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Abstract: Memcached is a well known, simple, in-
memory caching solution. This paper describes how
Facebook leverages memcached as a building block to
construct and scale a distributed key-value store that
supports the world’s largest social network. Our system
handles billions of requests per second and holds tril-
lions of items to deliver a rich experience for over a bil-
lion users around the world.

1 Introduction

Popular and engaging social networking sites present
significant infrastructure challenges. Hundreds of mil-
lions of people use these networks every day and im-
pose computational, network, and I/O demands that tra-
ditional web architectures struggle to satisfy. A social
network’s infrastructure needs to (1) allow near real-
time communication, (2) aggregate content on-the-fly
from multiple sources, (3) be able to access and update
very popular shared content, and (4) scale to process
millions of user requests per second.

We describe how we improved the open source ver-
sion of memcached [14] and used it as a building block to
construct a distributed key-value store for the largest so-
cial network in the world. We discuss our journey scal-
ing from a single cluster of servers to multiple geograph-
ically distributed clusters. To the best of our knowledge,
this system is the largest memcached installation in the
world, processing over a billion requests per second and
storing trillions of items.

This paper is the latest in a series of works that have
recognized the flexibility and utility of distributed key-
value stores [1, 2, 5, 6, 12, 14, 34, 36]. This paper fo-
cuses on memcached—an open-source implementation
of an in-memory hash table—as it provides low latency
access to a shared storage pool at low cost. These quali-
ties enable us to build data-intensive features that would
otherwise be impractical. For example, a feature that
issues hundreds of database queries per page request
would likely never leave the prototype stage because it
would be too slow and expensive. In our application,

however, web pages routinely fetch thousands of key-
value pairs from memcached servers.

One of our goals is to present the important themes
that emerge at different scales of our deployment. While
qualities like performance, efficiency, fault-tolerance,
and consistency are important at all scales, our experi-
ence indicates that at specific sizes some qualities re-
quire more effort to achieve than others. For exam-
ple, maintaining data consistency can be easier at small
scales if replication is minimal compared to larger ones
where replication is often necessary. Additionally, the
importance of finding an optimal communication sched-
ule increases as the number of servers increase and net-
working becomes the bottleneck.

This paper includes four main contributions: (1)
We describe the evolution of Facebook’s memcached-
based architecture. (2) We identify enhancements to
memcached that improve performance and increase
memory efficiency. (3) We highlight mechanisms that
improve our ability to operate our system at scale. (4)
We characterize the production workloads imposed on
our system.

2 Overview

The following properties greatly influence our design.
First, users consume an order of magnitude more con-
tent than they create. This behavior results in a workload
dominated by fetching data and suggests that caching
can have significant advantages. Second, our read op-
erations fetch data from a variety of sources such as
MySQL databases, HDFS installations, and backend
services. This heterogeneity requires a flexible caching
strategy able to store data from disparate sources.
Memcached provides a simple set of operations (set,
get, and delete) that makes it attractive as an elemen-
tal component in a large-scale distributed system. The
open-source version we started with provides a single-
machine in-memory hash table. In this paper, we discuss
how we took this basic building block, made it more ef-
ficient, and used it to build a distributed key-value store
that can process billions of requests per second. Hence-

USENIX Association

10th USENIX Symposium on Networked Systems Design and Implementation (NSDI "13) 385



web
server

1.getk 2. SELECT ... 1. UPDATE ...
2. delete k
3. set (k,v)

d atabase database

Figure 1: Memcache as a demand-filled look-aside
cache. The left half illustrates the read path for a web
server on a cache miss. The right half illustrates the
write path.
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forth, we use ‘memcached’ to refer to the source code
or a running binary and ‘memcache’ to describe the dis-
tributed system.

Query cache: We rely on memcache to lighten the read
load on our databases. In particular, we use memcache
as a demand-filled look-aside cache as shown in Fig-
ure 1. When a web server needs data, it first requests
the value from memcache by providing a string key. If
the item addressed by that key is not cached, the web
server retrieves the data from the database or other back-
end service and populates the cache with the key-value
pair. For write requests, the web server issues SQL state-
ments to the database and then sends a delete request to
memcache that invalidates any stale data. We choose to
delete cached data instead of updating it because deletes
are idempotent. Memcache is not the authoritative source
of the data and is therefore allowed to evict cached data.

While there are several ways to address excessive
read traffic on MySQL databases, we chose to use
memcache. It was the best choice given limited engi-
neering resources and time. Additionally, separating our
caching layer from our persistence layer allows us to ad-
just each layer independently as our workload changes.

Generic cache: We also leverage memcache as a more
general key-value store. For example, engineers use
memcache to store pre-computed results from sophisti-
cated machine learning algorithms which can then be
used by a variety of other applications. It takes little ef-
fort for new services to leverage the existing marcher
infrastructure without the burden of tuning, optimizing,
provisioning, and maintaining a large server fleet.

As is, memcached provides no server-to-server co-
ordination; it is an in-memory hash table running on
a single server. In the remainder of this paper we de-
scribe how we built a distributed key-value store based
on memcached capable of operating under Facebook’s
workload. Our system provides a suite of configu-
ration, aggregation, and routing services to organize
memcached instances into a distributed system.
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Figure 2: Overall architecture

We structure our paper to emphasize the themes that
emerge at three different deployment scales. Our read-
heavy workload and wide fan-out is the primary con-
cern when we have one cluster of servers. As it becomes
necessary to scale to multiple frontend clusters, we ad-
dress data replication between these clusters. Finally, we
describe mechanisms to provide a consistent user ex-
perience as we spread clusters around the world. Op-
erational complexity and fault tolerance is important at
all scales. We present salient data that supports our de-
sign decisions and refer the reader to work by Atikoglu
et al. [8] for a more detailed analysis of our workload. At
a high-level, Figure 2 illustrates this final architecture in
which we organize co-located clusters into a region and
designate a master region that provides a data stream to
keep non-master regions up-to-date.

