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Abstract
Wormhole is a publish-subscribe (pub-sub) system de-

veloped for use within Facebook’s geographically repli-
cated datacenters. It is used to reliably replicate changes
among several Facebook services including TAO, Graph
Search and Memcache. This paper describes the de-
sign and implementation of Wormhole as well as the
operational challenges of scaling the system to support
the multiple data storage systems deployed at Facebook.
Our production deployment of Wormhole transfers over
35 GBytes/sec in steady state (50 millions messages/sec
or 5 trillion messages/day) across all deployments with
bursts up to 200 GBytes/sec during failure recovery. We
demonstrate that Wormhole publishes updates with low
latency to subscribers that can fail or consume updates at
varying rates, without compromising efficiency.

1 Introduction

Facebook is a social networking service that connects
people across the globe and enables them to share in-
formation with each other. When a user posts content to
Facebook, it is written to a database. There are a number
of applications that are interested in learning of a write
immediately after the write is committed. For instance,
News Feed is interested in the write so it can serve new
stories to the user’s friends. Similarly, users receiving a
notification might wish to immediately view the content.
A number of internal services, such as our asynchronous
cache invalidation pipeline, index server pipelines, etc.
are also interested in the write.

Directing each application to poll the database for
newly written data is untenable as applications have to
decide between either long poll intervals which lead to
stale data or frequent polling which interferes with the
production workload of the storage system.

Publish-subscribe (pub-sub) systems that identify up-
dates and transmit notifications to interested applications
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Figure 1: Wormhole reads updates from the data stor-
age system transaction logs and transmits them to inter-
ested applications that include News Feed, index servers,
Graph Search and many others.

offer a more scalable solution. Pub-sub systems are well
studied (see Section 6) with many commercial and open
source solutions. However, most existing pub-sub sys-
tems require a custom data store that is interposed on
writes to generate the notifications for interested appli-
cations. This is impractical for Facebook which stores
user data on a fleet of sharded storage systems including
MySQL databases [18], HDFS [27] and RocksDB [30]
across multiple datacenters. Interposing on writes to
these storage systems would require modifications across
the software stack, which is error-prone and might de-
grade latency and availability. Writing the updates to a
custom data store would also introduce an additional in-
termediary storage system that might fail.

To address our requirements, we built and deployed
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Wormhole, a pub-sub system that identifies new writes
and publishes updates to all interested applications (see
Figure 1). Wormhole publishers directly read the trans-
action logs maintained by the data storage systems to
learn of new writes committed by producers. Upon iden-
tifying a new write, Wormhole encapsulates the data and
any corresponding metadata in a custom Wormhole up-
date that is delivered to subscribers. Wormhole updates
always encode data as a set of key-value pairs irrespec-
tive of the underlying storage system, so interested appli-
cations do not have to worry about where the underlying
data lives.

Data storage systems are typically geo-replicated with
a single master, multiple slaves topology. Wormhole
delivers updates to geo-replicated subscribers by piggy-
backing on publishers running on slave replicas that are
close to subscribers. On a write, data is written to the
transaction log of the master replica and then replicated
asynchronously to the slaves. Wormhole publishers run-
ning on the slave can simply read new updates off the
local transaction log and provide updates to local sub-
scribers.

Wormhole can survive both publisher and subscriber
failures, without losing updates. On the publisher
side, Wormhole provides multiple-copy reliable deliv-
ery where it allows applications to configure a primary
source and many secondary sources they can receive up-
dates from. If the primary publisher (which generally
is the publisher in the local region) fails, Wormhole can
seamlessly start sending updates from one of the sec-
ondary publishers. On the subscriber side, an application
that has registered for updates can also fail. Wormhole
publishers periodically store for each registered applica-
tion the position in the transaction logs of the most re-
cent update it has received and acknowledged. On an
application failure, Wormhole finds where to start send-
ing updates from based on its bookkeeping, maps that to
the correct update in the datastore’s transaction log and
resumes delivering updates.

Wormhole has been in production at Facebook for over
three years, delivering over 35 GBytes/sec continuously
(over 50 million messages/sec) across all deployments.

Our contributions are as follows:

• We describe the first large scale pub-sub system that
delivers trillions of updates per day to subscribers.

• We present a pub-sub system that can run atop ex-
isting datastores and provide updates to subscribers.

• We implement multiple-copy reliable delivery in
Wormhole that allows it to send updates to appli-
cations even in the presence of publisher and sub-
scriber failures.

• We allow the datastores to trade-off latency of deliv-
ering updates with I/O bandwidth by selecting how

much of the disk bandwidth is available for use by
Wormhole.

2 Problem

Facebook stores a large amount of user generated data,
such as status updates, comments, likes, shares, etc. This
data is written to a number of different storage systems
depending on several factors such as whether the work-
load is write optimized or read optimized, what is the
capacity versus cost trade-off etc. Moreover, to scale
with Facebook’s vast user base, these storage systems are
sharded and geo-replicated in various data centers.

There are numerous systems that need the newly up-
dated data to function correctly. For instance, Facebook
aggressively employs caching systems such as Mem-
cache [19] and TAO [7] so the underlying storage sys-
tems are not inundated with read queries. Similarly,
Graph Search [12] maintains a index over all user gen-
erated data so it can quickly retrieve queried data. On
a write, cached and indexed copies of the data need to
either be invalidated or updated.

Directing applications to poll the database for newly
written data is unscalable. Additionally, writes might be
written to any of the different storage systems and ap-
plications might be interested in all new updates. Thus,
there are a number of challenges that an update dissemi-
nation system deployed at Facebook needs to handle:

1. Different consumption speeds: Applications con-
sume updates at different speeds. A slow applica-
tion that synchronously processes updates should
not hold up data delivery to a fast one.

2. At least once delivery: All updates are delivered at
least once. This ensures that applications can trust
that they have received all updates that they are in-
terested in.

3. In-order delivery of new updates: When an up-
date is received, the application should be confident
that all updates prior to the received one have also
been received earlier.

4. Fault tolerance: The system must be resilient to
frequent hardware and software failure both on the
datastore as well as the application end.

Challenges 1 and 4 imposed by heterogeneous nature
of Facebook’s infrastructure, while the others are design
choices made based on the nature of applications sup-
ported.

