
Grove: a Separation-Logic Library for Verifying Distributed Systems (Extended Version)∗

Upamanyu Sharma Ralf Jung† Joseph Tassarotti▽ M. Frans Kaashoek Nickolai Zeldovich
MIT CSAIL † ETH Zurich ▽ New York University

Abstract
Grove is a concurrent separation logic library for verifying
distributed systems. Grove is the first to handle time-based
leases, including their interaction with reconfiguration, crash
recovery, thread-level concurrency, and unreliable networks.
This paper uses Grove to verify several distributed system
components written in Go, including vKV, a realistic dis-
tributed multi-threaded key-value store. vKV supports recon-
figuration, primary/backup replication, and crash recovery,
and uses leases to execute read-only requests on any replica.
vKV achieves high performance (67-73% of Redis on a sin-
gle core), scales with more cores and more backup replicas
(achieving about 2× the throughput when going from 1 to 3
servers), and can safely execute reads while reconfiguring.

1 Introduction
Large-scale applications run on many servers, and face a wide
range of challenges typical of distributed systems such as con-
currency, crashes, network outages, loosely-coupled clocks
between servers, etc. This means that the developer has to con-
sider a large number of subtle corner cases and interactions,
which in turn makes it difficult to ensure that the application
correctly handles all such cases. Formal verification is an
attractive approach to rigorously establish correctness of such
systems, and in principle could help developers ensure that
they correctly handle all of the corner cases.

One particularly challenging and cross-cutting aspect of
distributed systems, which has not been addressed in prior
work on verification, is the use of leases. Leases [19] are a
widely used technique in distributed systems. A lease is a
promise that some aspect of the system will not change for
some duration of time (e.g., the primary server will not be
replaced for the next 5 seconds). For instance, leases are
used to ensure there is at most one Paxos leader trying to
run the replication protocol in Spanner [13]; and GFS [16],
Chubby [4], and DynamoDB [15] have similar mechanisms.
Leases allow a leader to execute read-only operations quickly,
without having to contact replicas to confirm that it is still
the leader. Leases are challenging to use correctly because
they interact with crash recovery and reconfiguration (e.g.,
reconfiguration must wait until leases expire before it can
choose a new primary server) and node-local concurrency
(e.g., executing a read-only operation may require first check-
ing that a lease is valid, but in the time between the check
and the operation itself, the lease may have expired, and other
threads may have executed additional writes).

∗This is the extended version of a paper appearing at SOSP 2023 [44];
E denotes sections not present in the conference version of the paper.

This paper presents Grove, a library based on concurrent
separation logic (CSL) [39] for reasoning about distributed
systems, where state is split between nodes, crashes discard a
node’s memory state, network messages can be lost or dupli-
cated, and nodes have loosely synchronized clocks. In CSL, a
proof decomposes a system’s state into parts called resources
that are logically owned by different threads. Synchroniza-
tion primitives, like mutexes, are used to transfer ownership
between threads. Grove generalizes this notion of resources
and ownership to reason about distributed systems; in par-
ticular, Grove introduces time-bounded invariants to reason
about leases, extends Crash Hoare Logic [7, 11] to reason
about crashes in distributed systems, provides abstractions
for reasoning about append-only logs and monotonic epoch
counters, and provides a verified RPC library. This makes
Grove the first to support verification of distributed systems
that use leases, including their interaction with crash recovery,
reconfiguration, concurrency, and unreliable networks.

To demonstrate Grove’s approach, we developed a number
of distributed system components written in Go (libraries,
systems, and applications), and specified and verified them
using Grove. As we explain in §3, these components make
extensive use of Grove’s ownership and resources. To name
some examples: the proof of consistency for a replicated log
in a primary-backup replication library uses ownership of
logical append-only lists; the proof of crash recovery in a
durable storage library uses ownership of durable files; proofs
about RPCs that may re-execute many times use duplicable
ownership (which can be thought of as knowledge), since they
cannot transfer ownership of unique resources; and proofs
about read operations that use leases to avoid coordination in
a state-machine replication library uses time-bounded invari-
ants to prove the state being read is not stale.

By using CSL, Grove enables modular reasoning: devel-
opers can verify each component of a distributed system
separately, and reason about code line-by-line, rather than
explicitly considering all possible interleavings. Nevertheless,
these proofs still compose into a complete proof of the entire
distributed system. For instance, our case study builds a repli-
cated key-value service (called vKV) out of multiple indepen-
dent components (RPC library, primary-backup replication,
state-machine replication, durable storage, configuration ser-
vice, etc), and builds an example bank application on top of
vKV and a distributed lock service. The proof of the bank
considers only the specifications of the underlying vKV and
lock service, and does not look at their implementation. At
the same time, the composed proofs ensure there are no subtle
bugs due to surprising interactions between the components.

1

ar
X

iv
:2

30
9.

03
04

6v
2 

 [
cs

.L
O

] 
 1

4 
Se

p 
20

23



Component Code Spec and proof Description

bank §2.3.4 §4.7 Uses vKV and lock service to execute bank transactions
lockservice §2.3.3 §4.7 Distributed lock service implemented on top of vKV
cachekv §2.3.2 §4.4 Uses leases for linearizable key-value caching on client
vKV §2.3.1 §5.1 Handles key-value state and operations (Get, Put, CondPut)
exactlyonce §2.2.8 §3.6, §3.7 Tracks and handles duplicate operations for exactly-once semantics
clerk §2.2.7 §5.1 Issues operations to replicated state machine
storage §2.2.4 §3.8 Stores application state and handles state transfers
configservice §2.2.2 §4.6, §5.3 Tracks the changing set of replica servers and issues epoch leases
paxos §2.2.5 §4.6 Simple Paxos-based fault-tolerant replication for configservice
reconfig §2.2.2 §4.2 Adds or removes replicas, using the config service
replica §2.2.1, §2.2.3 §3.2.2, §3.2.3, §3.3,

§4.1, §4.2, §4.3, §4.5
Stores and replicates operations between primary and backups

Lease abstraction — §3.4, §3.5 Time-bounded invariant abstraction to reason about leases
rpc §2.1 §3.3 Unreliable request/response communication

Figure 1: Components verified using Grove as case studies.

As we show in §6, the proof-to-code ratio is about 12×, on
par with other distributed systems verification efforts, which
shows that handling leases, reconfiguration, concurrency, etc,
with Grove does not come at the cost of inflated proof effort.

Grove’s support for leases, concurrency, reconfiguration,
and crash recovery is crucial for verifying high-performance
distributed systems. §7 shows that vKV achieves good perfor-
mance (67–73% of the throughput of Redis in a single-core
unreplicated configuration), scales well with the number of
cores and the number of backup replicas (going from 463,491
to 816,252 req/sec for a 95%-read YCSB workload when
using 1 and 3 servers respectively), and is able to serve read
requests quickly and safely during reconfiguration.

To summarize, the contribution of this paper is Grove,
which generalizes concurrent separation logic (CSL) to sup-
port distributed systems with RPCs, leases, replication, recon-
figuration, and crash recovery. The paper provides lessons, in-
sights, and techniques at several different levels. For a general
systems audience, Grove demonstrates that ownership-based
reasoning (using CSL) is valuable for distributed systems, by
showing what kinds of distributed systems can be verified,
how verification catches specific subtle bugs (the “what if”
scenarios in §4), and how CSL leads to modular development
(§5). For a verification audience, Grove presents techniques
and ideas for how to extend CSL to reason about distributed
systems issues, such as RPCs, leases, and replication, as we
describe in §3. These ideas may be helpful to researchers
building frameworks for verifying distributed systems. Fi-
nally, the source code of Grove and its case studies is publicly
available,1 for experts that may want to adopt Grove’s lower-
level techniques for encoding distributed systems in the Iris
separation logic [25, 26, 31].

One limitation is that Grove is only able to verify safety
properties, ensuring that a system never returns the wrong
results. Grove cannot verify liveness properties, such as ensur-
ing that the system will respond or otherwise make progress.

1Grove is available at https://github.com/mit-pdos/perennial
and the case studies are at https://github.com/mit-pdos/gokv.

exactlyonce §2.2.8

clerk §2.2.7 reconfig §2.2.2

replica §2.2.1 configservice §2.2.2

paxos §2.2.5storage §2.2.4

VersionedStateMachine API §2.2.6

vKV §2.3.1

lockservice §2.3.3

bank §2.3.4

cachekv §2.3.2

vR
SM

§2
.2

Figure 2: Case study components. An arrow A → B means A uses B.
Gray components are described only in the extended version of this paper.

2 Motivating case studies

Grove’s goal is to enable verification of distributed system
components in a way that allows composing them into a sin-
gle proof for the entire system. To illustrate the verification
challenges that Grove aims to address, this section presents
a number of components typically seen in distributed sys-
tems, shown in Figure 1, spanning from RPC and storage
at the lowest level, to libraries for replicated state machines,
key-value stores, and locking, to application-level code such
as a bank example. Distributed systems challenges, such as
concurrency, crashes, clocks, etc, show up in many of these
components, and a key benefit of Grove is that it provides a
consistent framework for handling these issues in the specifi-
cations and proofs of each component, which in turn allows
combining these components into larger verified systems. The
components fit together to build vKV, a replicated key-value
store, as well as applications on top of it, as shown in Figure 2.

2

https://github.com/mit-pdos/perennial
https://github.com/mit-pdos/gokv


These components use sophisticated techniques to achieve
high performance and strong correctness guarantees. For in-
stance, they use threads on each machine to execute RPCs in
parallel; store data durably on disk (using a separate thread
for performance) and recover their state after a crash; batch
disk writes and pipelines requests for improved performance;
achieve linearizability even in the presence of retransmis-
sion, crashes, and in-flight client requests while adding or
removing servers through reconfiguration; and use leases to
coordinate the execution of read-only requests at each replica
with reconfiguration.

2.1 RPC library
An important building block for distributed systems is
RPC, which allows a client to invoke a procedure on
a remote server. For instance, a client invocation of
rpcClient.Call(“f”, args) invokes f(args) on the server
to which rpcClient is connected. The rpc library provides
unreliable RPCs, meaning that one invocation by a client can
result in the server running the corresponding function one,
zero, or many times. This is because the underlying network
may drop, reorder, or duplicate packets. Applications typi-
cally do not directly invoke RPCs; rather, applications use
various clerks, which wrap RPCs with additional handling
(such as adding request IDs, retrying, etc).

2.2 Replicated state machine library
The focal point of our case study is a replicated state machine
library called vRSM, as shown in Figure 3. vRSM replicates a
state machine supplied by the application (the exact interface
is shown in Figure 10). §2.3 discusses how applications use
this interface. vRSM is implemented in several components,
which this subsection describes. The components each handle
a different aspect of state machine replication, allowing, for
instance, durability to be implemented separately from the
replication protocol.

Figure 3: A running vRSM system. Double borders represent machines.
Arrows represent RPCs. The cloud represents the replicated configuration
service. reconfig represents an operator performing reconfiguration.

2.2.1 replica server: replicating writes
The replica component manages copies of the state machine
being replicated. A replica server is either a primary and
handles write requests from clients, or else is a backup (we
discuss the handling of reads later in §2.2.3). Upon receiving

an operation, a primary server applies it locally and then
replicates it to all backup servers before replying to the client,
as shown in Figure 4. To replicate an operation, the primary
spawns threads to send RPCs concurrently to each backup and
then waits for all the threads to finish (using a Go WaitGroup)
to know that the operation is committed (i.e. applied by all
replica servers). Backup replicas handle these RPCs by also
applying the operation locally. s.stateLogger takes care of
managing the RSM state, as we describe in §2.2.4.