While evolving our system we prioritize two ma-
jor design goals. (1) Any change must impact a user-
facing or operational issue. Optimizations that have lim-
ited scope are rarely considered. (2) We treat the prob-
ability of reading transient stale data as a parameter to
be tuned, similar to responsiveness. We are willing to
expose slightly stale data in exchange for insulating a
backend storage service from excessive load.

3 In a Cluster: Latency and Load

We now consider the challenges of scaling to thousands
of servers within a cluster. At this scale, most of our
efforts focus on reducing either the latency of fetching
cached data or the load imposed due to a cache miss.

3.1 Reducing Latency

Whether a request for data results in a cache hit or miss,
the latency of memcache’s response is a critical factor
in the response time of a user’s request. A single user
web request can often result in hundreds of individual
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memcache get requests. For example, loading one of our
popular pages results in an average of 521 distinct items
fetched from memcache.!

We provision hundreds of memcached servers in a
cluster to reduce load on databases and other services.
Items are distributed across the memcached servers
through consistent hashing [22]. Thus web servers have
to routinely communicate with many memcached servers
to satisfy a user request. As a result, all web servers
communicate with every memcached server in a short
period of time. This all-to-all communication pattern
can cause incast congestion [30] or allow a single server
to become the bottleneck for many web servers. Data
replication often alleviates the single-server bottleneck
but leads to significant memory inefficiencies in the
common case.

We reduce latency mainly by focusing on the
memcache client, which runs on each web server. This
client serves a range of functions, including serializa-
tion, compression, request routing, error handling, and
request batching. Clients maintain a map of all available
servers, which is updated through an auxiliary configu-
ration system.

Parallel requests and batching: We structure our web-
application code to minimize the number of network
round trips necessary to respond to page requests. We
construct a directed acyclic graph (DAG) representing
the dependencies between data. A web server uses this
DAG to maximize the number of items that can be
fetched concurrently. On average these batches consist
of 24 keys per request’.

Client-server communication: Memcached servers do
not communicate with each other. When appropriate,
we embed the complexity of the system into a stateless
client rather than in the memcached servers. This greatly
simplifies memcached and allows us to focus on making
it highly performant for a more limited use case. Keep-
ing the clients stateless enables rapid iteration in the
software and simplifies our deployment process. Client
logic is provided as two components: a library that can
be embedded into applications or as a standalone proxy
named mcrouter. This proxy presents a memcached
server interface and routes the requests/replies to/from
other servers.

Clients use UDP and TCP to communicate with
memcached servers. We rely on UDP for get requests to
reduce latency and overhead. Since UDP is connection-
less, each thread in the web server is allowed to directly
communicate with memcached servers directly, bypass-
ing mcrouter, without establishing and maintaining a

I'The 95 percentile of fetches for that page is 1,740 items.
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Figure 3: Get latency for UDP, TCP via mcrouter

connection thereby reducing the overhead. The UDP
implementation detects packets that are dropped or re-
ceived out of order (using sequence numbers) and treats
them as errors on the client side. It does not provide
any mechanism to try to recover from them. In our in-
frastructure, we find this decision to be practical. Un-
der peak load, memcache clients observe that 0.25% of
get requests are discarded. About 80% of these drops
are due to late or dropped packets, while the remainder
are due to out of order delivery. Clients treat get er-
rors as cache misses, but web servers will skip insert-
ing entries into memcached after querying for data to
avoid putting additional load on a possibly overloaded
network or server.

For reliability, clients perform set and delete opera-
tions over TCP through an instance of mcrouter run-
ning on the same machine as the web server. For opera-
tions where we need to confirm a state change (updates
and deletes) TCP alleviates the need to add a retry mech-
anism to our UDP implementation.

Web servers rely on a high degree of parallelism and
over-subscription to achieve high throughput. The high
memory demands of open TCP connections makes it
prohibitively expensive to have an open connection be-
tween every web thread and memcached server without
some form of connection coalescing via mcrouter. Co-
alescing these connections improves the efficiency of
the server by reducing the network, CPU and memory
resources needed by high throughput TCP connections.
Figure 3 shows the average, median, and 95" percentile
latencies of web servers in production getting keys over
UDP and through mcrouter via TCP. In all cases, the
standard deviation from these averages was less than
1%. As the data show, relying on UDP can lead to a
20% reduction in latency to serve requests.

Incast congestion: Memcache clients implement flow-
control mechanisms to limit incast congestion. When a
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Figure 4: Average time web requests spend waiting to
be scheduled

client requests a large number of keys, the responses
can overwhelm components such as rack and cluster
switches if those responses arrive all at once. Clients
therefore use a sliding window mechanism [11] to con-
trol the number of outstanding requests. When the client
receives a response, the next request can be sent. Similar
to TCP’s congestion control, the size of this sliding win-
dow grows slowly upon a successful request and shrinks
when a request goes unanswered. The window applies
to all memcache requests independently of destination;
whereas TCP windows apply only to a single stream.