3 Wormhole Architecture

In this section, we describe the high level design of
Wormhole. Figure 2 shows its main components. In the
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Figure 2: Components of Wormhole. Producers produce
data and write to datastores. Publishers read the trans-
action logs of datastores, construct updates from them,
and send them to subscribers of various applications,
which in turn do application specific work, e.g., invali-
date caches or update indices.

following subsections, we detail specific design choices,
their implications, and their role in satisfying the require-
ments from Section 2.

Data Model and System Architecture. A dataset is a
collection of related data, for example, user generated
data in Facebook. It is partitioned into a number of
shards for better scaling, and each update to the dataset
is assigned a unique shard. A datastore stores data for a
collection of shards of the dataset. Each datastore runs a
publisher, which reads updates from the datastore trans-
action log, filters the updates, and sends them to a set of
subscribers. Publishers are typically co-located on the
database machines so they have fast local access to the
transaction log.

In Wormhole publisher, we have support for reading
from MySQL, HDFS, and RocksDB, and it is easy to
add support for new log types. The producers of updates
write a set of key-value pairs in the log entries in a se-
rialized format that is different for each log type. The
publisher takes care of translating the underlying log en-
tries into objects with a standard key-value format, which
we refer to as a Wormhole update. One of the keys in the
Wormhole updates (called #.S) corresponds to the shard
of the update: it is written by the producer based on what
shard the update belongs to.

Wormhole’s subscribing applications are also sharded.
An application links itself with the subscriber library

and arranges for multiple instances of itself to be run,
called the subscribers. The publishers finds all inter-
ested applications and corresponding subscribers via a
ZooKeeper-based configuration system. It then divides
all the shards to be sent to the application among all of
the application’s subscribers, eventually calling onShard-
Notice() for notifying subscribers about shards they will
be responsible for (see Table 1). It is possible (and likely)
that shards belonging to the same publisher might be
processed by different subscribers, and shards belong-
ing to different publishers might be processed by same
subscriber.

All updates of a single shard are always sent to one
subscriber, i.e., they are not split among multiple sub-
scribers. Wormhole arranges for in-order delivery of the
updates belonging to any fixed shard: if a subscriber re-
ceives an update (say u1) for a shard (say s1), then all up-
dates for shard s1 contained in the transaction logs prior
to u1 must have already been received by the subscriber.
Subscribers receive the stream of updates for every shard,
which we call a flow. Publishers periodically track data-
markers per flow after the subscribers acknowledge that
they have processed the updates up to new datamarker. A
datamarker for a flow is essentially a pointer in the data-
store log that indicates the position of the last received
and acknowledged update of the flow by the subscriber.
Subscribers are assumed to be stateless. In particular,
they don’t need to keep track of the state of the flow.

Updates Delivery. To get started, a publisher finds ap-
plications that want to subscribe to it using configura-
tion files. It constructs flows for these applications cor-
responding to shards it has in its datastore, constructing
one flow for each (application, shard) pair. The configu-
ration can be changed dynamically, for example adding a
new application or deleting an old application. This may
result in addition or deletion of flows. When a new ap-
plication is added, it is typically specified which point
in the past it wants to start getting updates from. In
such case, publishers ensures that it sends updates start-
ing from asked for position.

In steady state, all flows get updates from the same po-
sition in the datastore, i.e., the position corresponding to
the current time. Hence, Wormhole uses one reader to
get the updates, and sends them to all interested flows.
In case of error conditions, the publisher needs to restart
sending updates from a stored datamarker. For this, the
publisher may need to read older updates from the data-
store’s log. If many flows are recovering simultaneously,
a naive implementation of the publisher would read from
many positions in the log simultaneously, causing high
I/O load. Wormhole clusters flows and creates a reader
for each cluster instead, which results in significant I/O
savings. Each such reader combined with associated
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flows is called a caravan (see Section 3.1). The single-
ton steady state caravan (or the farthest caravan in case
of multiple caravans) is called the lead caravan.

Wormhole needs to load balance flows among the sub-
scribers of an application. We use two modes of load bal-
ancing. In the first mode, the publishers use a weighted
random selection to choose which subscriber to associate
a flow with, so that lightly loaded subscribers are more
likely to get more flows. In the second mode, the sub-
scribers use ZooKeeper [13], a distributed synchroniza-
tion service, to balance load among themselves: If some
subscribers get heavily loaded, they redirect some flows
to lightly loaded subscribers. Subscribers can also imple-
ment a custom load-balancing strategy using these prim-
itives.

After a flow is associated with a caravan and a sub-
scriber, updates are sent over a TCP connection. Pub-
lishers save on connection overhead by multiplexing all
flows associated with the same subscriber. The data-
markers are moved forward for flows periodically after
corresponding subscribers confirm receipt of new up-
dates.

Wormhole provides libraries to make it easy to build
new applications. The subscriber library takes care of
communication with the publisher, responding to data-
markers, and other protocol details. The subscribers of
the application implement an API that is specified in Ta-
ble 1.

Before moving on to an in-depth description of
Wormhole components, we make a few observations.
(1) Wormhole is highly configurable, and therefore can
be used for diverse applications such as cache invalida-
tions, index updates, replication, data loading to Hive
etc. It has pluggable datastore support, allows configu-
rations to be changed on the fly, and has a configurable
flow-clustering algorithm (see Section 3.1). (2) Worm-
hole supports applications that are written in various lan-
guages. Currently applications written in C++ and Java
are supported. (3) Wormhole is highly reliable and can
handle failures of various components: publishers, data-
stores, subscribers, and even partial network failures.

3.1 Caravan Allocation

As described earlier, Wormhole publisher has the single-
ton lead caravan in steady state which reads updates from
the datastore and sends them to appropriate subscribers.
When some subscribers become slow in processing up-
dates, Wormhole creates additional caravans to follow
the lead caravan. These additional caravans send past
updates to slow subscribers. In addition, flows are dy-
namically assigned to a varying number of caravans as
their datamarkers change in order to optimize for latency
and I/O-load. The trade-off between I/O-load and latency

can be intuitively seen as follows: If we allow a large
number of caravans, we incur higher I/O-load, but we
can do a better job of clustering flows whose datamark-
ers are close, which prevents other flows from having to
wait. If we allow very few caravans, flows with very
different datamarkers get assigned to the same caravan,
making flows which are farther ahead wait for flows that
are very far behind. The allocation of flows to caravans
is called caravan allocation. Note that the datamarkers
of all flows assigned to a caravan must be at least as large
as the position of the caravan in the transaction log.