1 func (s *PrimaryServer) Apply(op) Result {
2 s.mutex.Lock()
3 nextIndex := s.nextIndex
4 e := s.epoch
5 s.nextIndex += 1
6 res := s.stateLogger.LocalApply(op)
7 s.mutex.Unlock()
8

9 wg := new(WaitGroup)
10 for j := 0; j < len(s.backupClerks); j++ {
11 wg.Add(1)
12 go func(j int) {
13 s.backupClerks[j].ApplyAsBackupRPC(e, nextIndex, op)
14 wg.Done()
15 } (j)
16 }
17

18 wg.Wait()
19 return res
20 }

Figure 4: Simplified primary server code, with error handling omitted.

This protocol requires the primary to replicate the operation
to all servers before replying to a client, so if even a single
backup is unavailable, the replication protocol is blocked.
To unblock the system, an operator or an automatic failure
detector can remove unresponsive servers (and add new ones)
by invoking the reconfig component, described next.

2.2.2 reconfig using configservice
The reconfig component allows adding or removing replica
servers by making use of sequentially numbered epochs and a
configservice component. An epoch typically corresponds
to a configuration—that is, a set of servers with one desig-
nated as the primary. We call such epochs live, even if such
an epoch has been superseded by another one. However,
some epochs may not have a corresponding configuration, if
that epoch never started running (e.g. because a node run-
ning reconfig crashed); we call such epochs reserved. The
configservice keeps track of the latest epoch number and the
most recent configuration (a list of server addresses), which
may be from an earlier epoch if the current epoch is not live.

Clients can invoke operations concurrently with reconfig-
uration, which runs the risk of a client’s operations being
applied in an old configuration after the new configuration
has already started, thereby missing these operations in the
new config. To prevent this, reconfiguration first seals one
of the servers from the old epoch. A sealed server no longer
modifies its state until it enters a new epoch, at which point
it becomes unsealed. Sealed servers may still handle read
requests. Sealing allows the reconfiguration process to get

3



a stable checkpoint of the system state and ensure all of the
servers in the new configuration have consistent state before
entering the new epoch.

1 // Reserve a new epoch number for reconfiguration, and
2 // return the current configuration (set of servers).
3 func (ck *Clerk) ReserveEpochAndGetConfig() (uint64, []Address)
4

5 // Return current configuration, used by clients to
6 // determine what servers to talk to.
7 func (ck *Clerk) GetConfig() []Address
8

9 // Set new configuration, making epoch live, as long as no
10 // higher-numbered epoch has been reserved.
11 func (ck *Clerk) TryWriteConfig(epoch uint64,
12 config []Address) Error
13

14 // Get a lease for specified epoch, as long as it’s the current
15 // epoch, returning the new lease expiration time.
16 func (ck *Clerk) GetLease(epoch uint64) (Error, uint64)

Figure 5: Interface provided by the configuration service clerk.

1 func Reconfigure(newServers []Address) {
2 newEpoch, oldServers := configClerk.ReserveEpochAndGetConfig()
3

4 // get state from a server from old config
5 oldClerk := MakeClerk(oldServers[Rand() % len(oldServers)])
6 oldState := oldClerk.GetStateAndSeal(newEpoch)
7

8 // make clerks to all of the new servers
9 var newClerks = make([]Clerk, len(newServers))

10 for i := 0; i < len(newServers); i++ {
11 newClerks[i] = MakeClerk(newServers[i])
12 }
13

14 // set state on all the new servers
15 wg := new(WaitGroup)
16 for i := 0; i < len(newClerks); i++ {
17 wg.Add(1)
18 go func(i int) {
19 newClerks[i].SetNewEpochState(newEpoch, oldState)
20 wg.Done()
21 }(i)
22 }
23 wg.Wait()
24

25 // write new addresses to config service
26 err := configClerk.TryWriteConfig(newEpoch, newServers)
27 if err == nil {
28 // activate the new primary server
29 newClerks[0].BecomePrimary(newEpoch)
30 }
31 }

Figure 6: Simplified reconfig code, with most error handling omitted.

Reconfiguration involves coordination between the config-
uration service, the old servers, and the new servers. Figure 5
shows the API for the configuration service, and Figure 6
shows the code for reconfiguration, invoked to change to a
new set of servers specified by the newServers argument. Not
shown is the monitoring logic that decides when to call this
function or which new servers to choose; correctness (safety)
is independent of that logic, and Grove does not prove live-
ness. Reconfiguration consists of the following steps:

1. Ask the configuration service to atomically create a new
epoch and return the new epoch’s number as well as the
latest previous configuration (line 2).

2. Seal a replica server from the previous configuration and
fetch its key-value mappings (line 6).

3. Initialize state on all new servers with the state from the
old replica, informing them of the new epoch (line 19).

4. Make the new epoch live at the configuration service, by
sending it the new configuration (line 26).

5. Enable the primary in the new configuration, which allows
the primary to start processing write requests (line 29).

In case of a network partition, it is possible that both sides
of the partition will try to initiate reconfiguration. One might
worry that this would lead to two copies of the system with
diverging states. This possibility is ruled out with the help
of the configuration service, which accepts only the highest-
numbered new epoch in its WriteConfig RPC handler, to-
gether with the replicas’ SetNewEpochState handler, which
rejects state from lower-numbered epochs. As a result, the
reconfiguration process that has the higher new epoch from
GetNewEpochAndConfig() will win.

2.2.3 replica server: lease-based reads

Any replica server (primary as well as backup) can serve
linearizable reads without communicating with other servers
by using leases, as shown in Figure 7. Leases avoid the pos-
sibility of one server returning stale reads if reconfiguration
happens and the new configuration has executed additional
writes not seen by this server. Specifically, every replica runs
a background thread that contacts the configuration service
to obtain or extend a lease that promises the configuration
service will not change the current epoch number (and thus
not reconfigure) until lease expiration (e.g., 1 second from the
time the lease is issued). All servers can serve read requests
because this lease is a promise about the epoch number, rather
than anything specific to a particular server’s state.

When a replica server receives a read-only operation,
and its lease is still valid, it computes the response from its
local state. The replica’s local state includes all committed
operations since committed operations must be acknowledged
by all servers. However, the state may also include ongoing
write operations that have not yet been committed. To ensure
that the client’s observed read does not roll back due to a crash
or reconfiguration, the replica waits for all the previous writes
that the read depends on to be committed before sending the
result to the client. As part of executing the read operation,
LocalRead’s job is to determine which prior requests the read
depends on, returning the appropriate idx value as shown in
Figure 7; it is always safe to return idx = s.nextIndex. If
reconfiguration happens during waitForCommitted, the server
tells the client to retry.

Since the clocks on different nodes might be slightly out
of sync with each other, Grove provides a TrueTime-like
API [13] for accessing the current time, GetTimeRange().
This function returns a pair of timestamps, earliest and
latest, which provide lower and upper bounds for the current
time.

4



1 func (s *Server) ApplyReadonly(op) Result {
2 s.mutex.Lock()
3

4 if s.leaseExpiry > GetTimeRange().latest {
5 e := s.epoch
6 idx, res := s.stateLogger.LocalRead(op)
7 s.mutex.Unlock()
8

9 if s.waitForCommitted(e, op, idx) {
10 return res
11 } else {
12 return ErrRetry
13 }
14 } else {
15 s.mutex.Unlock()
16 return ErrRetry
17 }
18 }

Figure 7: Simplified code for handling read-only operations.

2.2.4 storage library for replicas E
Replica servers manage durable state with a storage library
that provides a “state logger” to durably log new operations
in an append-only file. To get good performance, the state
logger buffers appends in memory while a background thread
asynchronously appends and syncs the buffer to the file. The
library provides a Wait() function that allows waiting until
a prefix of the file has been made durable. The replica
library uses Wait() to ensure changes are durably stored
before replying to an RPC (not shown in our simplified code
examples).

2.2.5 Fault-tolerant configservice using paxos E
To handle server failures for the configuration service itself,
configservice relies on a simple Paxos-based replication
library called paxos. paxos operates on a fixed set of servers
(new servers cannot be added at runtime), but requires only
a majority of the servers to process requests. paxos uses
a leader to coordinate operations, but allows changing the
leader if the previous one seems to have crashed.

The code structure of paxos largely follows the primary-
backup replication library, with a few key differences. First,
instead of relying on an external config service to choose
new epoch numbers, paxos chooses new epoch numbers on
its own, which it can do safely because the set of servers
does not change. Second, instead of requiring every server to
commit an operation, paxos requires only a majority, which
also means that a new leader must obtain the latest state from
a majority of other servers, rather than just one. Third, paxos
is much simpler than the primary-backup replication library:
it does not use leases, and it sends and writes the entire state
to disk on every update rather than appending operations to a
log. This means that paxos has lower performance for write
operations, which is acceptable for the configuration service.
Finally, paxos provides fast but weakly consistent reads.

The interface provided by paxos is shown in Figure 8.
WeakRead returns the entire current state replicated by paxos,
as stored on the server where WeakRead is invoked. The result-
ing state might be stale (if other servers have committed new

operations in the meantime) or the resulting state might not
even be committed (if this state was never acknowledged by a
majority of servers). configservice implements GetConfig
using WeakRead, despite its weak semantics, because the caller
of GetConfig is the vRSM clerk, which can handle stale or
even incorrect results, and because using WeakRead ensures
that GetConfig is fast.

1 func (p *Paxos) WeakRead() []byte
2 func (p *Paxos) Begin() (oldstate []byte,
3 commit func(newstate []byte) error)
4 func (p *Paxos) TryBecomingLeader()

Figure 8: Interface provided by paxos.

To execute write operations, such as
ReserveEpochAndGetConfig as shown in Figure 9,
configservice uses the Begin method (which should
be invoked on the leader, otherwise the operation will be
unable to commit). Begin returns the current replicated state
from the local server, as well as a callback function commit
that configservice will use to try to commit its new state.
The commit callback is the core of paxos: it actually talks to
other servers, unlike WeakRead and Begin. It tries to replicate
the new state to a majority of servers, while checking that
no other operations have been committed in the meantime.
commit could succeed in getting a quorum of servers to
accept this new state, or it might fail because another leader
has been chosen.

1 func (c *ConfigService) ReserveEpochAndGetConfig(args []byte,
2 reply *[]byte) {
3 oldstate, commit := c.paxos.Begin()
4 st := unmarshal(oldstate)
5 st.reservedEpoch = st.reservedEpoch + 1
6 newstate := marshal(st)
7

8 err := commit(newstate)
9 if err != nil {

10 *reply = marshal.WriteInt(nil, STAT_ERROR)
11 } else {
12 *reply = marshal.WriteInt(nil, STAT_OK)
13 *reply = marshal.WriteInt(*reply, st.reservedEpoch)
14 *reply = marshal.WriteBytes(*reply, encode_cfg(st.config))
15 }
16 }

Figure 9: Implementation of the ReserveEpochAndGetConfig RPC handler
in configservice, built on top of paxos. This handler is invoked by the
configservice clerk shown in Figure 5.

Finally, if the current leader appears to have crashed, the op-
erator could call TryBecomingLeader to choose another server
as the leader; it is always safe to call TryBecomingLeader.

2.2.6 Versioned state machine API E
To build an application on top of vRSM, the developer must
implement the versioned state machine interface shown in
Figure 10. The Apply() executes a application-level read-
/write operation and Read() executes a application-level read
operation against the against the current in-memory state,
while SetState() and GetState() allow serializing the in-
memory state. Using this developer-provided interface, the
vRSM library takes care of checkpointing the state on disk

5



and copying the state to new replicas. For example, the call to
GetStateAndSeal() in Figure 6 ultimately uses the developer-
provided GetState() method to checkpoint the current state,
and the call to SetNewEpochState() in Figure 6 ultimately
calls the developer-provided SetState() method to initialize
the replica’s local state.