Figure 4 shows the impact of the window size on the
amount of time user requests are in the runnable state
but are waiting to be scheduled inside the web server.
The data was gathered from multiple racks in one fron-
tend cluster. User requests exhibit a Poisson arrival pro-
cess at each web server. According to Little’s Law [26],
L = AW, the number of requests queued in the server
(L) is directly proportional to the average time a request
takes to process (W), assuming that the input request
rate is constant (which it was for our experiment). The
time web requests are waiting to be scheduled is a di-
rect indication of the number of web requests in the
system. With lower window sizes, the application will
have to dispatch more groups of memcache requests se-
rially, increasing the duration of the web request. As the
window size gets too large, the number of simultaneous
memcache requests causes incast congestion. The result
will be memcache errors and the application falling back
to the persistent storage for the data, which will result
in slower processing of web requests. There is a balance
between these extremes where unnecessary latency can
be avoided and incast congestion can be minimized.

3.2 Reducing Load

We use memcache to reduce the frequency of fetch-
ing data along more expensive paths such as database
queries. Web servers fall back to these paths when the
desired data is not cached. The following subsections
describe three techniques for decreasing load.

3.2.1 Leases

We introduce a new mechanism we call leases to address
two problems: stale sets and thundering herds. A stale
set occurs when a web server sets a value in memcache
that does not reflect the latest value that should be
cached. This can occur when concurrent updates to
memcache get reordered. A thundering herd happens
when a specific key undergoes heavy read and write ac-
tivity. As the write activity repeatedly invalidates the re-
cently set values, many reads default to the more costly
path. Our lease mechanism solves both problems.

Intuitively, a memcached instance gives a lease to a
client to set data back into the cache when that client ex-
periences a cache miss. The lease is a 64-bit token bound
to the specific key the client originally requested. The
client provides the lease token when setting the value
in the cache. With the lease token, memcached can ver-
ify and determine whether the data should be stored and
thus arbitrate concurrent writes. Verification can fail if
memcached has invalidated the lease token due to re-
ceiving a delete request for that item. Leases prevent
stale sets in a manner similar to how load-link/store-
conditional operates [20].

A slight modification to leases also mitigates thunder-
ing herds. Each memcached server regulates the rate at
which it returns tokens. By default, we configure these
servers to return a token only once every 10 seconds per
key. Requests for a key’s value within 10 seconds of a
token being issued results in a special notification telling
the client to wait a short amount of time. Typically, the
client with the lease will have successfully set the data
within a few milliseconds. Thus, when waiting clients
retry the request, the data is often present in cache.

To illustrate this point we collect data for all cache
misses of a set of keys particularly susceptible to thun-
dering herds for one week. Without leases, all of the
cache misses resulted in a peak database query rate of
17K/s. With leases, the peak database query rate was
1.3K/s. Since we provision our databases based on peak
load, our lease mechanism translates to a significant ef-
ficiency gain.

Stale values: With leases, we can minimize the appli-
cation’s wait time in certain use cases. We can further
reduce this time by identifying situations in which re-
turning slightly out-of-date data is acceptable. When a
key is deleted, its value is transferred to a data struc-
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ture that holds recently deleted items, where it lives for
a short time before being flushed. A get request can re-
turn a lease token or data that is marked as stale. Appli-
cations that can continue to make forward progress with
stale data do not need to wait for the latest value to be
fetched from the databases. Our experience has shown
that since the cached value tends to be a monotonically
increasing snapshot of the database, most applications
can use a stale value without any changes.

3.2.2 Memcache Pools

Using memcache as a general-purpose caching layer re-
quires workloads to share infrastructure despite differ-
ent access patterns, memory footprints, and quality-of-
service requirements. Different applications’ workloads
can produce negative interference resulting in decreased
hit rates.

To accommodate these differences, we partition a
cluster’s memcached servers into separate pools. We
designate one pool (named wildcard) as the default and
provision separate pools for keys whose residence in
wildcard is problematic. For example, we may provi-
sion a small pool for keys that are accessed frequently
but for which a cache miss is inexpensive. We may also
provision a large pool for infrequently accessed keys for
which cache misses are prohibitively expensive.

Figure 5 shows the working set of two different sets
of items, one that is low-churn and another that is high-
churn. The working set is approximated by sampling all
operations on one out of every one million items. For
each of these items, we collect the minimum, average,
and maximum item size. These sizes are summed and
multiplied by one million to approximate the working
set. The difference between the daily and weekly work-
ing sets indicates the amount of churn. Items with differ-
ent churn characteristics interact in an unfortunate way:
low-churn keys that are still valuable are evicted before
high-churn keys that are no longer being accessed. Plac-
ing these keys in different pools prevents this kind of
negative interference, and allows us to size high-churn
pools appropriate to their cache miss cost. Section 7 pro-
vides further analysis.

3.2.3 Replication Within Pools

Within some pools, we use replication to improve the la-
tency and efficiency of memcached servers. We choose
to replicate a category of keys within a pool when (1)
the application routinely fetches many keys simultane-
ously, (2) the entire data set fits in one or two memcached
servers and (3) the request rate is much higher than what
a single server can manage.

We favor replication in this instance over further di-
viding the key space. Consider a memcached server
holding 100 items and capable of responding to 500k
requests per second. Each request asks for 100 keys.
The difference in memcached overhead for retrieving
100 keys per request instead of 1 key is small. To scale
the system to process 1M requests/sec, suppose that we
add a second server and split the key space equally be-
tween the two. Clients now need to split each request for
100 keys into two parallel requests for ~50 keys. Con-
sequently, both servers still have to process 1M requests
per second. However, if we replicate all 100 keys to mul-
tiple servers, a client’s request for 100 keys can be sent
to any replica. This reduces the load per server to 500k
requests per second. Each client chooses replicas based
on its own IP address. This approach requires delivering
invalidations to all replicas to maintain consistency.