Caravans are periodically split and merged based on
the datamarkers of the flows. A caravan is split if the
flows on it can be tightly clustered into more than one
cluster. Two caravans are merged if they are “close”
to each other and reading updates that are nearby in the
datastore transaction log. Usually, the non-lead caravans
are expected to eventually catch up with the lead caravan
and are thus forced to read updates at a rate that is faster
than the rate of the lead caravan (typically 1.25 to 2 times
faster). In order to prevent overloading the datastore,
Wormhole has configuration parameters for the maxi-
mum number of caravans, the maximum rate at which
a caravan is allowed to read updates, and a maximum
cumulative rate at which the collection of caravans is al-
lowed to read updates.

We also dynamically move flows between existing car-
avans. If a caravan has a flow which is not able to keep up
with the speed of the caravan (because the corresponding
subscriber is overloaded, for instance) or whose data-
marker is far ahead (and can better served by another
caravan), we can move the flow. These actions are taken
periodically.

3.2 Filtering Mechanism

Wormhole implements publisher-side filtering: the ap-
plication informs publishers of what filters it needs; the
publisher only delivers updates that pass the supplied fil-
ters. While evaluation of filters places some additional
processing overhead on a publisher, it helps conserve
both memory and network bandwidth. The efficiency re-
sulting from publisher-side filtering is more pronounced
when there are many applications that need only a subset
of data.

Filtering is based on the Wormhole update format,
which is a set of key-value pairs. Filters are specified as
follows: the top-level filter is an “OR” which is a disjunc-
tion of finitely many mid-level “AND,” each of which in
turn is a conjunction of finitely many “basic filters.” A
basic filter on an update is one of four kinds: (1) Does
a key exist, (2) Is the value of a key equal to a specified
value, (3) Is the value of a key contained in a specified
set (a numeric interval or a regular expression or a list of
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Callback for application When is the callback invoked by subscriber library
onShardNotice(shard) when updates for a new shard are discovered by the publisher, it notifies the

subscriber of existence of a new shard
onUpdate(wormholeUpdate) when a new update is received from the publisher
onToken(datamarker) when publisher requests acknowledgement that the subscriber has received

data up to the new datamarker
onDataLoss(fromMarker, toMarker) when the publisher realizes that some data for the flow was not sent

Table 1: API that Wormhole subscribers implement to get updates from publishers. The callbacks specified are run
when an event of a specific type happens. onShardNotice() is called when a subscriber is notified of a new flow
corresponding to a new shard. Once the flow is established, onUpdate() is called for each received update. When
the publisher sends a new datamarker asking for acknowledgement of received data, onToken() is called. When the
subscriber has processed all updates up to the supplied datamarker, it is passed back to the publisher as an acknowl-
edgement. In the rare event that truncation of logs by the underlying datastore results in data loss for an application
because the application was further behind than the truncated log position, onDataLoss() callback is called to notify
the subscriber of data loss event.

elements), or (4) negation of any of the previous three.
This generic filtering system is flexible enough for

Facebook’s various applications. For example, for the
cache invalidation applications we use the filter [topic =
aq] OR [mcd key exists] (mcd specifies keys to invali-
date in Memcache). For index update services, we use
more complex filters such as [tableName in (t1, t2)] OR
[(associationType = a1) AND (shard in 1-5000)].

3.3 Reliable Delivery
Reliability is an important requirement for Wormhole.
For example, one missed update could lead to perma-
nent corruption in a cache or index of a dataset. Worm-
hole supports two types of datasets: single-copy datasets
and multiple-copy datasets. The latter indicates a geo-
replicated dataset. Accordingly, Wormhole supports both
single-copy reliable delivery (SCRD) and multiple-copy
reliable delivery (MCRD). For SCRD, Wormhole guar-
antees that when an application is subscribed to the sin-
gle copy of a dataset, its subscribers receive at least once
all updates contained in that single copy of the dataset.
The updates for any shard are delivered to the application
in order that they were stored in the transaction logs: de-
livery of an update means all prior updates for that shard
have already been delivered. For MCRD, applications
are allowed to subscribe to multiple copies of a dataset
at once, and when they do so, Wormhole guarantees that
its subscribers receive at least once all updates contained
in any subscribed copy of the dataset. The updates for
any shard are, again, delivered in order. There is no or-
dering guarantee between updates that belong to differ-
ent shards. Ordering guarantee for updates within shards
suffices for most purposes, since updates corresponding
to one entity (e.g., a Facebook page, or a Facebook user)
reside on the same shard.

Note that these guarantees do not hold if an update
is not available in the datastore log at the time applica-
tion is ready to receive updates (because datastore might
have truncated its logs). Typically datastore logs retain
updates for 1–2 days, and an application that falls behind
by more than that may thus miss updates (and notified by
onDataLoss() callback, see Table 1). In our experience,
when applications do fall behind because of machines or
network failures, monitoring alarms become active and
remediation is done quickly. Hence, it is rare for the ap-
plications to fall behind by more than a few hours.

In rest of this section, we first show how Wormhole
uses datamarkers to provide SCRD, and then how it is
extended to MCRD.

3.3.1 Single-Copy Reliable Delivery (SCRD)

Wormhole leverages the reliability of TCP: while a
subscriber is responsive, TCP ensures reliable delivery.
Wormhole does not use application layer acknowledge-
ments for individual updates—we found it resulted in
heavy bandwidth usage and lowered throughput. In-
stead, for every flow, a publisher periodically sends a
datamarker (current position in the datastore log) inter-
spersed with updates. The subscriber acknowledges a
datamarker once it has processed all updates before the
datamarker. The acknowledged datamarkers are stored
on the publisher side in persistent storage. Since the pub-
lisher can send updates to a flow only if both the datastore
and the datamarker are available, it makes sense to store
them together.

These stored datamarkers help the publisher achieve
SCRD. When a subscriber becomes available after sub-
scriber or network failure, a publisher uses previously
acknowledged datamarkers as starting points for sending
updates, hence not missing any update.
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The decision of sending datamarkers only periodically
results in higher throughput in the normal case. But in
the case of a recovery, when publisher starts sending up-
dates from previously acknowledged datamarker, some
updates may be received more than once. This is not a
problem in most cases. Multiple deliveries of cache in-
validation updates do not violate correctness, and other
applications can easily built logic to remove duplicates.
Wormhole also provides an interface to allow subscribers
to send datamarkers to publishers in order to reduce the
probability of duplicate delivery.