1 type VersionedStateMachine struct {
2 Apply func(op []byte, idx uint64) []byte
3 Read func(op []byte) (uint64, []byte)
4 SetState func(snap []byte, idx uint64)
5 GetState func() []byte
6 }

Figure 10: Interface for a versioned state machine.

As described earlier, one complication is that read oper-
ations may observe writes that have not been replicated to
all servers yet and thus have to wait for those operations to
be committed. As an optimization, the application-provided
Read() method can specify which writes the read result de-
pends on, by returning the idx of the most recent write depen-
dency as the first part of its return value. This allows reads to
return quickly, without waiting for commits of recent writes,
if the result is not reading a recent write. This propagates
into the idx value returned by s.stateLogger.LocalRead()
in Figure 7 and determines what committed operations the
replica library waits for.

2.2.7 vRSM clerk E
vRSM provides a client clerk library, which hides the com-
plexity of issuing requests to vRSM over the network. The
clerk API is shown in Figure 11. Applications can use the
clerk library on many client machines to access vRSM. To ex-
ecute an operation, the clerk needs to know the address of the
replica servers. The clerk initially obtains this information
from the configuration service and caches it locally. Calling
clerk.Apply(op) issues read-write operations to the primary
while clerk.Read(op) issues a read-only operation to any
replica. If a server indicates that it is no longer the primary
(or replica, for read-only operations), the clerk asks the config
server for the new server information and retries. Because of
retries, it is possible for a single clerk.Apply() call to result
in an operation being applied more than once. A higher-level
library handles deduplicating operations (§2.2.8).

1 func MakeClerk(confAddr Address) *Clerk
2 func (ck *Clerk) Apply(op []byte) []byte
3 func (ck *Clerk) Read(op []byte) []byte

Figure 11: Interface provided by the vRSM client clerk.

2.2.8 exactlyonce library E
The exactlyonce library helps applications using vRSM en-
sure that operations execute exactly-once. It consists of a
new clerk that wraps over the vRSM clerk (which potentially
duplicates operations through retries) and a state machine
transformer that adds duplicate detection and handling to an
application-level state machine. The clerk API is the same

as the underlying vRSM clerk, but additionally guarantees
that operations are not applied more than once. To achieve
this, the clerk adds a unique request ID made up of a client
ID and sequence number to each operation. On the other
side, the exactlyonce state machine transformer augments
an application-level state machine with a reply table to keep
track of previously applied requests along with their replies.
Upon getting a new request, the exactlyonce library calls
the application state machine’s Apply function and stores the
reply in the reply table. Upon getting a duplicate, the library
does not call into the application state machine and instead
returns with the previous reply. For read-only operations,
exactlyonce ignores the reply table and calls Read on the
application state machine.

2.3 Applications on top of vRSM
2.3.1 vKV
vKV is implemented on top of vRSM and the exactlyonce li-
brary. The server-side part of vKV is an implementation of the
state machine interface expected by vRSM. The client-side
part of vKV is a clerk implemented on top of the exactlyonce
clerk, with the API shown in Figure 12. By building on top
vRSM, the implementation of vKV itself is simple: it con-
sists of (de)serialization methods to turn key-value operations
into byte slices and a few functions to read and update an
in-memory map. In addition to storing a map of keys to val-
ues, vKV also stores a map from keys to the index of the
last operation that modified that key, which allows vKV to
take advantage of vRSM’s versioned state machine interface
(§2.2.6) to improve the performance of reads.

1 func (ck *Clerk) Put(key, val string)
2 func (ck *Clerk) CondPut(key, expect, val string)
3 func (ck *Clerk) Get(key string) string

Figure 12: Interface provided by the vKV client clerk.

2.3.2 Lease-based client-side caching
As another example of using leases, cachekv is a lease-based
client-side caching library that works by storing both data and
lease expiration times in vKV. Figure 13 shows GetAndCache
function, which returns the value of the specified key and
caches it internally for cachetime time. It uses CondPut to
atomically increase the lease duration, which ensures that a
concurrent modification did not change the value since the
Get on line 4. Similarly, CacheKv’s Put function (not shown)
uses CondPut to ensure the value is only changed if the lease
is expired. Finally, CacheKv’s Get function first tries reading
from k.cache and only invokes the Get on vKV if the value
is not cached. The client-caching library is simple, but exem-
plifies how leases can be used for cache consistency [19].

2.3.3 Lock service E
Figure 14 shows the interface provided by the lock service,
built on top of vKV. The lock service uses vKV’s conditional-
put CondPut() operation to implement locks, with one lock

6



1 func (k *CacheKv) GetAndCache(key string,
2 cachetime uint64) string {
3 for {
4 old := k.kv.Get(key)
5 new := old
6

7 newExpiration := max(GetTimeRange().latest+cachetime,
8 old.leaseExpiration)
9 new.leaseExpiration = newExpiration

10

11 // Try to update the lease expiration time on the backend
12 resp := k.kv.CondPut(key, old, new)
13 if resp == "ok" {
14 k.mu.Lock()
15 k.cache[key] = cacheValue{v: old.v, l: newLeaseExpiration}
16 k.mu.Unlock()
17 return old.v
18 }
19 }
20 }

Figure 13: Simplified code for getting a lease on a key and caching it.

corresponding to one key-value pair. The lock service pro-
vides a specification for its Acquire() and Release() meth-
ods that allows applications to implement exclusive locking,
such as accounts in our bank example, in the style of a tra-
ditional concurrent separation logic lock specification [39].
This specification is quite different from the specifications of
the underlying vKV methods like CondPut(), and makes it
easy for the bank example to keep separation logic resources
protected by locks that the lock service provides.

1 func (ck *Clerk) Acquire(lk string) *Locked
2 func (l *Locked) Release()

Figure 14: Interface provided by the lock service.

2.3.4 Bank transactions E

As a top-level application, we implemented a toy bank appli-
cation, which uses transactions built on top of the vKV clerk
and lock service interfaces, and does not depend on the de-
tails of how those interfaces are implemented. However, the
specifications for the vKV clerk and lock service are strong
enough to prove correctness for the bank’s transactions.

The bank uses an instance of vKV to store its account state,
with one key-value pair used to store the balance of one ac-
count. The bank uses the lock service (with its own separate
instance of vKV) to handle concurrent access to accounts. Ev-
ery Transfer(src, dst, amt) operation obtains two locks,
on the src and dst accounts (sorted to avoid deadlock) before
accessing their respective account balances in vKV. This en-
sures that concurrent transfers are safe to execute, and allows
for concurrency when transfers access different accounts. The
Audit() function grabs locks for all accounts, computes the
total balance by retrieving each account’s balance, and then
releases all of the locks.

If one of the bank nodes crashes, the locks held by any
threads on that node in the lock service will remain locked.
Recovering from this would require some form of undo or
redo logging; for instance, the bank threads could send undo

log entries to the lock service. We have not implemented this
in the bank prototype.

3 Grove
To formally verify distributed systems such as the case studies
described in the previous section, Grove adopts the ideas of
concurrent separation logic (CSL) [26, 39]. CSL enables
modular specifications and proofs: a developer can take two
verified components, each with their own specification, and
use both of them in their application without worrying that
the combination breaks either component’s proof. In the
context of distributed systems, this allows Grove developers
to separately specify and verify different services that run on
different machines but that will eventually be used together
(e.g., a configuration service, a key-value store, and a lock
service), as well as different libraries that will run on the same
machine (e.g., a clerk that talks to vKV, a clerk that talks to
the lock service, etc).

In the rest of this section, we first introduce Grove’s ex-
ecution model (§3.1), followed by how Grove generalizes
separation logic and resource ownership to distributed sys-
tems (§3.2), and Grove’s library of reasoning principles.

3.1 Execution model
Grove models distributed systems as a collection of nodes,
each running a multithreaded program written in Go. Each
node has its own memory heap (accessed in Go using loads
and stores) as well as durable storage (accessed by reading
from and writing to files using read() and write()).

Crash recovery. Each node has a main() function that runs
when the node starts up for the first time as well as when the
node restarts after a crash. When a node crashes, it loses the
contents of its memory heap and restarts with an empty heap,
but retains its durable state.

Nodes crash independently of one another. A few nodes
might crash while others keep running, or all of the nodes
might crash at the same time. Crashes can happen at any point,
including when a node is still recovering from an earlier crash.
For instance, a node’s main() function might have a recovery
phase during which it loads durable state into memory or
communicates with other nodes to restore its state; crashes
can occur even during this phase.

Unreliable network. Nodes communicate over an unre-
liable network. The low-level network API has a no-
tion of a Connection, resembling a connected UDP socket.
The API provides two functions, conn.Send(msg) and
conn.Receive() that respectively send and receive messages
over that connection. Grove models the network as unreli-
able: conn.Send(msg) is not guaranteed to deliver messages
in order, and messages may be dropped or duplicated.

7



Clocks. There is a global clock, which advances monotoni-
cally and represents a notion of wall-clock time. Every node
exposes a TrueTime-like API [13], GetTimeRange(), which
returns a pair of timestamps that represent an interval (lower
and upper bounds) that, according to our model, must contain
the global clock value. This assumes that node clocks are
synchronized to within known bounds (on the order of less
than a second, for the purposes of vKV’s use of leases).

3.2 Separation logic for distributed systems

Grove generalizes concurrent separation logic (CSL) [26, 39]
to reason about distributed systems. CSL uses Hoare logic-
style specifications for pieces of code (e.g., functions) of the
form {P} f() {Q} meaning the precondition for running f()
is the assertion P and the postcondition is Q. To prove such
a spec, a developer applies proof rules to reason line-by-line
about f(), starting with a state matching P , and showing that
the final state matches Q.

This section reviews the background on CSL and intro-
duces key abstractions that Grove provides on top of CSL,
along with how they are used in vKV’s proof.

3.2.1 Ownership reasoning

In separation logic, assertions not only describe what is true
about a system’s state, but also what parts of the state are
logically owned by the thread executing the code at that point.
For example, the assertion x 7→ v (pronounced “x points
to v”) says that memory location x stores a value v and
that the thread running that function owns the location x,
in the sense that, as long as this thread continues to own
this assertion, no other thread can access location x. Such
ownership constraints form the basis for modular reasoning:
for instance, the fact that no other thread can access location
x allows a developer to reason about this function without
considering other concurrently executing code.

Grove’s library brings this ownership-based modular rea-
soning to distributed systems. Grove provides per-node heap
points-to resources: x 7→j v denotes ownership of location x
with value v on node j’s heap. Grove also provides resources
for network state and file contents, as we discuss later. In
a distributed systems setting, this enables the developer to
verify the code running on one node without worrying about
what code might be running on other nodes at the same time.

Separation logic additionally introduces a new logical con-
nective, ∗, called separating conjunction. The assertion P ∗Q
holds in a state s if both P and Q are true in s, and further-
more, s can be split into two disjoint resources satisfying
P and Q, respectively. In conventional CSL, disjointedness
means separate subsets of a program’s memory heap. Grove
uses the separation conjunction to account for separation
across different nodes as well.

3.2.2 Ghost resources
In addition to physical resources like the heap, separation
logic allows proofs to use ghost resources, a modern form of
auxiliary variables [24, 29]. Ghost resources talk about the
state of the system at a more abstract level. In concurrent sep-
aration logic, ghost resources represent ghost state—state that
is not materialized by the actual running code, but is useful
for specification and proof. Just like physical resources, ghost
resources can be owned. While the evolution of physical re-
sources is entirely determined by the code (e.g., based on how
the code modifies memory or file contents), ghost resources
are controlled by the proof.