3.3 Handling Failures

The inability to fetch data from memcache results in ex-
cessive load to backend services that could cause fur-
ther cascading failures. There are two scales at which
we must address failures: (1) a small number of hosts
are inaccessible due to a network or server failure or (2)
a widespread outage that affects a significant percent-
age of the servers within the cluster. If an entire clus-
ter has to be taken offline, we divert user web requests
to other clusters which effectively removes all the load
from memcache within that cluster.

For small outages we rely on an automated remedi-
ation system [3]. These actions are not instant and can
take up to a few minutes. This duration is long enough to
cause the aforementioned cascading failures and thus we
introduce a mechanism to further insulate backend ser-
vices from failures. We dedicate a small set of machines,
named Gutter, to take over the responsibilities of a few
failed servers. Gutter accounts for approximately 1% of
the memcached servers in a cluster.

When a memcached client receives no response to its
get request, the client assumes the server has failed and
issues the request again to a special Gutter pool. If this
second request misses, the client will insert the appropri-
ate key-value pair into the Gutter machine after querying
the database. Entries in Gutter expire quickly to obviate
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Gutter invalidations. Gutter limits the load on backend
services at the cost of slightly stale data.

Note that this design differs from an approach in
which a client rehashes keys among the remaining
memcached servers. Such an approach risks cascading
failures due to non-uniform key access frequency. For
example, a single key can account for 20% of a server’s
requests. The server that becomes responsible for this
hot key might also become overloaded. By shunting load
to idle servers we limit that risk.

Ordinarily, each failed request results in a hit on the
backing store, potentially overloading it. By using Gut-
ter to store these results, a substantial fraction of these
failures are converted into hits in the gutter pool thereby
reducing load on the backing store. In practice, this sys-
tem reduces the rate of client-visible failures by 99%
and converts 10%—-25% of failures into hits each day. If
a memcached server fails entirely, hit rates in the gutter
pool generally exceed 35% in under 4 minutes and often
approach 50%. Thus when a few memcached servers are
unavailable due to failure or minor network incidents,
Gutter protects the backing store from a surge of traffic.

4 In a Region: Replication

It is tempting to buy more web and memcached servers
to scale a cluster as demand increases. However, naively
scaling the system does not eliminate all problems.
Highly requested items will only become more popular
as more web servers are added to cope with increased
user traffic. Incast congestion also worsens as the num-
ber of memcached servers increases. We therefore split
our web and memcached servers into multiple frontend
clusters. These clusters, along with a storage cluster that
contain the databases, define a region. This region ar-
chitecture also allows for smaller failure domains and
a tractable network configuration. We trade replication
of data for more independent failure domains, tractable
network configuration, and a reduction of incast conges-
tion.

This section analyzes the impact of multiple frontend
clusters that share the same storage cluster. Specifically
we address the consequences of allowing data replica-
tion across these clusters and the potential memory effi-
ciencies of disallowing this replication.

4.1 Regional Invalidations

While the storage cluster in a region holds the authori-
tative copy of data, user demand may replicate that data
into frontend clusters. The storage cluster is responsi-
ble for invalidating cached data to keep frontend clus-
ters consistent with the authoritative versions. As an op-
timization, a web server that modifies data also sends
invalidations to its own cluster to provide read-after-
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Figure 6: Invalidation pipeline showing keys that need
to be deleted via the daemon (mcsqueal).

write semantics for a single user request and reduce the
amount of time stale data is present in its local cache.

SQL statements that modify authoritative state are
amended to include memcache keys that need to be
invalidated once the transaction commits [7]. We de-
ploy invalidation daemons (named mcsqueal) on every
database. Each daemon inspects the SQL statements that
its database commits, extracts any deletes, and broad-
casts these deletes to the memcache deployment in every
frontend cluster in that region. Figure 6 illustrates this
approach. We recognize that most invalidations do not
delete data; indeed, only 4% of all deletes issued result
in the actual invalidation of cached data.

Reducing packet rates: While mcsqueal could con-
tact memcached servers directly, the resulting rate of
packets sent from a backend cluster to frontend clus-
ters would be unacceptably high. This packet rate prob-
lem is a consequence of having many databases and
many memcached servers communicating across a clus-
ter boundary. Invalidation daemons batch deletes into
fewer packets and send them to a set of dedicated servers
running mcrouter instances in each frontend cluster.
These mcrouters then unpack individual deletes from
each batch and route those invalidations to the right
memcached server co-located within the frontend clus-
ter. The batching results in an 18X improvement in the
median number of deletes per packet.

Invalidation via web servers: It is simpler for web
servers to broadcast invalidations to all frontend clus-
ters. This approach unfortunately suffers from two prob-
lems. First, it incurs more packet overhead as web
servers are less effective at batching invalidations than
mcsqueal pipeline. Second, it provides little recourse
when a systemic invalidation problem arises such as
misrouting of deletes due to a configuration error. In the
past, this would often require a rolling restart of the en-
tire memcache infrastructure, a slow and disruptive pro-
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A (Cluster) B (Region)
Median number of users 30 1
Gets per second 326 M 458 K
Median value size 10.7 kB 4.34 kB

Table 1: Deciding factors for cluster or regional replica-
tion of two item families

cess we want to avoid. In contrast, embedding invalida-
tions in SQL statements, which databases commit and
store in reliable logs, allows mcsqueal to simply replay
invalidations that may have been lost or misrouted.