The average size of datamarkers is less than 100 bytes
and they are sent only once every 30 seconds. Hence
network overhead from datamarkers is small: 0.0006%–
0.0013% of the traffic. This overhead can be reduced by
increasing the period between datamarkers, but doing so
results in a higher overhead when recovering. With 30
seconds period, 0.2 seconds of updates are resent for ev-
ery 10 minutes of updates on average because of failures
and recoveries, resulting in 0.03% network overhead.

We also support a mode where applications can choose
to get only real time data (hence not requiring caravans
for old updates), or data that is at most a certain time old.
While it does not guarantee reliable delivery, this mode is
frequently used for developing and testing applications.

3.3.2 Muliple-Copy Reliable Delivery (MCRD)

Most datasets at Facebook are replicated, allowing for
higher availability of updates. In MCRD, when a pub-
lisher doing single-source reliable delivery to an appli-
cation fails permanently, e.g., because of hardware fail-
ure, we would like a publisher running on replicated
datastore to take over and do single-source reliable de-
livery to the application starting from where the failed
datastore stopped sending updates. In essence, MCRD
is “SCRD with publisher failover.” There are, however,
several challenges in extending the SCRD guarantee to
MCRD:
(1) The datamarkers for flows are stored in persistent

storage by the publisher, which is typically co-
located with the datastore host. When the host fails,
we lose the datamarker even though the updates
might be available elsewhere.

(2) The datamarker for a flow is a pointer into the logs
of the datastore. It is usually a filename of the log
and byte offset within that file. Unfortunately, data-
markers represented this way are specific to the par-
ticular replica and it is not straightforward to find
the corresponding position in a different replica. For
example, in MySQL, binary log names and offsets
are completely different for different replicas.

(3) For simplicity, publishers are independent entities
in MCRD case, and they do not communicate to

each other. For ease of operations, we would still
like a solution that minimized the communication
between publishers.

We address these challenges in the following ways.
First, MCRD publishers store datamarkers in ZooKeeper,
a highly available distributed service.

To overcome the problem of replica-specific data-
markers, we introduce logical positions—a datastore ag-
nostic way to identify updates such that copies of the
same update in different replicas have the same logical
position. A logical position uniquely identifies an up-
date in a dataset using a (monotonically non-decreasing)
sequence number and an index. The updates are as-
signed logical positions by the publisher. When the se-
quence number of consecutive updates are equal, which
can happen if the datastore does not natively support se-
quence numbers and we use timestamps of updates as
sequence numbers, they are assigned monotonically in-
creasing indices starting at 1 so they have unique logical
positions. Since caravans still need datastore positions
to start reading logs, a data structure called logical posi-
tions mapper, or simply mapper, maps logical positions
from datamarkers to datastore-specific positions.

Figure 3: Architecture for the failover of publishers in
MCRD. Multiple publishers (in this case P1 and P2)
have the same data to publish to application (A1), but
only one of them (P1) owns and publishes. Each pub-
lisher has an ephemeral node corresponding to it, which
non-owner publisher watches in case the owner fails (P2
watching P1). The owner publisher updates datamarkers
in ZooKeeper. If P1 fails, P2 will notice the disappear-
ance of P1’s ephemeral node and will start owning the
flows for the application.
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Finally, to reduce the communication among publish-
ers, we note that MCRD publishers need to be aware
only of their peers serving the same updates. There-
fore, a publisher needs to only communicate to as many
publishers as there are replicas. At any time, one peer
owns a flow and other peers watch the owner for any
changes. The owner publisher is responsible for sending
updates and recording logical datamarkers in ZooKeeper.
All other peers keep track of the owner (or ZooKeeper’s
ephemeral nodes [13] corresponding to the owner) and
take over the ownership if the owner fails. This architec-
ture is illustrated in Figure 3.

4 Workload and Evaluation

Wormhole has been in production at Facebook for
over three years. Over this period, Wormhole has
grown tremendously from its initial deployment where
it published database updates for cache invalidation sys-
tem. Today, Wormhole is used by tens of datasets
stored on MySQL, HDFS and RocksDB. Across these
deployments, Wormhole publishers transport over 35
GBytes/sec of updates at steady state across 5 trillion
messages per day. Note that this update rate isn’t the
peak for the system—in practice, we have found that
Wormhole has transported over 200 GBytes/sec of up-
dates when some applications fail and need to replay past
updates. We have found that designing Wormhole to run
alongside sharded datastores has allowed us to scale the
system horizontally by bringing up new publishers on the
datastore machines.

To keep Wormhole from hurting datastore perfor-
mance, a typical constraint in production is to not start
too many readers to read updates from datastores. As a
result, the historic average of number of caravans used
by Wormhole publishers in production is just over 1
(≈ 1.063).

Our evaluation of Wormhole focuses on our produc-
tion deployment and a few synthetic benchmarks that il-
lustrate Wormhole’s characteristics. We focus on the fol-
lowing metrics.

Scalability and Throughput: What is Wormhole’s
publisher and subscriber throughput? How well
does it scale with the number of applications
subscribing to updates?

Efficiency: Do caravans reduce load on datastores?
How well does Wormhole trade-off I/O efficiency
with latency in delivering updates?

Latency: What is the typical latency for delivering up-
dates?

Fault Tolerance: How well does Wormhole handle the
failure of publishers, subscribers and even a whole
datacenter?

4.1 Scalability
4.1.1 Scaling with the number of applications

This experiment evaluates how a single publisher scales
with an increasing number of applications.

Methodology. We start one publisher configured to use
4GB of memory and 32 CPUs clocked at 2.6 GHz. The
datastore is filled with 5 GBytes of past updates from
production traffic with updates having a mean size of 1
KBytes. We run 20 experiments, parameterized by num-
ber of applications n = 1,2, . . . ,20. For each n, we con-
figure n applications to receive updates from the pub-
lisher. Each of the n applications have one subscriber,
which simply receives all 5 GBytes of updates and in-
crements a counter indicating the number of updates re-
ceived. The publisher is configured to use only one re-
play caravan. (The lead caravan is at the end of the logs
and not relevant for this experiment.) We measure how
long it takes the publisher to send all updates to all n ap-
plications (i.e., time to replay), and the rate of sending
updates (i.e., throughput).