Ghost resources are especially useful for reasoning about
distributed systems because they can span nodes and allow
developers to reason about the system at a higher level of
abstraction. Ghost resources are more powerful than regular
abstract state, because these resources can be owned, which in
turn provides constraints on how different threads can modify
the ghost state, and thereby enables modular reasoning.

Epochs. Using ghost resources, Grove provides an epoch
abstraction, which is used in the proof of vKV to keep
track of and reason about the current configuration. Grove
provides two resources for representing epochs. The first,
CurrentEpoch 7→ e, states that the current epoch number is
exactly e. This resource is owned by the configuration service:
it is the only component that can approve a reconfiguration.
The second, CurrentEpoch ≥ e, states that the current epoch
is at least e. This resource is duplicable, meaning that many
threads can have it at the same time. In a way, this resource
represents knowledge of the fact that the epoch is at least
e, rather than any exclusive ownership of some part of the
state. The fact that CurrentEpoch ≥ e is duplicable implies
that epoch numbers are monotonically increasing (i.e., the
resource promises that the current epoch number cannot de-
crease). Many vKV components, including the primary and
the backup replicas, make use of this resource to represent
knowledge that a new epoch exists. This means that a server
can reject operations from earlier epochs, such as a stale
SetNewEpochState().

Logs. Grove provides a log abstraction using ghost resources,
encoded as an append-only list. The proof of vKV encodes
the main logical state of each replica server using this log
abstraction, representing the operations that the node has ap-
plied so far. There are three kinds of ghost resources provided
by Grove that talk about the state of an append-only log:

The points-to resource a
list7→ ℓ denotes ownership of an

append-only list named a with current value ℓ. The only way
to update this points-to resource in the proof is to go from
ownership of a list7→ ℓ to a

list7→ ℓ+ ℓ′, i.e. to append at the end.

The lower bound resource a
list
⊒ ℓ denotes knowledge that

the list a has prefix ℓ. This is similar to the lower-bound
epoch resource CurrentEpoch ≥ e described above, and just

8



like it, a
list
⊒ ℓ is duplicable. Other parts of the proof cannot

possibly violate lower bound resources.
Finally, the read-only resource a list7→□ ℓ denotes knowledge

that a has value ℓ and can never be updated. To establish
this read-only resource, a proof has to give up ownership
of a list7→ ℓ and in exchange get ownership of the read-only
resource. After this, no part of the proof can possibly have
ownership of a list7→ ℓ so the list can never be updated again.

vKV’s proof represents operations accepted by each server
as of epoch number e with append-only lists: server j ∈
{0, 1, . . . , n} owns the resource acceptedj [e]

list7→ ℓ.2 Server j
can only gain knowledge (not ownership) about other servers’
acceptedk[e] list and does this through RPCs (discussed
in §3.3). All servers also own heap resources for their in-
memory representation of this abstract state, but the proof
does not involve sharing these heap resources across nodes.
Servers only talk about other servers in terms of ghost re-
sources for their acceptedj [e] list. Read-only resources are
used to represent sealed replicas.

The proof also has a global points-to committed list7→ ℓ that
represents the committed list of operations. When a primary
server commits an operation, the proof updates the committed
points-to resource. However, when reconfiguration happens,
the new primary server will need to do the same. Thus, the
committed points-to resource cannot be permanently owned
by any one node. To share this resource between nodes, the
proof uses a separation logic invariant, which we explain next.

3.2.3 Invariants
Concurrent separation logic allows for resources to be shared
through invariants, which can talk about the resources rel-
evant to only a small part of the system without needing
to know about the entire system’s state.3 These invariants
maintain ownership of resources that must always be avail-
able. The assertion P denotes an invariant that maintains
ownership of P . When reasoning about code, proofs can
temporarily “open” P to get ownership of P , but are re-
quired within one physically atomic step of the code to return
ownership of P in order to “close” the invariant. An invariant
is created by starting with ownership of P and giving it up to
establish P . The proposition P asserts knowledge of the
invariant, as opposed to direct ownership of the resources P ;
many threads can hold P at the same time.

Multiple invariants that each talk about separate parts of
a larger system can be freely combined. As an example, a
per-node invariant can describe how resources are shared
between the node’s threads; this is how invariants are used
in traditional single-machine CSL ([26, 39]). At the same
time, a separate invariant can connect the logical state of
all replicas to ensure that the replicas agree on the log of

2The labels are such that server 0 is the primary and the rest are backups.
3Different variants of CSL come with different flavors of invariants. Here,

we are explaining invariants as they work in Iris [26].

accepted operations. Finally, yet another invariant can cover
the configuration service and how the reconfiguration logic
ensures that only one set of servers is active at a time.

Example. In the vKV proof, each node has a local invariant
Inodej that maintains ownership of local heap resources and

acceptedj [e]
list7→ ℓ to help reason about node-local concur-

rency, using Grove’s log ghost resource.
Separately, to reason about how nodes coordinate with each

other, the proof has a “replication invariant” Irep defined as

∃ℓ,∃e, committed list7→ ℓ∗(
accepted0[e]

list
⊒ ℓ

)
∗ · · · ∗

(
acceptedn[e]

list
⊒ ℓ

)
Here, ∗ is the “separating conjunction” operator that com-

bines ownership of multiple disjoint resources. The invariant
maintains ownership of the committed list of operations and,
for every replica server, knowledge that the server has ac-
cepted all the committed operations. This invariant encodes
the primary/backup protocol: in order for an operation to be
committed, all the servers must have accepted it. Not shown
is a part of this invariant that says epoch e corresponds to a
configuration consisting of servers 0 through n.

When the primary commits an operation op, the proof
opens the replication invariant to update the committed points-
to from ℓ to ℓ+ [op]. In order to close the invariant after the
update, the primary needs knowledge of the lower-bound

resources acceptedj [e]
list
⊒ ℓ+ [op] from all servers j. To get

these lower bound resources from the backups to the primary,
the proof uses Grove’s RPC reasoning principles.

3.3 Reasoning about RPCs
Building on Grove’s network model, the rpc verified Go RPC
library provides reasoning principles that allow developers to
reason about RPCs much like how they would reason about
local function calls in separation logic. Key to this RPC
specification is its use of duplicable assertions. Formally, an
assertion P is called duplicable if P implies P ∗ P , meaning
that it’s possible to create a copy of any resource in P . For
instance, a list7→ ℓ is not duplicable because one thread’s owner-
ship of this resource precludes any other thread from owning

it. On the other hand, knowledge such as a
list
⊒ ℓ is duplicable.

The notion of duplicability allows stating Grove’s
RPC specification: for any function f with specification
{P} f {Q}, the specification for invoking f through an RPC
is {P} rpcClient.Call("f") {Q}, as long as P is duplica-
ble. Duplicability of P is crucial because the RPC library
may retransmit its request multiple times before it receives a
response and each execution of f will consume one instance
of P . Note that the specification does not, strictly speaking,
require Q to be duplicable, because Grove obtains a fresh
copy of Q from each invocation of f() on the server.

9



Example. As an example, consider the ApplyAsBackup
RPC in vKV, issued by the primary to backup servers
when replicating a new operation. The postcondition of
ApplyAsBackupRPC(e, index, op) to server j is the asser-

tion acceptedj [e]
list
⊒ ℓ+ [op]. This represents a promise that

server j accepted op in its log. As the primary collects more of
these lower-bound resources, it will eventually have enough
to commit the operation using the replication invariant Irep.

When it comes to choosing the precondition of
ApplyAsBackupRPC(e, index, op), one might naively pick
“ownership of resources to apply operation op once.” But,
such a precondition is not duplicable, as required by RPCs.
A recurring pattern when specifying RPCs with Grove is
rephrasing such preconditions to not involve any exclusive
ownership of resources, but instead talk about knowledge.
The (correct) precondition for the ApplyAsBackup RPC is
“knowledge that op is the operation at position index.” The
full spec (ignoring errors) for an ApplyAsBackupRPC is:

{knowledge that op is operation at index}
serverj .ApplyAsBackupRPC(e, index, op){
acceptedj [e]

list
⊒ ℓ+ [op]

}
This precondition allows the primary to retry RPCs to

ensure that every backup has learned about the operation.

3.4 Reasoning about leases
To reason about leases, the Grove library provides the notion
of a time-bounded invariant. The invariant contains some re-
sources R representing what the lease L promises to maintain
until its expiration, denoted by R

L
, and a separate resource

representing the expiration time exp of the lease, denoted by

L
expires7→ exp. L is a logical identifier for the lease, and does

not show up in execution.
As an example, vKV uses a lease to promise that the con-

figuration epoch number will remain the same, which en-
sures that no reconfiguration will take place for the duration
of the lease (which in turn allows replicas to handle read-
only requests on their own). When the configuration service
hands out such a lease, it creates a time-bounded invariant
CurrentEpoch 7→ e

L
, along with a resource indicating when

the lease expires, L
expires7→ exp. It then gives out the invari-

ant and a duplicable version of the lease expiration resource,

L
expires
≥ exp; having a duplicable lower bound on the expira-

tion time, as opposed to the exact expiration time, simplifies
lease renewal.

There are four rules for time-bounded invariants. First, a
time-bounded invariant can be created by giving up ownership
of some resource R, and specifying a time at which it will
expire. For instance, vKV’s configuration service does this
when issuing a lease in response to a GetLease() RPC, giving
up its ownership of CurrentEpoch 7→ e.

Next, if a time-bounded invariant expires, according to the

L
expires7→ exp resource, its resources can be reclaimed. vKV’s

configuration service does this as part of reconfiguration:
TryWriteConfig() waits for lease expiration, and gets back
ownership of CurrentEpoch 7→ e, which it can then increment
to CurrentEpoch 7→ e+ 1.

Third, a time-bounded invariant can be extended: in vKV,
the configuration service owns L

expires7→ exp if there is an
existing lease, and if another GetLease() RPC arrives, the
configuration service extends the lease by advancing the ex-

piration time to L
expires7→ exp + ∆ (and sends a duplicable

L
expires
≥ exp +∆ to the caller).

Finally, the resources inside of the time-bounded invari-
ant can be accessed by opening the invariant, as long as the
time-bounded invariant has not expired. Opening a time-
bounded invariant comes with the same obligations as open-
ing a regular invariant—that is, the proof gets ownership of
the resources from the invariant, but must return them back
to close the invariant after at most one atomic step. In vKV,
the CurrentEpoch 7→ e resource inside the lease invariant is
accessed by the primary-backup replication library (in con-
trast with the previous three operations, which all happen on
the configuration service).

3.5 Reasoning about clocks
Consider the lease expiration check in vKV shown in Fig-
ure 7. This pattern is tricky to reason about: by the time
s.stateLogger.LocalApplyReadonly() runs, the lease may
no longer be valid, if there was a long delay right after if
statement’s check. As a result, whatever invariant the lease
was protecting might no longer be true by the time the devel-
oper wants to use it in their proof.

To address this proof challenge, Grove’s specification for
GetTimeRange() allows the developer to perform arbitrary
proof steps (such as opening and closing invariants and up-
dating ghost resources) at the instant when GetTimeRange()
executes. In the context of these proof steps, the developer
also gets access to a CurrentTime 7→ t resource which rep-
resents the current time, and a promise that the return value
r of GetTimeRange() satisfies r.earliest ≤ t ≤ r.latest.
(Grove implements this using logical atomicity [23].)