4.2 Regional Pools

Each cluster independently caches data depending on
the mix of the user requests that are sent to it. If
users’ requests are randomly routed to all available fron-
tend clusters then the cached data will be roughly the
same across all the frontend clusters. This allows us to
take a cluster offline for maintenance without suffer-
ing from reduced hit rates. Over-replicating the data can
be memory inefficient, especially for large, rarely ac-
cessed items. We can reduce the number of replicas by
having multiple frontend clusters share the same set of
memcached servers. We call this a regional pool.

Crossing cluster boundaries incurs more latency. In
addition, our networks have 40% less average available
bandwidth over cluster boundaries than within a single
cluster. Replication trades more memcached servers for
less inter-cluster bandwidth, lower latency, and better
fault tolerance. For some data, it is more cost efficient
to forgo the advantages of replicating data and have a
single copy per region. One of the main challenges of
scaling memcache within a region is deciding whether
a key needs to be replicated across all frontend clusters
or have a single replica per region. Gutter is also used
when servers in regional pools fail.

Table 1 summarizes two kinds of items in our appli-
cation that have large values. We have moved one kind
(B) to a regional pool while leaving the other (A) un-
touched. Notice that clients access items falling into cat-
egory B an order of magnitude less than those in cate-
gory A. Category B’s low access rate makes it a prime
candidate for a regional pool since it does not adversely
impact inter-cluster bandwidth. Category B would also
occupy 25% of each cluster’s wildcard pool so region-
alization provides significant storage efficiencies. Items
in category A, however, are twice as large and accessed
much more frequently, disqualifying themselves from
regional consideration. The decision to migrate data into
regional pools is currently based on a set of manual
heuristics based on access rates, data set size, and num-
ber of unique users accessing particular items.

4.3 Cold Cluster Warmup

When we bring a new cluster online, an existing one
fails, or perform scheduled maintenance the caches will
have very poor hit rates diminishing the ability to in-
sulate backend services. A system called Cold Clus-
ter Warmup mitigates this by allowing clients in the
“cold cluster” (i.e. the frontend cluster that has an empty
cache) to retrieve data from the “warm cluster” (i.e. a
cluster that has caches with normal hit rates) rather than
the persistent storage. This takes advantage of the afore-
mentioned data replication that happens across frontend
clusters. With this system cold clusters can be brought
back to full capacity in a few hours instead of a few days.

Care must be taken to avoid inconsistencies due to
race conditions. For example, if a client in the cold clus-
ter does a database update, and a subsequent request
from another client retrieves the stale value from the
warm cluster before the warm cluster has received the
invalidation, that item will be indefinitely inconsistent
in the cold cluster. Memcached deletes support nonzero
hold-off times that reject add operations for the spec-
ified hold-off time. By default, all deletes to the cold
cluster are issued with a two second hold-off. When a
miss is detected in the cold cluster, the client re-requests
the key from the warm cluster and adds it into the cold
cluster. The failure of the add indicates that newer data
is available on the database and thus the client will re-
fetch the value from the databases. While there is still a
theoretical possibility that deletes get delayed more than
two seconds, this is not true for the vast majority of the
cases. The operational benefits of cold cluster warmup
far outweigh the cost of rare cache consistency issues.
We turn it off once the cold cluster’s hit rate stabilizes
and the benefits diminish.

5 Across Regions: Consistency

There are several advantages to a broader geographic
placement of data centers. First, putting web servers
closer to end users can significantly reduce latency.
Second, geographic diversity can mitigate the effects
of events such as natural disasters or massive power
failures. And third, new locations can provide cheaper
power and other economic incentives. We obtain these
advantages by deploying to multiple regions. Each re-
gion consists of a storage cluster and several frontend
clusters. We designate one region to hold the master
databases and the other regions to contain read-only
replicas; we rely on MySQL’s replication mechanism
to keep replica databases up-to-date with their mas-
ters. In this design, web servers experience low latency
when accessing either the local memcached servers or
the local database replicas. When scaling across mul-
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tiple regions, maintaining consistency between data in
memcache and the persistent storage becomes the pri-
mary technical challenge. These challenges stem from
a single problem: replica databases may lag behind the
master database.

Our system represents just one point in the wide
spectrum of consistency and performance trade-offs.
The consistency model, like the rest of the system, has
evolved over the years to suit the scale of the site. It
mixes what can be practically built without sacrificing
our high performance requirements. The large volume
of data that the system manages implies that any minor
changes that increase network or storage requirements
have non-trivial costs associated with them. Most ideas
that provide stricter semantics rarely leave the design
phase because they become prohibitively expensive. Un-
like many systems that are tailored to an existing use
case, memcache and Facebook were developed together.
This allowed the applications and systems engineers to
work together to find a model that is sufficiently easy
for the application engineers to understand yet perfor-
mant and simple enough for it to work reliably at scale.
We provide best-effort eventual consistency but place an
emphasis on performance and availability. Thus the sys-
tem works very well for us in practice and we think we
have found an acceptable trade-off.

Writes from a master region: Our earlier decision re-
quiring the storage cluster to invalidate data via daemons
has important consequences in a multi-region architec-
ture. In particular, it avoids a race condition in which
an invalidation arrives before the data has been repli-
cated from the master region. Consider a web server in
the master region that has finished modifying a database
and seeks to invalidate now stale data. Sending invalida-
tions within the master region is safe. However, having
the web server invalidate data in a replica region may be
premature as the changes may not have been propagated
to the replica databases yet. Subsequent queries for the
data from the replica region will race with the replica-
tion stream thereby increasing the probability of setting
stale data into memcache. Historically, we implemented
mcsqueal after scaling to multiple regions.