Results. Figure 4(a) plots the time taken to deliver all
updates to all applications. We see the time taken to de-
liver all queued updates grows linearly with the number
of applications. This linear growth stems from the pub-
lisher having to schedule each update for delivery to a
subscriber of each application.

Figure 4(b) plots the average throughput of the pub-
lisher over the time of delivery of all updates. We
find that the throughput increases with increasing num-
ber of applications before it levels off at just over 350
MBytes/sec. This bottleneck is caused by a lack of paral-
lelism in our publisher, which has not been optimized be-
cause Wormhole publishers are typically co-located with
production databases and are not allowed to use many
cores.

Note that the goal of this experiment is to stress test the
publisher by configuring each application to subscribe to
all updates. This is in contrast to our production setup
where each application typically gets a filtered subset of
updates. In our production set up, it is common for pub-
lishers to deliver updates to many tens of applications in
steady state.

4.1.2 Subscriber throughput

We now turn our attention to the throughput of the sub-
scriber. In this experiment, we stress test a single sub-
scriber by increasing the number of updates the sub-
scriber is configured to get. This is done by increasing
the number of publishers whose updates the subscriber
is configured to get.

7
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Figure 4: Wormhole publisher delivering updates to
varying number of applications from 1 to 20. Panel (a)
shows time taken to deliver all updates using a single re-
play caravan. Panel (b) shows the average throughput of
the publisher during delivery of all updates.

Methodology. We start one application using one sub-
scriber configured with 4 GBytes of memory and 4 Intel
2.80 GHz CPUs. We configure this subscriber to get a
fraction of updates from a production dataset that aver-
ages 500 bytes per update. We periodically increase the
fraction of updates the subscriber is configured to get by
increasing the number of shards from the dataset that the
application is interested in. This is done approximately
every 15 minutes. We measure the running average of
throughput and latency of the subscriber during the ex-
periment.

The measured data is plotted in Figure 5. Both (a) and
(b) show the number of shards whose updates the sub-
scriber is getting over the 150-minute experiment. Note
that the step increments in this graph at minutes ≈ 80,95,
and 110 is by manually changing the configuration of the
application to be subscribed to more shards from pub-
lishers. Figure 5(a) shows the average throughput of
the subscriber for each one minute interval. Figure 5(b)
shows the average latency of updates delivery for each
one minute interval. Note that this latency is end-to-
end—the difference between the time at which update
was delivered to the subscriber and time at which it was
written to the datastore where publisher is reading. Also
note that during the time of low latency, the sum total
of send-throughputs of all publishers to the subscriber is
equal to the receive-throughput of the subscriber.

Note that the throughput jumps when number of
shards jump, which is expected because more publish-

Figure 5: Running average of throughput and latency of
subscriber that gets increasingly larger amount of up-
dates from publishers. Increasing amount of updates is
shown in (a) and (b) by step increase in number of shards
whose updates the subscriber gets. This increase is done
manually at minutes ≈ 80,95, and 110. Panel (a) shows
the throughput in updates/sec, which jumps with jump in
number of shards. Panel (b) shows the average latency
of delivery of updates, which remains constant up to the
throughput limit of the subscriber. Panel (c) combines
(a) and (b) by plotting throughput versus latency of each
one minute interval shown in (a) and (b). It shows that
the latency of updates delivery remains low up to a limit,
and increases in an unbounded manner after that.

ers start sending updates to the subscriber. Despite this
increased throughput, the average latency of updates re-
mains constant at 150ms. But the final jump in through-
put around minute 110 is not sustained—the throughput
hovers around 600,000 updates/sec. Also, the latency
starts increasing without limits at minute 110, since the
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subscriber is not able to handle all the updates. This
leads to publisher having to allocate a different caravan
for sending updates again. This time is counted against
latency of updates, which results in higher latency for
updates that are resent. This lack of ability of subscriber
to process more than 600k updates/sec is easily seen in
Figure 5(c), which is a convenient combination of the
previous two: For each one minute interval, it plots the
average throughput versus average latency during that
one minute interval. After the throughput hits 600k up-
dates/sec, the latency keeps increasing without any fur-
ther increase in the throughput.

Results. Wormhole subscriber can sustain a high
throughput of over 600,000 updates/second, without im-
posing a latency penalty. If we try to push more updates
than that, the subscriber starts dropping updates, which
results in publishers having to resend them and causing
large latency.

4.1.3 Publisher throughput in production

A previous experiment showed the throughput of the
publisher for replaying updates for data that was not serv-
ing production traffic (Figure 4). We now evaluate the
typical speed of recovery for application in Facebook’s
production environment and show that Wormhole is ca-
pable to serving high throughput in bursts when applica-
tions fall behind.

We consider a production deployment of Wormhole
with publishers delivering updates to a cache invalidation
application. For this application, any delay in delivering
updates results in stale cache data.

Methodology. We evaluate 50 publishers over a 24-
hour period and report what is the average throughput
of the publishers, and what is the maximum throughput
of the publishers observed during the experiment. To
count towards the maximum, the throughput had to be
sustained for at least one minute. We plot the average
throughput versus maximum throughput in Figure 6.

Results. The main take-away from this experiment is
that in Facebook’s production environment, Wormhole
publishers are capable of sustaining throughput that is
more than 10 times their average throughput. This result
is important since it is common for applications to fall
behind. When requested, the publisher must be able to
help the application recover quickly by sustaining high
throughput for short bursts of time.

Note that in the above production environment, the
highest throughout a caravan can achieve was artificially
capped in the configuration of these publishers so that
Wormhole does not adversely affect the performance of

Figure 6: Sustained maximum throughput of publisher
versus average throughput over a period of 24 hours for
a set of 50 publishers. The throughputs are normalized
by making minimum average throughput equal to 1 unit.

the underlying datastore. In the absence of such con-
straints, Wormhole is capable of higher throughput but
may result in worse datastore performance for other
clients.

