 USENIX Annual Technical Conference (2013),
USENIX ATC ’13, pp. 49–60.

[14] BURROWS, M. The Chubby lock service for loosely-
coupled distributed systems. In Proceedings of the

Proc. of 2019 USENIX Annual Technical Conference (USENIX ATC ’19) 13

https://aws.amazon.com/iam/
https://www.microsoft.com/en-us/cloud-platform/identity-management
https://www.microsoft.com/en-us/cloud-platform/identity-management
https://www.microsoft.com/en-us/cloud-platform/identity-management
https://en.wikipedia.org/wiki/Cache_stampede
https://en.wikipedia.org/wiki/Cache_stampede
http://pubs.opengroup.org/onlinepubs/9668899
http://pubs.opengroup.org/onlinepubs/9668899
https://cloud.google.com/iam/
https://cloud.google.com/spanner/
https://cloud.google.com/spanner/
https://support.hpe.com/hpsc/doc/public/display?docId=emr_na-c04622366
https://support.hpe.com/hpsc/doc/public/display?docId=emr_na-c04622366
http://www.itec.suny.edu/scsys/vms/ovmsdoc073/V73/6346/6346pro_006.html#acl_details
http://www.itec.suny.edu/scsys/vms/ovmsdoc073/V73/6346/6346pro_006.html#acl_details
http://www.itec.suny.edu/scsys/vms/ovmsdoc073/V73/6346/6346pro_006.html#acl_details
https://www.bell-labs.com/usr/dmr/www/pdfs/man22.pdf
https://www.bell-labs.com/usr/dmr/www/pdfs/man22.pdf

7th Symposium on Operating Systems Design and Im-
plementation (Berkeley, CA, USA, 2006), OSDI ’06,
USENIX Association, pp. 335–350.

[15] CORBETT, J. C., DEAN, J., EPSTEIN, M., FIKES,
A., FROST, C., FURMAN, J. J., GHEMAWAT, S.,
GUBAREV, A., HEISER, C., HOCHSCHILD, P.,
HSIEH, W., KANTHAK, S., KOGAN, E., LI, H.,
LLOYD, A., MELNIK, S., MWAURA, D., NAGLE, D.,
QUINLAN, S., RAO, R., ROLIG, L., SAITO, Y., SZY-
MANIAK, M., TAYLOR, C., WANG, R., AND WOOD-
FORD, D. Spanner: Google’s globally-distributed
database. In Proceedings of the 10th USENIX Confer-
ence on Operating Systems Design and Implementation
(2012), OSDI ’12, pp. 251–264.

[16] DEAN, J., AND BARROSO, L. A. The tail at scale.
Communications of the ACM 56, 2 (Feb. 2013), 74–80.

[17] FERRAIOLO, D., AND KUHN, R. Role-based access
control. In In 15th NIST-NCSC National Computer Se-
curity Conference (1992), pp. 554–563.

[18] GIFFORD, D. K. Information Storage in a Decentral-
ized Computer System. PhD thesis, Stanford, CA, USA,
1981. AAI8124072.

[19] HUNT, P., KONAR, M., JUNQUEIRA, F. P., AND
REED, B. Zookeeper: Wait-free coordination for
internet-scale systems. In Proceedings of the 2010
USENIX Annual Technical Conference (Berkeley, CA,
USA, 2010), USENIX ATC ’10, USENIX Association.

[20] KARGER, D., LEHMAN, E., LEIGHTON, T., PANI-
GRAHY, R., LEVINE, M., AND LEWIN, D. Consistent
hashing and random trees: Distributed caching proto-
cols for relieving hot spots on the world wide web. In
Proceedings of the Twenty-ninth Annual ACM Sympo-
sium on Theory of Computing (New York, NY, USA,
1997), STOC ’97, ACM, pp. 654–663.

[21] KUNG, H. T., AND ROBINSON, J. T. On opti-
mistic methods for concurrency control. ACM Trans.
Database Syst. 6, 2 (June 1981), 213–226.

[22] LAMPORT, L. Time, clocks, and the ordering of events
in a distributed system. Commun. ACM 21, 7 (July
1978), 558–565.

[23] SALTZER, J. H. Protection and control of infor-
mation sharing in Multics. In Proceedings of the
Fourth ACM Symposium on Operating System Princi-
ples (New York, NY, USA, 1973), SOSP ’73, ACM.

[24] WOBBER, E., ABADI, M., BURROWS, M., AND
LAMPSON, B. Authentication in the Taos operating
system. In Proceedings of the Fourteenth ACM Sympo-
sium on Operating Systems Principles (New York, NY,
USA, 1993), SOSP ’93, ACM, pp. 256–269.

Proc. of 2019 USENIX Annual Technical Conference (USENIX ATC ’19) 14

	Introduction
	Model, Language, and API
	Relation Tuples
	Consistency Model
	Namespace Configuration
	Relation Configs and Userset Rewrites

	API
	Read
	Write
	Watch
	Check
	Expand

	Architecture and Implementation
	Storage
	Relation Tuple Storage
	Changelog
	Namespace Config Storage
	Replication

	Serving
	Evaluation Timestamp
	Config Consistency
	Check Evaluation
	Leopard Indexing System
	Handling Hot Spots
	Performance Isolation
	Tail Latency Mitigation

	Experience
	Requests
	Latency
	Availability
	Internals
	Lessons Learned

	Related Work
	Conclusion
	Acknowledgments