Writes from a non-master region: Now consider a
user who updates his data from a non-master region
when replication lag is excessively large. The user’s next
request could result in confusion if his recent change is
missing. A cache refill from a replica’s database should
only be allowed after the replication stream has caught
up. Without this, subsequent requests could result in the
replica’s stale data being fetched and cached.

We employ a remote marker mechanism to minimize
the probability of reading stale data. The presence of the

marker indicates that data in the local replica database
are potentially stale and the query should be redirected
to the master region. When a web server wishes to up-
date data that affects a key k, that server (1) sets a re-
mote marker r¢ in the region, (2) performs the write to
the master embedding k and 7, to be invalidated in the
SQL statement, and (3) deletes & in the local cluster. On
a subsequent request for k, a web server will be unable
to find the cached data, check whether r; exists, and di-
rect its query to the master or local region depending on
the presence of ry. In this situation, we explicitly trade
additional latency when there is a cache miss, for a de-
creased probability of reading stale data.

We implement remote markers by using a regional
pool. Note that this mechanism may reveal stale in-
formation during concurrent modifications to the same
key as one operation may delete a remote marker that
should remain present for another in-flight operation. It
is worth highlighting that our usage of memcache for re-
mote markers departs in a subtle way from caching re-
sults. As a cache, deleting or evicting keys is always a
safe action; it may induce more load on databases, but
does not impair consistency. In contrast, the presence of
a remote marker helps distinguish whether a non-master
database holds stale data or not. In practice, we find both
the eviction of remote markers and situations of concur-
rent modification to be rare.

Operational considerations: Inter-region communica-
tion is expensive since data has to traverse large geo-
graphical distances (e.g. across the continental United
States). By sharing the same channel of communication
for the delete stream as the database replication we gain
network efficiency on lower bandwidth connections.

The aforementioned system for managing deletes in
Section 4.1 is also deployed with the replica databases to
broadcast the deletes to memcached servers in the replica
regions. Databases and mcrouters buffer deletes when
downstream components become unresponsive. A fail-
ure or delay in any of the components results in an in-
creased probability of reading stale data. The buffered
deletes are replayed once these downstream components
are available again. The alternatives involve taking a
cluster offline or over-invalidating data in frontend clus-
ters when a problem is detected. These approaches result
in more disruptions than benefits given our workload.

6 Single Server Improvements

The all-to-all communication pattern implies that a sin-
gle server can become a bottleneck for a cluster. This
section describes performance optimizations and mem-
ory efficiency gains in memcached which allow better
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scaling within clusters. Improving single server cache
performance is an active research area [9, 10, 28, 25].

6.1 Performance Optimizations

We began with a single-threaded memcached which used
a fixed-size hash table. The first major optimizations
were to: (1) allow automatic expansion of the hash ta-
ble to avoid look-up times drifting to O(n), (2) make the
server multi-threaded using a global lock to protect mul-
tiple data structures, and (3) giving each thread its own
UDP port to reduce contention when sending replies and
later spreading interrupt processing overhead. The first
two optimizations were contributed back to the open
source community. The remainder of this section ex-
plores further optimizations that are not yet available in
the open source version.

Our experimental hosts have an Intel Xeon
CPU (X5650) running at 2.67GHz (12 cores and
12 hyperthreads), an Intel 82574L gigabit ethernet
controller and 12GB of memory. Production servers
have additional memory. Further details have been
previously published [4]. The performance test setup
consists of fifteen clients generating memcache traffic
to a single memcached server with 24 threads. The
clients and server are co-located on the same rack and
connected through gigabit ethernet. These tests measure
the latency of memcached responses over two minutes
of sustained load.

Get Performance: We first investigate the effect of re-
placing our original multi-threaded single-lock imple-
mentation with fine-grained locking. We measured hits
by pre-populating the cache with 32-byte values before
issuing memcached requests of 10 keys each. Figure 7
shows the maximum request rates that can be sustained
with sub-millisecond average response times for differ-
ent versions of memcached. The first set of bars is our
memcached before fine-grained locking, the second set
is our current memcached, and the final set is the open
source version 1.4.10 which independently implements
a coarser version of our locking strategy.

Employing fine-grained locking triples the peak get
rate for hits from 600k to 1.8M items per second. Per-
formance for misses also increased from 2.7M to 4.5M
items per second. Hits are more expensive because the
return value has to be constructed and transmitted, while
misses require a single static response (END) for the en-
tire multiget indicating that all keys missed.

We also investigated the performance effects of us-
ing UDP instead of TCP. Figure 8 shows the peak re-
quest rate we can sustain with average latencies of less
than one millisecond for single gets and multigets of 10
keys. We found that our UDP implementation outper-
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Figure 7: Multiget hit and miss performance comparison
by memcached version
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Figure 8: Get hit performance comparison for single
gets and 10-key multigets over TCP and UDP

forms our TCP implementation by 13% for single gets
and 8% for 10-key multigets.

Because multigets pack more data into each request
than single gets, they use fewer packets to do the same
work. Figure 8 shows an approximately four-fold im-
provement for 10-key multigets over single gets.