One subtlety is that, at the instant that GetTimeRange() exe-
cutes, the code has not yet executed the comparison checking
if the lease is still valid (i.e., comparing to leaseExpiry). As
a result, once the proof gets the CurrentTime 7→ t resource,
the developer must explicitly consider two cases at the instant
of GetTimeRange(): either the subsequent check will succeed
or it will fail. In the case where the subsequent check will
succeed, the developer can use CurrentTime 7→ t to then open
the time-limited invariant and access the CurrentEpoch 7→ e
resource inside it. (§4.3 has a more detailed discussion of
how this allows proving linearizability for reads.) When the
proof eventually considers the actual comparison in the if

10



statement, only one of the if branches will be viable in each
of the two proof cases.

3.6 Reasoning about exactly-once operations E
vRSM’s exactlyonce library deduplicates requests, by run-
ning the request the first time it is seen, and using the saved
reply if the request appears again. (This is part of the state ma-
chine and hence the reply cache is duplicated across replicas.)
This poses a proof challenge in situations when handling the
request requires exclusive ownership of resources: on the one
hand, the proof must be ready to provide these resources in
case this is the first time the request is seen (and thus must
be executed), but on the other hand, the proof cannot have
a second copy of the resources if this is a duplicate of the
original request (because the resources are exclusive and have
already been used).

For instance, the top-level spec for vKV’s Put is written in
terms of an exclusive k 7→kv v that denotes ownership of a
particular key k and that its value is v. A high level proof plan
for this is to first transfer ownership of k 7→kv v to the primary
server so that it can be certain that it is safe to Put on the
key. However, Grove’s RPC library can only send duplicable
resources, because it may retransmit the request. Replication
complicates ownership transfer even more: even if the client’s
Put somehow does transfer k 7→kv v to a primary server, that
primary may crash and reconfiguration may set up a new
primary. Then the client retries and—following the high-level
proof plan of transferring resources to the server in charge
of handling a request—the proof would need to somehow
reclaim k 7→kv v from the old primary and then transfer it to
the new primary.

To deal with such ownership transfer challenges, Grove
allows proofs to use an escrow pattern [43]. The idea of the
escrow pattern is to indirectly transfer ownership of some non-
duplicable resources by “depositing” the resource in a “known
location” (an escrow invariant), and then only transferring
duplicable knowledge that the deposit has happened. For this
to work, the other party needs to have the sole right to take
things out of the escrow.

Example. At the beginning of a client’s Put, the client owns
k 7→kv v. To allow a server to access it, the client gives up
ownership to establish the invariant k 7→kv v ∨ Tok , called
the escrow invariant. Here, Tok is an exclusive ghost token
that is initially owned by the replica servers. Exclusive means
that Tok ∗ Tok → False. The full proof of the exactlyonce
library deals with multiple requests and escrows by having a
separate token for each request ID, all of which are initially
owned by the replica servers.

When the client sends the Put operation to a primary server,
it only transfers knowledge of the escrow invariant. Because
knowledge is duplicable, the client can retry and also transfer
knowledge of the invariant to future primary servers. On
the other end, when a server receives a request it also gains
knowledge of the invariant. If the request is fresh, then the

server will own Tok. When the request is committed, the
server opens the escrow invariant and has to deal with the
two possible disjuncts in the invariant. In the left disjunct,
the server now has ownership of k 7→kv v and can close the
invariant by placing Tok inside of it. In the right disjunct,
the proof can derive a contradiction because there would be
two copies of the exclusive Tok: one from the invariant one
already owned by the server. Finally, if the request is found
to be a duplicate when committed, then the server does not
own Tok to start with, and cannot get ownership of k 7→kv v;
instead, it replies to the client with the previously cached
reply.

3.7 Linearizing read operations E
When a client retransmits a read operation to vRSM, the
server re-executes it instead of using the exactlyonce library
to look up the previous response. This improves performance
because it avoids the cost of logging the read operation to disk.
Re-executing reads is safe in terms of the server state: since
the read has no side effects, it is safe to run any number of
reads. Re-executed reads might return different results each
time they are executed; however, when the clerk eventually
receives the response to one of its retransmitted requests, it
will use that response as if that was the only read that was ever
executed, ignoring all others. This makes this optimization
safe from the client perspective as well.

Proving correctness for this read optimization in Grove
is challenging. vRSM specifies linearizability for reads by
establishing an exact order in which operations are executed,
requiring the proof to “linearize” an operation by adding it to
this execution order at most once and at the instant that the
operation logically executes. (Specifically, vRSM is specified
in the style of logical atomicity [23].) Importantly, proofs
must add reads to the execution order before later writes are
acknowledged to clients.

The proof challenge lies in determining when to linearize
a read. On one hand, at the moment that the read executes,
the proof does not know if that execution’s response will be
received by the client, so it is unclear whether to linearize the
read. On the other hand, if the proof waits until the client
receives a response, it is too late to linearize the read because
concurrent write operations might have been acknowledged
to other clients and already added to the execution order.

Grove enables the vRSM proof to address this challenge by
providing support for prophecy variables [1, 27], which was
initially added to Perennial to support vMVCC [10]. Specif-
ically, when a clerk issues a read request RPC to a vRSM
server, it uses a prophecy variable to speculate on what the
eventual response will be. When the server executes a read, it
checks whether the read result matches the prophecy variable
speculation, and if so, whether this is the first execution of the
read (using ghost state to track re-execution). If so, the server
linearizes the read. When the client ultimately receives a
response, it resolves the prophecy variable prediction against

11



the actual response. In case the speculation was wrong, the
proof stops with a contradiction. In case the speculation was
right, the proof learns that the read was linearized with the
expected value.

3.8 Reasoning about crashes E
Grove reasons about crashes by extending Crash Hoare
logic [8, 11] to the distributed setting, and borrows the notion
of a crash obligation to encode what can be assumed about
the durable state of the system after a crash. To reason about
the state of durable storage, Grove introduces a file points-
to resource, written “filename” file7→j data, which says that
filename on node j contains data. File points-to resources
are durable, so ownership of them usually appears in the crash
obligation of a node. In contrast, heap resources are volatile
and cannot be made part of a crash obligation, because the
heap will be lost after a crash.

Example. The proof of vKV’s replica servers maintains the
per-node crash obligation

∃e, ∃ℓ, “log.dat” file7→j toBytes(ℓ) ∗ acceptedj [e]
list7→ ℓ.

The crash obligation says that at all times, replica server j
must own the log file and that the contents of the file match
the list operations in the accepted ghost state.

The accepted ghost state tracks all promises made to other
nodes about operations that have been applied. The per-node
crash obligation therefore captures the need to prove that
operations are made durable before being acknowledged to
other nodes.

4 How Grove rules out bugs
This section sketches the specification and proof for several
components from §2. It also poses some tricky scenarios
for the components and explains either (1) why the scenario
would result in buggy behavior and where the proof would
get stuck because of the bug, or (2) why the scenario is subtly
safe and how the proof covers it. A common theme is that the
proofs center around choosing the right kinds of resources
and do not need to break into cases for the different scenarios.

4.1 Primary replica server
Specification. An important part of vRSM’s primary/backup
replication protocol is embodied in the primary server’s Apply
function, whose job is to add a new request to the log on
the primary as well as all backup replicas. Figure 4 shows
the simplified code for this function, and in the rest of this
subsection, we will walk through the proof of its correctness.

The spec we aim to prove for Apply is that its postcondition

is ∃ℓ, committed
list
⊒ ℓ+ [op]. This is a formal way of stating

that, after Apply(op) is done, the client’s op definitely shows
up in the committed log somewhere. The op might appear in
the log after a number of other operations, which may have
come from other clients. Similarly, op might not be the latest

operation in the log either, if other operations arrived after
it; however, the use of ⊒ allows the postcondition to ignore
subsequent parts of the log. The spec does allow the operation
to be added multiple times; a stronger exactly-once spec can
be obtained on top of this spec via the exactlyonce library.

Proof. The first line acquires the primary server lock, which
serializes concurrent calls to Apply. In the proof, the post-
condition of s.mutex.Lock() provides ownership of the pri-
mary’s points-to resource, accepted0[e]

list7→ ℓ. While holding
the lock, the primary establishes the order in which this op
will execute (namely, nextIndex), and applies op to its local
state. At this point, the proof updates the thread’s ownership
of accepted0[e]

list7→ ℓ to accepted0[e]
list7→ ℓ + [op], and gets

the knowledge resource accepted0[e]
list
⊒ ℓ + [op] before re-

leasing the lock. To release the lock, the proof must give up
ownership of accepted0[e]

list7→ ℓ+[op], but retains knowledge

of accepted0[e]
list
⊒ ℓ+ [op], which will be useful later on.

Next, the primary invokes ApplyAsBackupRPC concurrently
on all of the backup servers, passing in nextIndex to ensure
that op is added to the backup’s log at the right position. Using
the RPC spec shown at the end of §3.3, the primary gets a
promise that the jth backup accepted the operation, in the

form of the lower bound resource acceptedj+1[e]
list
⊒ ℓ+ [op].

The RPC spec is established in a separate proof.
The proof of Apply collects these postconditions of

the n calls to ApplyAsBackupRPC to get the resources

(accepted1[e]
list
⊒ ℓ+ [op]) ∗ · · · ∗ (acceptedn[e]

list
⊒ ℓ+ [op]).

At this point, the proof has enough lower bound resources
to be certain that the operation is committed. The proof
opens the invariant Irep defined in §3.2.3 and temporarily gets

ownership of committed list7→ ℓ.4 The proof then updates it to
committed

list7→ ℓ+ [op]. With this points-to, the proof gets the

lower-bound resource committed
list
⊒ ℓ+[op], which is needed

for the postcondition of Apply.
Before the proof can complete, it must close the invariant

Irep by returning ownership of the committed points-to. To
close the invariant Irep, the proof gives up the resources

(committed
list7→ ℓ+ [op]) ∗

(accepted0[e]
list
⊒ ℓ+ [op]) ∗ · · · ∗ (acceptedn[e]

list
⊒ ℓ+ [op]),

which matches Irep’s body with ℓ+ [op] in place of ℓ.
Since the lower-bound resource for the committed list

matches the desired postcondition, the proof is complete.

What if a backup concurrently applies more operations?
If backup j applies an operation concurrently, it will end
up growing its acceptedj [e] list (that is what happens, for

4Strictly speaking, the invariant refers to some l′, but the proof can handle
the case l′ ̸= l through a combination of available facts and invariants.

12



instance, during ApplyAsBackupRPC). But, since the points-to

is append-only, the lower bound resource acceptedj [e]
list
⊒ ℓ+

[op] that the primary received from calling ApplyAsBackupRPC
is still valid, which captures the fact that the operation op
appears in backup j’s log, even if it’s not the latest. Since
the operation is still in all the backups’ logs, it is safe for the
primary to reply OK.

Why can’t a backup concurrently remove operations?
E From the point of view of the primary server, a (buggy)
backup j might remove the latest operation op, perhaps be-
cause it crashed and restarted with a truncated log recovered
from its disk. In this case, it would be incorrect for the pri-
mary to reply OK to the client.

Fortunately, this possibility is ruled out in the proof by
the resources that the primary owns. By the time the proof

of Apply has acceptedj [e]
list
⊒ ℓ+ [op], the proof knows that

backup j owned acceptedj [e]
list7→ ℓ+ [op] at some point, and

since the points-to is append-only, it would be impossible for
the list to shrink. So, the primary does not need to consider
this possibility, and can be sure that it is safe to reply OK.
This reasoning even works across epochs, since one of these
append-only lists will be used as the starting point for the
next epoch.