4.2 Efficiency
In this section, we evaluate the efficiency achieved by
Wormhole by using caravans.

4.2.1 Trading off latency for I/O during recovery

After a failure, multiple applications might fall behind
and request updates from different points in time in the
past. Wormhole has a choice of creating many caravans
starting at different positions in the datastore logs, or
using fewer caravans and clustering flows from applica-
tions. On one extreme, if multiple caravans are spawned,
applications can receive updates immediately, resulting
in low latency of update delivery but high read amplifi-
cation (i.e., updates being read multiple times by differ-
ent caravans). On the other extreme, if we are allowed to
start only one caravan, applications that are further along
have to wait for lagging applications to recover before
getting updates. This results in higher latency for ap-
plications that are up to date. We simulate this scenario
in evaluating Wormhole’s trade-off between I/O and la-
tency.

Methodology. We start a single publisher on a data-
store that has 20 GBytes of updates. To simulate multiple
applications that fall behind by different amounts in pro-
duction, we subscribe this publisher to 10 applications
whose datamarkers are equally distributed across the 20
GBytes of updates. Therefore, each application wants

9
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to get a progressively smaller tail-end of the updates in
the datastore: first application wants to get the whole 20
GBytes, the second application wants to get the last 18
GBytes, and so on, and tenth application wants to get the
last 2 GBytes of updates.

Updates from the publisher to all applications can be
sent using different number of caravans (which results in
different read amplification factors). We run the experi-
ment in 7 iterations, with different maximum number of
caravan Wormhole publisher is allowed to use: 10, 7, 5,
4, 3, 2, and 1. For each iteration, we measure how much
data is read collectively by all caravans and divide it by
total amount of data in the datastore to get the read am-
plification factor of the iteration. This is plotted on the
x-axis in Figure 7.

We measure the latency as follows. The latency of
one update is measured as the difference between time
of receipt of update by application and time of commit
of the update in the datastore. The latency of one appli-
cation is the average latency over all updates it received.
The latency plotted on y-axis is the average latency of all
10 applications. Since we are replaying past data span-
ning several minutes, the latency as measured above is
expected to be in minutes.

Each data point in Figure 7 corresponds to one itera-
tion of the experiment, indicating the read amplification
factor and the average latency of all applications. The la-
bel for the data point corresponds to the maximum num-
ber of caravans allowed in that iteration.

Figure 7: Read amplification factor versus average la-
tency of delivering updates to 10 applications (see text
for more explanation). Different data points are for vary-
ing number of maximum allowed caravans. The latency
is averaged over 10 applications whose datamarkers are
scattered evenly across the 20 GBytes of single datastore
updates.

Results. The main result of this experiment is to
demonstrate that Wormhole can trade off the load on
datastore for latency of serving updates. Figure 7 shows
that by increasing read amplification on the datastore,

Wormhole is able to reduce the average latency of up-
dates by up to 40%.

Note that each addition caravan does not reduce the
latency of updates. This is an artifact of how we assign
flows to caravans. We believe this can be improved with
a different caravan allocation algorithm. This is an active
direction for future research, see Section 7.

4.2.2 Updates delivered versus updates read

Methodology. We evaluate how many bytes of updates
Wormhole publishers read for each byte of updates sent
to all applications. A lower number for this metric indi-
cates Wormhole publisher puts little load on datastores
in order to send updates to many applications.

We use measurements from a production deployment
that is used to replicate (cache) data across datacenters.
There are multiple publishers in the datacenter we are
considering, and 6 applications subscribed to the dataset
corresponding to these publishers (the number of pub-
lishers and subscribers is not relevant to this discus-
sion). The publisher and subscribers are in geographi-
cally distributed locations (publisher on the east coast,
subscribers on east and west coasts of the US, and Eu-
rope). Over a period of 48 hours, we observe the number
of bytes collectively sent by these publishers to 6 appli-
cations, number of bytes read from datastores by the pub-
lishers, and how many caravans were used to read those
bytes. These metrics are collected every 1 minute, and
the collected value is average of the values since previ-
ous collection. The results appear in Figure 8.

Figure 8: The amount of data read from datastores and
sent to applications by Wormhole, and the number of car-
avans used to do so. The number of caravans, which is
averaged over one minute intervals and over all involved
publishers, can be fractional.
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Results. We see that for a vast majority of time, the ra-
tio of bytes read over bytes sent remains as low at 1/6.
This shows the efficiency of Wormhole in reading up-
dates few times, before sending them to many applica-
tions.

There are small spikes in bytes read graph, which cor-
responds to times when some subscribers of some appli-
cations have errors, and hence fall behind. During these
spikes, the number of caravans go up accordingly.

Note the large spike in the middle, where the bytes
read becomes close to bytes sent (the ratio very close to
1). This happens because many subscribers of one appli-
cation (out of 6) fall behind because of a systemic error,
and all publishers have to read past updates to send past
data to the application. Note that even though the num-
ber of caravans becomes (only) 3 (for 6 applications), the
ratio of bytes read to bytes sent comes close to 1 (instead
of 0.5 or 3/6). The reason is that the two extra non-lead
caravans read updates at a higher rate than the lead cara-
van.

This experiment suggests Wormhole is efficient, even
in a large deployment, in reading updates few times and
sending them to many applications, and in its ability to
recover from applications failures.

4.3 Low Latency
Methodology. We examine the latency experienced by
updates in Wormhole. We use the data from one of Face-
book’s production deployments: we pick one (random)
publisher that is sending updates to a cache invalidation
application, and observe it over a period of few hours
to get a sample of 50,000 updates. The cache consis-
tency application itself runs on hundreds of machines,
but the updates from one publisher are distributed to a
small number of them (1–3). The average size of updates
is 500 bytes. The publisher and subscribers reside in the
same datacenter for this setup: the latency between pub-
lisher and subscribers (measured via ping time) is low
(under 1 ms).

The latency of updates is measured as follows: the
publisher writes the (millisecond) timestamp for each
update indicating when update was written to the data-
store (which could be much earlier than when it was read
by the publisher). When the subscriber receives it, it
computes the difference of clock time and the timestamp
written in the update. The clock skew between the pub-
lisher and the subscriber was measured to be less than
1ms. Note that this latency does not measure the time
taken by the cache consistency application to invalidate
the cache.