6.2 Adaptive Slab Allocator

Memcached employs a slab allocator to manage memory.
The allocator organizes memory into slab classes, each
of which contains pre-allocated, uniformly sized chunks
of memory. Memcached stores items in the smallest pos-
sible slab class that can fit the item’s metadata, key, and
value. Slab classes start at 64 bytes and exponentially in-
crease in size by a factor of 1.07 up to 1 MB, aligned on
4-byte boundaries®. Each slab class maintains a free-list
of available chunks and requests more memory in IMB
slabs when its free-list is empty. Once a memcached
server can no longer allocate free memory, storage for
new items is done by evicting the least recently used
(LRU) item within that slab class. When workloads
change, the original memory allocated to each slab class
may no longer be enough resulting in poor hit rates.

3This scaling factor ensures that we have both 64 and 128 byte
items which are more amenable to hardware cache lines.
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We implemented an adaptive allocator that period-
ically re-balances slab assignments to match the cur-
rent workload. It identifies slab classes as needing more
memory if they are currently evicting items and if the
next item to be evicted was used at least 20% more re-
cently than the average of the least recently used items in
other slab classes. If such a class is found, then the slab
holding the least recently used item is freed and trans-
ferred to the needy class. Note that the open-source com-
munity has independently implemented a similar allo-
cator that balances the eviction rates across slab classes
while our algorithm focuses on balancing the age of the
oldest items among classes. Balancing age provides a
better approximation to a single global Least Recently
Used (LRU) eviction policy for the entire server rather
than adjusting eviction rates which can be heavily influ-
enced by access patterns.

6.3 The Transient Item Cache

While memcached supports expiration times, entries
may live in memory well after they have expired.
Memcached lazily evicts such entries by checking ex-
piration times when serving a get request for that item
or when they reach the end of the LRU. Although effi-
cient for the common case, this scheme allows short-
lived keys that see a single burst of activity to waste
memory until they reach the end of the LRU.

We therefore introduce a hybrid scheme that relies on
lazy eviction for most keys and proactively evicts short-
lived keys when they expire. We place short-lived items
into a circular buffer of linked lists (indexed by sec-
onds until expiration) — called the Transient Item Cache
— based on the expiration time of the item. Every sec-
ond, all of the items in the bucket at the head of the
buffer are evicted and the head advances by one. When
we added a short expiration time to a heavily used set of
keys whose items have short useful lifespans; the pro-
portion of memcache pool used by this key family was
reduced from 6% to 0.3% without affecting the hit rate.

6.4 Software Upgrades

Frequent software changes may be needed for upgrades,
bug fixes, temporary diagnostics, or performance test-
ing. A memcached server can reach 90% of its peak hit
rate within a few hours. Consequently, it can take us over
12 hours to upgrade a set of memcached servers as the re-
sulting database load needs to be managed carefully. We
modified memcached to store its cached values and main
data structures in System V shared memory regions so
that the data can remain live across a software upgrade
and thereby minimize disruption.
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Figure 9: Cumulative distribution of the number of dis-
tinct memcached servers accessed

7 Memcache Workload

We now characterize the memcache workload using data
from servers that are running in production.

7.1 Measurements at the Web Server

We record all memcache operations for a small percent-
age of user requests and discuss the fan-out, response
size, and latency characteristics of our workload.
Fanout: Figure 9 shows the distribution of distinct
memcached servers a web server may need to contact
when responding to a page request. As shown, 56%
of all page requests contact fewer than 20 memcached
servers. By volume, user requests tend to ask for small
amounts of cached data. There is, however, a long tail to
this distribution. The figure also depicts the distribution
for one of our more popular pages that better exhibits
the all-to-all communication pattern. Most requests of
this type will access over 100 distinct servers; accessing
several hundred memcached servers is not rare.
Response size: Figure 10 shows the response sizes from
memcache requests. The difference between the median
(135 bytes) and the mean (954 bytes) implies that there
is a very large variation in the sizes of the cached items.
In addition there appear to be three distinct peaks at ap-
proximately 200 bytes and 600 bytes. Larger items tend
to store lists of data while smaller items tend to store
single pieces of content.

Latency: We measure the round-trip latency to request
data from memcache, which includes the cost of rout-
ing the request and receiving the reply, network transfer
time, and the cost of deserialization and decompression.
Over 7 days the median request latency is 333 microsec-
onds while the 75" and 95" percentiles (p75 and p95)
are 475us and 1.135ms respectively. Our median end-
to-end latency from an idle web server is 178us while
the p75 and p95 are 219us and 374us, respectively. The
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wide variance between the p95 latencies arises from
handling large responses and waiting for the runnable
thread to be scheduled as discussed in Section 3.1.

7.2 Pool Statistics

We now discuss key metrics of four memcache pools.
The pools are wildcard (the default pool), app (a pool
devoted for a specific application), a replicated pool for
frequently accessed data, and a regional pool for rarely
accessed information. In each pool, we collect average
statistics every 4 minutes and report in Table 2 the high-
est average for one month collection period. This data
approximates the peak load seen by those pools. The ta-
ble shows the widely different get, set, and delete rates
for different pools. Table 3 shows the distribution of re-
sponse sizes for each pool. Again, the different char-
acteristics motivate our desire to segregate these work-
loads from one another.

As discussed in Section 3.2.3, we replicate data
within a pool and take advantage of batching to handle
the high request rates. Observe that the replicated pool
has the highest get rate (about 2.7 x that of the next high-
est one) and the highest ratio of bytes to packets despite
having the smallest item sizes. This data is consistent
with our design in which we leverage replication and
batching to achieve better performance. In the app pool,
a higher churn of data results in a naturally higher miss
rate. This pool tends to have content that is accessed for
a few hours and then fades away in popularity in favor
of newer content. Data in the regional pool tends to be
large and infrequently accessed as shown by the request
rates and the value size distribution.