Note that if the code for ApplyAsBackup really was buggy,
and could lose operations on the backup, the developer would
not be able to prove the correctness of ApplyAsBackup. The
append-only nature of acceptedj [e] and the backup’s crash
obligation mean that the backup’s proof must ensure the log
is properly preserved under crashes and recovery.

4.2 Reconfiguration
A separate challenging aspect of vRSM lies in reconfiguration.
This subsection will walk through the proof of Reconfigure,
as shown in Figure 6. This function is invoked on an opera-
tor’s machine when the operator wants to change the set of
servers, perhaps adding new machines to replace failed ones.
The spec is the following:

{all newServers are valid replica servers}
Reconfigure(newServers)

{⊤}

This specification states that calling Reconfigure() re-
quires all of the servers specified in newServers to be already
running the vRSM replica software (although the servers
might have been just installed, containing no key-value state),
so that the reconfiguration logic knows it is safe to use them
as a replica. Reconfigure() will contact both the old servers
and the new servers, transferring the state to the new servers
before registering them with the configuration service.

The postcondition in Reconfigure()’s specification ap-
pears to be weak, in the sense that it does not promise that
Reconfigure() will make progress. This is because Grove

is limited to safety properties—ensuring that vRSM never
returns the wrong result—as opposed to liveness, such as
guaranteeing that a client will receive a response. However,
the ⊤ postcondition does actually guarantee an absence of
all safety bugs during reconfiguration, such as corrupting
the state sent to the new servers, losing some operations ap-
plied concurrently by the old servers, etc. This is because
Reconfigure() does not own any interesting resources to start
with, which precludes it from tampering with any resources
held by the rest of vRSM. Any resources that Reconfigure()
obtains must come from invariants, such as Irep. However,
Grove requires that the proof correctly re-establishes any in-
variant that is opened, thereby ensuring that the invariants are
maintained throughout the execution of Reconfigure().

Proof. The overall structure of Reconfigure() is to get a
new epoch, then choose one of the old servers to seal and
get a copy of the old state from, then send this state to all
of the new servers, register the configuration, and activate
the new primary. The proof relies on the fact that Grove’s
append-only list resource, used to represent vRSM’s log, is
indexed by epoch.

A key aspect to the proof lies in the resource returned to
Reconfigure() by the GetStateAndSeal RPC. The postcon-
dition of GetStateAndSeal(newEpoch) is:

∃ℓ, (oldState corresponds to log of operations ℓ) ∗

acceptedj [e]
list7→□ ℓ.

Once the proof receives ownership of the read-only re-
source acceptedj [e]

list7→□ ℓ for the old epoch, it can conclude
that the old configuration will not apply any more operations.
This is because replica j must have given up ownership of its
acceptedj [e]

list7→ ℓ to produce the read-only resource, which
precludes it from extending ℓ with more operations. After
reconfiguration completes, a new append-only list resource
acceptedj [e+ 1] will be allocated (assuming the new epoch
is e+ 1), which allows vRSM to append new operations.

As in the primary/backup replication proof, Grove allows
the developer to prove the correctness of Reconfigure() with
modular reasoning, without having to consider explicit in-
terleavings with other parts of the system. Nonetheless, the
proof does rule out bugs due to subtle interactions, as follows:

Why can’t the old primary commit additional operations?
The developer might worry that after Reconfigure() fetches
the old state, the old primary could execute additional oper-
ations. This would mean that Reconfigure() will send an
incomplete state to the new servers, losing an operation. This
possibility is ruled out in vRSM’s proof due to the read-only
resource sent back by the GetStateAndSeal RPC. Having this
read-only resource implies that the old primary cannot add
any more operations to committed list7→ ℓ, since that would re-
quire adding the operation to every old replica, which would
in turn contradict the read-only resource.

13



What if the log contains operations that were never com-
mitted? It is possible that the log obtained by Reconfigure()
contains some operations that were never committed in the
old configuration, for example if the primary sent the opera-
tion to some but not all backups before failing. However, it is
nonetheless safe to commit those operations in the new config.
This is because the primary first adds an operation to its own
log before sending it to the backups. vRSM captures this
in an invariant by stating that every operation in a backup’s
acceptedj [e] must also appear at the same position in the
primary’s accepted0[e], making it safe to commit. A client
clerk will learn the outcome of its operation when it resends
its request to the servers in the latest configuration.

What if a replica is sealed again? E If some machine
initiates reconfiguration, it might seal one of the existing
replicas but then crash. A second reconfiguration may then
try to seal the replica for a second time. In vRSM, a sealed
replica can be sealed any number of times in the same epoch,
until a new epoch starts. In the proof, this is reflected by the
fact that acceptedj [e]

list7→□ ℓ is duplicable and can be sent in
response to repeated seal requests.

4.3 Lease-based reads
The key challenge for lease-based reads lies in ensuring that
the result returned by ApplyReadonly(), as shown in Figure 7,
reflects a properly linearized execution: the result cannot be
stale (i.e., missing writes that have already finished), and
cannot be rolled back (i.e., reflect uncommitted writes that
might be lost due to a crash or reconfiguration).

vRSM proves that the value is not stale by using the lease.
The read operation will be executed against the state of the
local server, represented by acceptedj [e]. At the instant of
the GetTimeRange invocation on line 4, the proof opens the
lease invariant to obtain CurrentEpoch 7→ e, and opens the
replication invariant Irep to obtain the fact that all of the oper-
ations in committed are also in acceptedj [e] (which has not
been superseded by any higher epoch e′).

To prove the second part (that the returned value cannot
observe writes that will be rolled back), vRSM waits until all
of the writes preceding the read’s linearization point to the
same key have been committed, in waitForCommitted. There
are two cases to consider. First, there may be no pending
writes, e.g., if at the instant of the GetTimeRange invocation,
idx is already committed. In this case, the proof linearizes the
read operation immediately at the instant of GetTimeRange.
The second possibility is that there are some pending writes to
commit. In this case, the proof maintains a set of ghost state
updates (based on the helping pattern [5, 7]) that must be log-
ically applied when the preceding write is committed (which
happens in the primary server’s proof of Apply()). Note that
this case distinction is only possible in the proof; the code
does not know which case it’s in when running GetTimeRange,
so waitForCommitted waits for idx to be committed in both

cases (and, in the first case, returns right away). If recon-
figuration happens in the meantime, and the epoch number
changed before idx could be committed, the read result might
not be valid, and the server tells the client to retry.

What if the server pauses for a long time after checking
the lease? A typical concern with leases is the freshness of
the lease check. What if the server running ApplyReadonly()
does the lease check on line 4 of Figure 7, but then pauses for
a long time (e.g., due to garbage collection) before actually
executing the read operation on line 6? By that time, reconfig-
uration may have taken place, choosing a new primary, and
that primary has executed more writes.

Such delays cannot violate correctness. Even if a new
primary executes writes, the read will be linearized before
those writes. This is allowed because the read request arrived
before reconfiguration (since the lease check passed after
the request was sent). The lock held by ApplyReadonly()
ensures that the server’s state does not change between the
lease check and the execution of the read operation.

In the proof, the read operation is linearized at the instant of
the GetTimeRange() invocation in Figure 7, if the returned lat-
est time is less than the lease expiration time. This allows the
proof to open the lease invariant to establish that the epoch is
still e, and thus the in-memory state of that replica j that will
be accessed by LocalRead, corresponding to acceptedj [e],
will be committed if waitForCommitted() succeeds.

4.4 Client cache consistency with leases
The top-level spec for the key-value caching library cachekv
is that Get and Put behave like a linearizable key-value ser-
vice, with GetAndCache working functionally like a Get.

To prove the linearizability of its lease-based caching, the
library uses a ghost map resource, which has a k 7→kv v
assertion representing the fact that the current value of k is
v. The library maintains two invariants: one global invari-
ant across all instances of the key-value caching library that
share the same state, and one local lock invariant for each
node’s own cache, protected by a mutex lock on that node.
The global invariant maintains, for each key, a time-bounded
invariant k 7→kv v

L
and ownership of the expiration time

L
expires7→ exp, corresponding to the expiration time encoded in

the underlying key-value pair. The expiration time may be in
the past if the most recent lease on k has already expired. On
each node, the library’s lock invariant maintains k 7→kv v

L

and a lower bound on the lease expiration time, L
expires
≥ exp,

corresponding to the expiration time stored in its local cache.
When a client executes Get, the library acquires its per-

node lock and checks the lease expiration time for the re-
quested key. If the key is cached and the lease is not expired,
the library opens the time-bounded invariant to prove that
the cached value is the current value for that key. Put waits
until the lease expires, at which point its proof can reclaim the
k 7→kv v resource from the lease, update it to the new value v′,

14



and then put it back into a new lease with the same (expired)
expiration time, to re-establish the global invariant that every
key corresponds to some lease. The proof of GetAndCache
extends the lease in the global invariant, and makes a copy of
the lease and the corresponding expiration time lower bound
in its local node invariant.

Why can’t a Put change a currently cached value? The
proof of Put has to update k 7→kv v to maintain the invariant.
To do this update, the proof needs ownership of the points-to.
If a client currently has that key cached (and not expired), then
the time-bounded invariant containing that key’s points-to has
not expired yet, and the Put proof cannot reclaim it.

Why can’t GetAndCache decrease the lease expiration time
instead of extending it? This would result in a bug because
a Put might change the value while another client still be-
lieves it has an up-to-date cache. The proof would get stuck
when re-establishing the global invariant with the decreased
lease expiration time, because that would require updating

ownership of the expiration time L
expires7→ exp to a smaller

number exp′ < exp, which is not possible: the lease extend
rule from §3.4 only allows the expiration time to increase.

4.5 Versioning read-only operations E
When the developer supplies a VersionedStateMachine
struct to the vRSM library, the developer must prove that
their methods satisfy the spec expected for this interface. To
do this, the developer can choose what resource they want
to use to represent ownership of the in-memory state on a
given node, which we will denote by VSM 7→ ops. ops refers
to the list of operations that have been executed so far, and
VSM 7→ ops says that the local state corresponds to exactly
those operations applied in that order, even if the implemen-
tation does not keep all of them in memory. The developer
also specifies a logical function, ComputeReply(ops, newop),
which determines the expected reply for a new operation
newop executed after a list of preceding operations ops.

A key optimization for achieving fast reads is to avoid
waiting for all of the writes to be committed before responding
to a read. The Read() method in Figure 10 specifies the write
operation that the read depends on, by returning the uint64
index of this write dependency as the first return value. The
specification for Read(), which the developer must prove,
requires that this index be correct:

{VSM 7→ ops}
Read(op)

{ret (idx, res), VSM 7→ ops ∗ StableReply(ops, idx, op, res)}

where StableReply(ops, idx, op, res) is defined as:

∀ops’, ops’ ⊑ ops ∧ len(ops’) ≥ idx→
ComputeReply(ops’, op) = res

This specification says that Read() does not modify the log-
ical state (the postcondition returns the same VSM 7→ ops

that it got in the precondition) and captures the necessary
conditions for the vRSM library to safely execute the read
after idx is committed.

Why can’t the application incorrectly track read depen-
dencies? If Read() fails to correctly track read-write depen-
dencies, it might return an idx value that’s too small—that is,
missing a relevant recent write that affects the read result. The
Read specification ensures this cannot happen. StableReply
requires that the read op returns the same result res regardless
of where in the log of operations it is executed, from idx up
to the entire current history ops. If Read() had a bug, the
developer would not be able to prove this specification for
their implementation.