Results. The cumulative distribution function of laten-
cies of 50,000 updates appear in Figure 9. Over 99.5%

Figure 9: Latency of updates over a period of time, sent
from one publisher to local (datacenter) application.

of the updates are delivered in under 100ms. Note that
there is a long tail of updates that can take as long as 5
seconds. This can happens when an update is sent by a
non-lead caravan. In such case, it includes the time that
the corresponding flow spends waiting to be assigned to
a caravan.

4.4 Reliability and Fault Tolerance
In this section, we evaluate the efficacy of Wormhole in
providing multiple-copy (and single-copy) reliable deliv-
ery (MCRD and SCRD) by doing a failover for all pub-
lishers within a datacenter, by causing single publisher
failure, and by causing subscriber failures.

4.4.1 MCRD at large scale

To demonstrate MCRD at large scale, we picked one ap-
plication that was receiving 300 MBytes/sec of updates
from production. We simulated the failure of a datacen-
ter by changing the configuration of the application to
get updates from secondary datacenter, instead of the pri-
mary datacenter. The ping time between secondary data-
center and application subscribers was 15ms.

Averaged over multiple failovers, it took Wormhole
approximately 5 minutes to transfer all traffic from pri-
mary to secondary datacenter. A majority of this time is
spend during timeouts (for example, it takes one minute
before a machine is considered not reachable).

Note that in the case of actual failure of datacenter, the
application would not be receiving any data during this
time, and receive a burst afterwards when the updates are
being sent from the secondary datacenter (qualitatively
similar to the bursts in Figure 10(b)).

4.4.2 Reliability under single publisher failure

In this section, we evaluate how Wormhole handles the
failures of publishers for SCRD and MCRD.
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Methodology. We select two datastores that are replica
of a datastore in production. We start one publisher each
on them, which serve as peer publisher for MCRD. Call
them primary and secondary. We then start two applica-
tions: the first one requires multiple-copy reliable deliv-
ery of updates, from either primary or secondary, with
the preference of primary first. The second application
requires single-copy reliable delivery of updates, from
the primary publisher only.

Figure 10: Effect of publisher failure on delivery of up-
dates. Panel (a) shows an MCRD application that is con-
figured to receive updates from either the primary pub-
lisher or the secondary publisher. Panel (b) shows an
SCRD application that is configured to receive updates
only from the primary. The primary publisher is failed
close to second 300, and restored at second 1300. In
(a), the application starts getting updates from secondary,
while in (b), the application has to wait until primary is
restored, resulting in higher backlog.

After both applications are receiving data from the pri-
mary, we simulate the failure of primary by killing the
publisher process on primary (seen by disappearance of
red line in Figure 10(a) and (b). We restart the primary
publisher 15 minutes after its failure. Note that the sec-
ondary publisher runs without any failures.

Figure 10(a) plots the number of updates delivered to
the MCRD application from primary and secondary pub-
lisher. Figure 10(b) plots the number of updates deliv-
ered to the SCRD application from the primary publisher.

Results. This experiment demonstrates the reliable de-
livery guarantee of Wormhole, showing that both appli-
cations survive the failure of primary publisher, albeit in
different ways.

The MCRD application starts receiving updates from
the secondary publisher within 60 seconds of primary
failing. This time comes from the timeout we use to in-
dicate that a publisher is not available any more. When
the primary publisher is restored, the MCRD application
seamlessly switches to it.

Note the large spike in the updates received for SCRD
application. When the only publisher that could deliver
updates to it is restored, it sends the backlogs of updates
at a higher throughput, and then restores the application
to normal state.

4.4.3 Subscriber failures and load balancing

We evaluate Wormhole’s capability to balance load
among the subscribers of the same application. As de-
scribed earlier, we use two methods to distribute flows
among subscribers: (1) the publisher uses a probabil-
ity density function to assign flows to subscribers that
have relatively fewer flows, and (2) subscribers use a
ZooKeeper based load balancing method to provide hint
to publisher in choosing subscribers for flows. In the lat-
ter method, ZooKeeper based service assigns shards to
subscribers, and rebalances periodically when it discov-
ers that the assignment is not balanced. The period is
configurable, but typically once per minute.

Methodology. In this experiment, we consider a large
number of publishers spanning many shards, say n, de-
livering updates to a production application that also has
a large number of subscribers, say m. We first use one al-
gorithm to balance load among subscribers and then use
the second algorithm.

Figure 11: The histograms for distribution of flows
among subscribers. The y-axis shows the fraction of sub-
scribers that have number of flows that fall in the hori-
zontal x-axis bin. The two histograms show the spread
for probability based distribution and ZooKeeper based
distribution.

To measure the efficacy of the load balancing algo-
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rithm, we find out how many shards each subscriber is
subscribed to. (The sum of these numbers is always n,
since there are n shards in total.) We normalize this num-
ber and put subscribers in 50 bins according to normal-
ized number of shards assigned to them. This is the x-
axis in Figure 11. We draw the histogram in Figure 11
where y-axis shows the fraction of subscribers that have
the number of shard subscribed to them on the x-axis.
A large spread (as in blue histogram) shows that some
subscribers have very few shards while others have very
many.

Results. As seen in Figure 11, for the ZooKeeper based
allocation policy, the spread of number of shards is
tightly concentrated. Most subscribers have between 122
and 126 (normalized) shards. On the other hand, a ran-
dom distribution assigns as few as 88 and as many as 135
shards to subscribers.

5 Operational Challenges

In this section, we discuss the challenges we have faced
in running Wormhole at the scale of Facebook’s infras-
tructure, how we addressed them, and how the system
has evolved in a way to make it easy to catch and fix
problems.

First, the impact of malfunctioning of Wormhole af-
fects some Facebook users much more than others. For
example, suppose Wormhole publishers are malfunction-
ing on 1% of datastore machines so that 1% of the cache
is stale. This would cause 100% of cached data for 1%
of the users to be stale—not 1% of the cached data for
100% of the users. This makes the reliability of Worm-
hole publishers all the more important.

Wormhole must run on all production-ready datastore
machines, a large set that keeps changing as machines
are brought in to and taken out of production. In our
experience with a central deployment system we used
early on, it is challenging to keep Wormhole publisher
running on exactly this set of machines and no other; a
central deployment to a large set of machines is likely to
result in some mistakes. We decided to switch to a dis-
tributed deployment system based on runsv [20] while
trying to minimize dependencies outside of the local ma-
chine. We run a lightweight Wormhole monitor on each
datastore machine. The monitor periodically checks the
configuration system (which indicates the machines that
are in production) and based on that determines whether
to run a publisher or not, and if so, with what configu-
ration. This decentralized system has been significantly
more reliable and easier to use.