7.3 Invalidation Latency

We recognize that the timeliness of invalidations is a
critical factor in determining the probability of expos-
ing stale data. To monitor this health, we sample one out

fraction of deletes that failed
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master region replica region

seconds of delay

Figure 11: Latency of the Delete Pipeline

of a million deletes and record the time the delete was is-
sued. We subsequently query the contents of memcache
across all frontend clusters at regular intervals for the
sampled keys and log an error if an item remains cached
despite a delete that should have invalidated it.

In Figure 11, we use this monitoring mechanism to re-
port our invalidation latencies across a 30 day span. We
break this data into two different components: (1) the
delete originated from a web server in the master region
and was destined to a memcached server in the master re-
gion and (2) the delete originated from a replica region
and was destined to another replica region. As the data
show, when the source and destination of the delete are
co-located with the master our success rates are much
higher and achieve four 9s of reliability within 1 second
and five 9s after one hour. However when the deletes
originate and head to locations outside of the master re-
gion our reliability drops to three 9s within a second and
four 9s within 10 minutes. In our experience, we find
that if an invalidation is missing after only a few sec-
onds the most common reason is that the first attempt
failed and subsequent retrials will resolve the problem.

8 Related Work

Several other large websites have recognized the util-
ity of key-value stores. DeCandia et al. [12] present
a highly available key-value store that is used by a
variety of application services at Amazon.com. While
their system is optimized for a write heavy workload,
ours targets a workload dominated by reads. Similarly,
LinkedIn uses Voldemort [5], a system inspired by Dy-
namo. Other major deployments of key-value caching
solutions include Redis [6] at Github, Digg, and Bliz-
zard, and memcached at Twitter [33] and Zynga. Lak-
shman et al. [1] developed Cassandra, a schema-based
distributed key-value store. We preferred to deploy and
scale memcached due to its simpler design.

Our work in scaling memcache builds on extensive
work in distributed data structures. Gribble et al. [19]

USENIX Association

10th USENIX Symposium on Networked Systems Design and Implementation (NSDI "13) 395



pool miss rate £ st delete  packels outbound
bandwidth (MB/s)
wildcard 1.76% 262k  8.26k 21.2k 236k 57.4
app 7.85% 96.5k 119k 6.28k  83.0k 31.0
replicated | 0.053% 710k 1.75k 3.22k  44.5k 30.1
regional 6.35% 9.1k 0.79k 359k 47.2k 10.8

Table 2: Traffic per server on selected memcache pools averaged over 7 days

pool \ mean stddev p5 p25 p50 p75 P95 P99
wildcard | 1.11 K 828K 77 102 169 363 365K 183K

app 881 770K 103 247 269 337 1.68K 104K
replicated 66 2 62 68 68 68 68 68
regional | 31.8 K 754K 231 824 531K 240K 158K 381K

Table 3: Distribution of item sizes for various pools in bytes

present an early version of a key-value storage system
useful for Internet scale services. Ousterhout ef al. [29]
also present the case for a large scale in-memory key-
value storage system. Unlike both of these solutions,
memcache does not guarantee persistence. We rely on
other systems to handle persistent data storage.

Ports et al. [31] provide a library to manage the
cached results of queries to a transactional database.
Our needs require a more flexible caching strategy. Our
use of leases [18] and stale reads [23] leverages prior
research on cache consistency and read operations in
high-performance systems. Work by Ghandeharizadeh
and Yap [15] also presents an algorithm that addresses
the stale set problem based on time-stamps rather than
explicit version numbers.

While software routers are easier to customize and
program, they are often less performant than their hard-
ware counterparts. Dobrescu et al. [13] address these
issues by taking advantage of multiple cores, multiple
memory controllers, multi-queue networking interfaces,
and batch processing on general purpose servers. Ap-
plying these techniques to mcrouter’s implementation
remains future work. Twitter has also independently de-
veloped a memcache proxy similar to mcrouter [32].

In Coda [35], Satyanarayanan et al. demonstrate how
datasets that diverge due to disconnected operation can
be brought back into sync. Glendenning et al. [17] lever-
age Paxos [24] and quorums [16] to build Scatter, a dis-
tributed hash table with linearizable semantics [21] re-
silient to churn. Lloyd et al. [27] examine causal consis-
tency in COPS, a wide-area storage system.

TAO [37] is another Facebook system that relies heav-
ily on caching to serve large numbers of low-latency
queries. TAO differs from memcache in two fundamental
ways. (1) TAO implements a graph data model in which
nodes are identified by fixed-length persistent identifiers
(64-bit integers). (2) TAO encodes a specific mapping of

its graph model to persistent storage and takes respon-
sibility for persistence. Many components, such as our
client libraries and mcrouter, are used by both systems.

9 Conclusion

In this paper, we show how to scale a memcached-based
architecture to meet the growing demand of Facebook.
Many of the trade-offs discussed are not fundamental,
but are rooted in the realities of balancing engineering
resources while evolving a live system under continu-
ous product development. While building, maintaining,
and evolving our system we have learned the following
lessons. (1) Separating cache and persistent storage sys-
tems allows us to independently scale them. (2) Features
that improve monitoring, debugging and operational ef-
ficiency are as important as performance. (3) Managing
stateful components is operationally more complex than
stateless ones. As a result keeping logic in a stateless
client helps iterate on features and minimize disruption.
(4) The system must support gradual rollout and roll-
back of new features even if it leads to temporary het-
erogeneity of feature sets. (5) Simplicity is vital.
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