Why can’t a read-only operation have side effects? The
implementation of Read() is arbitrary code, and can modify
state. It is safe for Read() to make internal changes, which
are not visible at the interface (e.g., modifying some internal
caches). However, if Read() makes changes to the state that
are visible at the interface level (e.g., inadvertently changing
the value of some key in vKV), it would violate vRSM’s
guarantees, such as linearizability and replication. By spec-
ifying VSM 7→ ops, the developer implicitly decides which
in-memory state is visible: state not reflected in ops is not vis-
ible to ComputeReply and hence cannot affect vRSM’s behav-
ior. Since the postcondition of Read() requires VSM 7→ ops,
the developer would be unable to prove this postcondition if
Read() made any visible changes.

4.6 Application state consistency in paxos E
The proof of the paxos library, which is used to replicate
configservice, is structured much like the proof of the
primary-backup library. One difference is that paxos uses
majority quorums instead of replicating to every server, which
means that a majority quorum q of the acceptedi resources
agree with the committed resource, rather than all of them:

∃ℓ,∃e,∃q, committed list7→ ℓ ∗ ⌜2 ∗ size(q) > n⌝∗

∗i∈q

(
acceptedi[e]

list
⊒ ℓ

)
Intersection of quorums allows the proof to conclude that

the new leader has all of the previously committed operations
after checking with a majority of the n servers, allowing it to
gain ownership of the leader resource for the new epoch.

The big difference from primary-backup replication is that
paxos provides weak guarantees when reading the state. Fig-
ure 15 shows the precise specification for Begin, which re-
turns two values: the oldstate value and the commit callback
function. The WF predicate (chosen by the caller of the paxos
library, such as configservice) captures the notion of a well-
formed state. For example, in the case of configservice,
WF defines a well-formed encoding of the configservice
state consisting of an epoch, a configuration, lease expiration,

15



etc. paxos captures the fact that oldstate might be stale by
requiring that WF is duplicable: that is, WF can only capture
properties that are always going to be true about a state, and
cannot capture non-duplicable facts such as freshness.

{⊤}
paxos.Begin(){
ret (oldstate, commit),WF(oldstate)∗

commitspec(commit, oldstate)

}

Figure 15: Specification for Begin() in the paxos library. The definition of
commitspec is shown in Figure 16.

The second component of the postcondition, commitspec,
allows the caller to later attempt to commit a new state by
invoking the callback commit, passing the new state as an argu-
ment. The definition of commitspec is shown in Figure 16. Its
precondition requires that newstate is well-formed according
to WF.

∀newstate,
{WF(newstate)}

⟨∀∀state’,Paxos 7→ state’⟩

commit(newstate)

⟨∃err, if err then Paxos 7→ state’

else ⌜state’ = oldstate⌝ ∗
Paxos 7→ newstate

⟩
{ret err, ⊤}

Figure 16: Definition of commitspec(commit, oldstate).

The rest of the commitspec specification is written using
angle brackets, which in Grove (like in Iris) indicates a log-
ically atomic specification [27]. This means that the tran-
sition between the angle-bracketed pre- and postcondition
occurs atomically at the linearization point inside this func-
tion, which—crucially—lets multiple threads or nodes call
this operation concurrently on the same exclusive resources.

In this case, that exclusive resource is Paxos 7→ state’,
which represents ownership of the fact that state’ is the latest
committed state. This resource is held by the application’s
invariant; for instance, configservice maintains an invariant
owning this resource and specifying that there is also a lease
valid until the expiration time encoded in that state.

The commit specification now says that, at some point dur-
ing commit’s execution (specifically, at the linearization point),
it will need ownership of the Paxos 7→ state’ resource, for
some state’. (The special ∀∀ quantifier indicates that this vari-
able is quantified across both the pre- and postcondition, and
that its value only gets determined at the linearization point.
The value is chosen by the client that invokes commit.) This
state’ might not be the same as oldstate, which captures
the possibility that other transactions may have modified the

state by the time commit is executed. The logical atomicity
postcondition says that, either commit will return an error
and the state remains state’, or commit will return success, in
which case the caller learns that state’ was in fact the same as
oldstate and the committed state is changed to newstate.

What if configservice gets stale or invalid state
from paxos? When configservice’s implementation of
ReserveEpochAndGetConfig, shown in Figure 9, gets the
starting state oldstate, Begin’s postcondition promises that
it is well-formed according to WF, which allows the proof to
conclude that it’s safe to unmarshal it. However, because
WF is duplicable, the proof would not be able to (incor-
rectly) conclude anything about the freshness of oldstate,
such as whether the corresponding lease is currently valid.
When invoking commit, if commit is about to return success,
then the logically atomic specification allows the proof to
conclude that the state was indeed fresh. However, the
precondition of commit requires the caller (the proof of
ReserveEpochAndGetConfig) to establish WF(newstate) be-
fore knowing whether oldstate was fresh or not, which
prevents the proof from embedding any information about
whether oldstate was ever committed into WF(newstate).

4.7 Bank transactions E
The bank uses one instance of vKV to store account bal-
ances and one instance of a lock service to maintain locks on
individual accounts. The specification for the lock service
allows maintaining a lock invariant for each lock. For each
account maintained by the bank, the bank puts the account’s
balance resource, acct 7→kv bal, in the lock invariant for lock
acct maintained by the lock service. When the bank needs
to access a specific account (either for Transfer or Audit),
it acquires the account’s lock, which gives it that account’s
points-to resource, allowing it to access the balance in vKV.

Why can’t the lock service lose its state after a crash?
If the lock service lost track of held locks, and allowed ac-
quiring a lock that was already held before the lock service
crashed, the proof of the lock service would get stuck. Specif-
ically, the lock service would need to give the caller access
to the lock’s invariant (the balance points-to in the case of
the bank example), but the lock service already handed out
that resource before the crash, and separation logic does not
allow duplicating resources. Thus, the proof must ensure that
at most one copy of the lock resource is handed out at any
given time.

Why can’t the bank fail to follow the locking rules? If the
bank fails to acquire the appropriate locks, it might have race
conditions updating the same accounts from different threads.
However, separation logic rules prevent this: accessing a key-
value pair in vKV requires ownership of the corresponding
points-to resource for that key. The bank has exactly one
points-to resource for every key, and that resource is stored in
the lock service. Thus, if the bank does not acquire the lock

16



for an account, it will not have the resource needed to allow
its proof to access the balance.

5 Developing Grove proofs
A major benefit of Grove’s use of concurrent separation logic
is that it allows proving each function—and even each line
of code—in isolation, without explicitly considering the in-
terleavings due to concurrency, crashes, recovery, etc. This
not only allows incrementally proving a single library, but
also enables combining the proofs of multiple components or
functions into a single proof for the composed system.

Composability of proofs is a powerful property that is not
true in the general case. For example, if a system is running
both a key-value service and a lock service, the key-value
library might inadvertently send a message to the lock service
that causes it to release a lock, thereby invalidating its proofs.
As another example, if the developer adds a new RPC method
to a key-value server, and this RPC incorrectly updates data
structures used by other RPCs, adding this RPC would in-
validate the proofs of existing RPC methods. Concurrent
separation logic enforces ownership rules to ensure that all
verified code is “well-behaved” in a way that avoids problems
like the above, and allows for sound composition.

The rest of this section presents several case studies that
illustrate the benefits of concurrent separation logic in Grove.

5.1 Proving top-level spec for vKV
The top-level theorems for vKV are specifications for the
top-level functions:

1. The replica server main() function is crash-idempotent [7,
43]. This covers the execution of any code invoked by
main(), including any RPC handlers that main() sets up.

2. Reconfigure(newServers) is always safe to run, if
newServers are all valid replica servers.

3. MakeClerk(configAddrs) correctly initializes a clerk, if
configAddrs are the addresses of the configservice.

4. A clerk’s Put(k,v), Get(k), and CondPut(k,e,v) func-
tions behave as though accessing a local in-memory key-
value map with linearizable operations.

Proving these theorems involves proving specs for func-
tions in vKV one-by-one, using specs for lower-level compo-
nents to verify higher-level code, culminating in a proof of the
top-level functions. A client application that uses vKV (e.g.
the bank) can then be verified by applying these theorems to
reason about Put and Get calls.

5.2 Evolving vKV to add leases
We originally built and verified the vRSM library and vKV
without leases. This original version executed Get operations
as a read-write operation; that is, by replicating the Get op-
eration to the primary and all backups (including waiting for
the replicas before replying to the client).

We later decided to improve performance of read-only op-
erations by adding leases. This involved several changes: (1)
adding GetLease to the configuration service and making sure
other RPCs wait for any outstanding leases to expire before
advancing the epoch number; (2) adding ApplyReadonly to
the vRSM library as well as a helper thread on each replica
that extends its lease with the GetLease RPC; (3) propagat-
ing the number of committed operations from the primary to
the backups; (4) introducing VersionedStateMachine as the
vRSM library’s interface to allow some reads to happen with-
out waiting for ongoing writes to finish; and (5) bypassing
the exactly-once operations library for read-only operations.

In the proof before adding leases, the configuration service
always owned the epoch number and could always advance
it. With leases, ownership may reside in a time-bounded in-
variant, so the proof now must establish ownership by using
the fact that the code checks for lease expiration, which al-
lows the proof to use the time-bounded invariant expiration
rule from 3.4. To reason about linearizability of lease-based
reads from replica servers, the proof of the primary/backup
replication and reconfiguration protocol remained the same,
but we added a new proof on top that shows that ownership
of the current epoch means any replica’s state is at least as
up-to-date as the committed operations.

5.3 Evolving configservice to use paxos E
We originally built and verified vRSM with an in-memory
and unreplicated configservice. This original version was
not fault-tolerant, and the previous top-level theorems of vKV
assumed that the sole configservice server never crashes and
restarts. To improve the fault tolerance of the overall vRSM
system, we implemented the paxos library and modified the
configservice to use paxos to manage state.

The proof of paxos borrows heavily from the proof of pri-
mary/backup replication and reconfiguration. We started by
making a copy of the proof of the primary/backup replication
protocol, then modified key invariants to make them quorum-
based (such as the replication invariant described in §4.6),
and finally reproved many of the same lemmas against these
modified invariants.

The old configservice used a lock to coordinate con-
current RPCs accessing the configuration state. The new
paxos-based configservice replaces those Lock and Unlock
calls with calls to paxos.Begin and commit respectively, with
additional error handling since commit can fail. Across
this change, configservice’s clerk API and specification
(Figure 5) remained unchanged, except for clerks now tak-
ing multiple network addresses as input for the multiple
configservice servers. Since the proofs of other compo-
nents that use configservice depend only on the specifi-
cation of configservice—and not on how that specifica-
tion is proven—those proofs also still worked without major
changes. For instance, the new proof of replica differs from
the old proof by 18 lines added and 4 lines changed, which

17



were largely needed because replica servers now take as
input a list of multiple network addresses used to contact the
configservice instead of a single address.

5.4 Line-by-line reasoning E
A developer in Grove can verify each component’s imple-
mentation line-by-line. Instead of having to explicitly worry
about interleavings and interactions (like the mover reason-
ing in IronFleet [21], CSpec [6], and Armada [35]), Grove’s
resources (either owned by specific threads or by specific
invariants) indirectly constrain how different components can
interact with one another.

For example, the proofs of different functions shown in
§4.1, §4.2, and §4.3 form a proof about the combined system,
without any explicit consideration of how these functions
(Apply, Reconfigure, and ApplyReadonly) will interleave.
The proof of Apply (§4.1) uses the Irep invariant, and the
proof of ApplyReadonly also uses the same invariant, yet the
two proofs do not explicitly reason about each other (and
moreover, the proof of Apply does not even know about the
existence of the time-bounded lease invariant). Although
the proofs are independent, they nonetheless cover all of the
possible interactions in the resulting system.