In order to make debugging the publisher and fixing
problems easier, we can change configurations on-the-

fly. For example, the maximum rate at which a cara-
van can send updates can be changed without restart-
ing the publisher. The publisher also implements a thrift
interface [4]—we use it to access state (e.g., what are
the datamarkers of all flows on it) and gather monitoring
statistics that the publisher collects and aggregates every
30 seconds (e.g., the rate of updates sent to all applica-
tions). The publisher collects over 100 such monitoring
statistics that we use to determine the health of the group
of publishers. This interface can also be used to give
commands to the publisher to override some decisions
manually (e.g., reassign all flows to caravans in order to
improve I/O utilization), although this is rarely required.

Wormhole’s resource utilization depends not only on
its own health, but the health of all the subscribing appli-
cations. The difference between best-case resource uti-
lization (one caravan in case all applications are current)
and worst-case resource utilization (maximum number
of caravans) can be large. We have to plan resources for
such worst-case operability, e.g., having a resource limit
that is higher than normal operating range for Wormhole.

6 Related Work

The pub-sub systems have been an active area of research
for many decades. Many pub-sub systems, message
buses (topic-based pub-sub systems), and P2P notifica-
tion systems have been developed [5,6,9,11,16,17,24,25,
28,31] that shares similar goals to Wormhole. Most solu-
tions, though, use brokers—intermediate datastores that
store and forward updates. These brokers offload the re-
sponsibility of forwarding events to subscribers from the
datastores. They can provide reliability by buffering up-
dates for slow subscribers, while providing low latency
to fast subscribers. However, these solutions are unde-
sirable for us as they require additional infrastructure for
brokers: we do not need brokers to buffer updates as our
datastores already provide reliable logs in form of trans-
action logs. Also, brokers can add significant latency to
message delivery, particularly if used hierarchically for
large scale systems.

Below we consider some of the best known publicly
available products.

SIENA [8] is a wide-area content-based pub-sub ser-
vice. Much of the focus in SIENA is on its specialized
content-based routers, while Wormhole uses stock net-
work routers while filtering happens directly at the pub-
lishers. SIENA does not support replicated data sources,
and has not been demonstrated at a scale or load near
Facebook’s.

Thialfi [1] is Google’s cloud notification service that
addresses a similar problem to Wormhole, namely the
invalidation of cached objects. Thialfi is geographically
distributed and highly reliable, even in the face of long
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disconnections. However, its clients are applications
running in browsers on end-users’ mobile phones, lap-
tops, and desktops, not applications within Google itself,
such as caching and indexing services. The workloads
on Thialfi are, accordingly, very different from Worm-
hole. In particular, Thialfi is not concerned about I/O
efficiency on data sources. Thialfi also sends only ver-
sion number for the data to subscribers, and coalesces
many updates into most recent one. Wormhole, on the
other hand, sends all updates, and each update contains
more information needed by the application, not just the
version number. This is for two reasons: (1) By sending
data, we can do cache refills, instead of just cache inval-
idations, and (2) Wormhole is used for wider purposes,
such as RocksDB replication, that need each update be-
ing delivered (based on statement replication).

Kafka [15] is LinkedIn’s message bus, now open
source and maintained by Apache. It has a topic-based
pub-sub API. Like Wormhole, it uses ZooKeeper to keep
track of how many events particularly subscribers have
consumed. As in Wormhole, data sources are sharded.
At LinkedIn, it is used to distribute various real-time
logging information to various subscribers. Kafka can
lose messages in case one of its message brokers suffers
a failure. Recent benchmarks puts the speed at which
Kafka can transport messages at about 250 MBytes/sec,
orders of magnitude below Wormhole’s production load,
but Kafka’s throughput can be improved by sharding dif-
ferently.

Hedwig [3] is a topic-based Apache pub-sub system
with an emphasis on handling many topics and providing
strong reliability, not on many publishers or subscribers
or on high message load. Many pub-sub systems focus
on expressive filters and implement sophisticated ways
to filter updates [10, 21, 26].

Messages buses like IronMQ [14] and Amazon
SQS [2] are hosted, and cannot be installed in local in-
frastructure. Beanstalkd [22] and RabbitMQ [23] are
popular efficient open-source message buses. Beanstalk
supports reliability but is specialized to be used as a
collection of task queues. Like Wormhole, RabbitMQ
can scale to multiple datacenters and is particularly ef-
ficient for small messages. Neither supports replicated
data sources, or have been been demonstrated to support
the scale of Facebook’s workloads.

TIBCO Rendezvous [29] is perhaps the most used and
advanced commercial message bus. While it has impres-
sive features and performance, it does not support repli-
cated datastores out-of-the-box. Rendezvous also needs
additional storage for messages, which grows with the
reliability interval, during which message can be retrans-
mitted. The Rendezvous daemon does not guarantee de-
livery to components that fail and does not recover for
periods exceeding the reliability interval, which is a dif-

ferent order of magnitude (typically 60 seconds) than the
failure durations of Wormhole components (sometimes
many hours).

7 Future Work

As Wormhole continues to support the growing amount
of traffic flowing through it, there is need for different
features to support the load and diversity of use-cases.
Because of the growth in number of applications, we are
working to provide differentiated guarantees to applica-
tions based on how important fresh data and latency is
to them. For example, if an application can afford to get
data that is stale up to a few minutes, updates for that
application can be batched and compressed to save net-
work bandwidth. We are also working on making it easy
to swap in and out various caravan allocation policies in
the Wormhole publisher, and measure their efficacy for
different workloads.

8 Conclusion

This paper describes Wormhole, a pub-sub system de-
veloped at Facebook. Wormhole leverages the transac-
tion log of the storage system to provide a reliable, in-
order update stream to interested applications. We have
demonstrated that Wormhole scales to support multiple
data storage systems and can guarantee delivery in the
presence of both publisher and subscriber failure. Our
production deployment of Wormhole transfers over 35
GBytes/sec in steady state (over 5 trillion messages per
day) from geo-replicated datastores to multiple applica-
tions with low latency.
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