5.5 Separate proofs of components E
The bank exemplifies how Grove enables verifying crash-safe,
high-performance, distributed applications out of individual
verified components. The bank code and proof refer only to
the simple interfaces and specifications provided by the vKV
and lock service clerks. Despite that, the bank’s specification
provides a strong guarantee in the face of crashes, reconfig-
urations, concurrency, network partitions, loosely-coupled
clocks, etc. Grove’s modular specs and proofs also allow
concurrent development and replacement of components: the
bank application developer can write and prove their code
in parallel with the vKV developers, once they agree on the
specification for the vKV interface, and similarly, vKV’s im-
plementation can be replaced with a different key-value store
(e.g., using Raft [40]) as long as it satisfies the same API spec.

6 Implementation
Grove is implemented by extending Perennial [7], which is
based on Iris [25, 26, 31] and Coq [45]. Grove inherits reason-
ing principles for concurrent Go code from Perennial, inherits
general support for interactive separation logic reasoning and
ghost resources from Iris, and adds support for distributed
systems with new reasoning principles for the network, clock,
and independent node crashes. Grove’s extensions to Peren-
nial involved 1,597 lines of Coq proof for new reasoning
principles, along with other hard-to-quantify minor changes
throughout Perennial. Grove comes with a distributed com-
position soundness theorem, which proves correctness of
Grove’s reasoning principles by showing that they imply a
simple statement about the behavior of the distributed system
under Grove’s execution model.

Component Code Spec and Proof

bank 99 799
lockservice 19 133
cachekv 86 569
vKV 233 1,574
exactlyonce 127 2,272
clerk 146 935
storage 227 3,057
configservice 200 2,797
paxos 492 5,600
reconfig 65 817
replica 578 8,093
Time-bounded invariants – 168
rpc 163 1,263
Network library 120 Trusted
Filesystem library 50 Trusted

Total 2,605 –
Total verified 2,435 28,077

Figure 17: Lines of Go code and Coq spec/proof for the verified components.

Figure 17 shows the breakdown of code and proof for the
different components. The top-level specification of the bank,
which builds on most of the other components, is 52 lines. The
specification for vKV, consisting of the four parts described in
§5.1, is 49 lines. We confirm that the proof is complete using
Print Assumptions in Coq. Across the different components,
verification required 12× the lines of proof as lines of code,
which is comparable to other concurrent and distributed sys-
tems verification projects: IronFleet’s overhead is slightly
lower [21] (and IronFleet also includes a proof of liveness,
though it does not handle thread concurrency, leases, crashes,
or reconfiguration), but GoJournal’s is slightly higher [8].
One conclusion is that verifying a complete distributed sys-
tem, such as vKV, which handles node-local concurrency,
crash recovery, leases, and reconfiguration, did not come at
the cost of an inflated proof overhead.

7 Evaluation
To demonstrate that Grove is capable of verifying realistic
high-performance distributed systems, this section experi-
mentally demonstrates that the vKV prototype, which we
verified using Grove, is able to achieve high performance.
We also demonstrate that leases are particularly important for
achieving high performance for reads in vKV.

Experimental setup. To evaluate vKV’s performance, we
use 8 CloudLab servers, with up to 3 for replicas, 4 for clients,
and 1 for the configuration service. Each machine has an Intel
Xeon CPU E5-2630v3 2.4GHz processor with 8 cores, 64GB
of RAM, an Intel 200GB 6Gb/s SSD (SSDSC2BX200G4R)
for storage, and an I350 Gigabit network card.

We generate requests using YCSB [12] with uniformly
random keys and 128-byte values. Clients run in a closed
loop, issuing a new request as soon as the previous request

18



completes; for each data point, we warm up the system for
20 seconds and then measure the performance for 1 minute.
To measure throughput, we keep increasing the number of
clients until the total throughput of all of the clients stops
growing.

Baseline performance. To demonstrate that vKV achieves
good performance, we compare with Redis. Redis is a widely-
used high-performance key-value server, written in C. Redis
targets somewhat different goals than vKV (it is designed to
run on a single core, it does not support synchronous replica-
tion or live reconfiguration, etc), but it nonetheless provides
a reference point in terms of absolute performance for a key-
value store. To make Redis comparable to vKV in terms of
its guarantees, we run Redis with the appendfsync always
option to ensure it made changes durable before replying,
and we run vKV on a single core (disabling all other cores
in Linux) and with no backup replicas. Note that Redis does
not implement exactly-once semantics for its operations (if a
write gets retransmitted, it may end up being executed twice),
whereas vKV stores a 16-byte request ID for each operation.

Figure 18 compares the performance of vKV with that of
Redis. We report the mean of 10 runs; Redis’s standard devia-
tion is 1–2%, and vKV’s is 7–11%, due to the high variance of
the Go runtime when running on a single core. When running
on multiple cores, vKV achieves higher throughput—e.g.,
5.1× on 8 cores for YCSB 5% writes, with minimal perfor-
mance variability. The results show that vKV’s throughput is
67–73% of Redis’s, and its request latency is comparable.

Benchmark Redis vKV

Throughput for YCSB 100% writes 99,066 req/s 67,360 req/s
Throughput for YCSB 50% writes 107,028 req/s 75,174 req/s
Throughput for YCSB 5% writes 118,594 req/s 87,634 req/s
Read latency under low load 81 us 126 us
Write latency under low load 538 us 603 us

Figure 18: Throughput and latency of vKV compared to Redis.

Reconfiguration. To demonstrate that vKV can recover from
server failures by reconfiguring the system to add new servers,
all while continuing to correctly handle client requests, we
run a two-server configuration of vKV. At 10 seconds into the
experiment, the primary server is killed, and reconfiguration
starts (changing to a new primary and a new backup server).
We use a variation of the YCSB workload, with 100 clients
always issuing writes, and 100 clients always issuing reads
(rather than each client issuing a mix). This is because, during
reconfiguration, writes block if one of the servers is sealed
(which would ultimately cause all clients to block if they were
issuing reads and writes), but reads can proceed (so clients
that never issue writes can proceed).

Figure 19 shows the observed throughput by the read and
write clients over time during this experiment. The results

show that vKV can continue serving reads while reconfig-
uring. When the primary is initially killed, read throughput
dips while clients with outstanding read requests sent to the
primary wait to discover their connection is closed and while
the remaining backup server marshals its key-value state to
be sent to the new servers. After the backup is done marshal-
ing its state, and after the clients connect to the backup and
retransmit their requests, reads recover some of the through-
put. Reads do not recover to their original throughput be-
cause of stuck reads: for a client that tries to read one of
the keys whose write was in flight when the primary was
killed, waitForCommitted returns only after reconfiguration,
because the old primary did not commit those writes before
being killed (and the backup doesn’t know yet that those
writes will not be committed by the primary). As more read
clients get stuck, read throughput starts declining again. After
the state is transferred to new servers (copying 1M key-value
pairs, each 128 bytes long), the system switches to the new
configuration and resumes executing reads and writes (includ-
ing all previously-stuck operations). Most of the reconfigura-
tion time is spent marshalling the state and sending it to new
servers via the reconfiguration process, (∼4 seconds in total).

0 5 10 15 20 25 30
0k

50k

100k

Time (s)

T
hr

ou
gh

pu
t(

re
q/

s) reads
writes

Figure 19: Throughput over time (averaged over 0.5 second time slices),
with the primary crashing at 10 seconds, followed immediately by a recon-
figuration to a new primary and backup.

1 2 3
0k

200k
400k
600k
800k

1,000k
1,200k
1,400k

Number of servers

T
hr

ou
gh

pu
t(

re
q/

s)

0%
5%

50%
100%

Figure 20: Peak throughput of vKV with increasing number of servers,
labeled by the percentage of write operations.

Read performance with leases. Figure 20 shows vKV’s
throughput for different workloads as more replicas are added.
For write-heavy workloads (50% or 100% writes), adding
replicas reduces performance because writes encounter more
overhead at the primary server, and there are not enough reads
handled by other replicas to offset the costs. For read-heavy
workloads, adding replicas improves performance—e.g., for

19



YCSB 5% and 0% writes, 3 servers achieve 1.7× and 2.3×
the throughput of a single server, respectively.

8 Related work
Grove is the first to support verifying distributed systems
with thread- and node-level concurrency, crash recovery with
durable state, time-based leases, and reconfiguration. Verify-
ing all of these aspects in a single framework is critical be-
cause subtle bugs can occur due to interactions between these
features. vKV, a realistic replicated key-value store, demon-
strates the benefits of Grove’s modular reasoning by proving
the correctness of its primary/backup replication, durable
storage, reconfiguration, concurrency, and leases. vKV’s de-
sign is not novel, but rather a case study of what it takes to
build a fault-tolerant primary-backup replication system. In
doing so, it captures key challenges in state-of-the-art (un-
verified) distributed systems with primary/backup replication
and a configuration service for reconfiguration, such as Chain
Replication [46], FaRM [14], Boxwood [37], Bigtable [9],
Megastore [3], FoundationDB [48], Kafka [28], and Tuba [2].

Concurrent separation logic for distributed systems.
Broadly similar to our work, Disel [42] and Aneris [17, 32]
also use concurrent separation logic in the context of dis-
tributed systems. However, neither Disel nor Aneris provide
support for reasoning about time-based leases or recovery
from crashes, and they have not been used to verify a system
with reconfiguration. These restrictions limit the distributed
systems they can reason about. For example, Gondelman et al.
[18] use Aneris to verify an eventually-consistent primary-
backup key-value store. However, that system does not sup-
port reconfiguration, so if the primary fails, the system cannot
process any further writes. Furthermore, writes are only lazily
copied to replicas for availability, and thus reads from replicas
may return stale values. vKV uses a combination of reconfig-
uration and leases for availability when a primary fails, while
also guaranteeing that reads from replicas are up-to-date.

State-machine refinement. An alternative approach to ver-
ifying distributed systems is to prove refinements from a
high-level protocol description down to executable code, as in
IronFleet [21], Verdi [47], and IronSync [20]. However, these
systems do not reason about time-based leases, reconfigura-
tion, or node recovery. State machines also make it challeng-
ing to compose larger systems out of smaller components,
which features extensively in our case study. IronSync [20]
shows how to bring some benefits of ownership-based reason-
ing to state-machine approaches, but at a coarse granularity.

Distributed system abstractions. Adore [22] proposes an
abstraction for reasoning about reconfiguration for replicated
state machine protocols, such as Raft. vKV’s primary/backup
replication and reconfiguration uses a configuration service
to simplify the protocol, but verifies many of the same issues,
such as concurrent request execution during reconfiguration.

vKV also handles interactions between reconfiguration and
crashes, recovery, leases, and thread-level concurrency, which
the Adore abstraction does not directly address.

Protocol reasoning. TLA+ [33, 34] provides a modeling lan-
guage for concisely describing distributed protocols, which
can then be model-checked or interactively verified. In other
tools, constraining the modeling language used for expressing
protocols enables automatic or semi-automatic proofs of cor-
rectness, such as ByMC [30], Ivy [38, 41], and I4 [36] and its
follow-ons. Although protocol verification can ensure the ab-
sence of bugs in the protocol design, many bugs in distributed
systems only manifest at the level of implementations, and so
fall outside the scope of protocol verification. Grove aims to
verify implementations of systems to address these bugs.

9 Conclusion
Grove is a library for verifying distributed systems using
concurrent separation logic (CSL). Grove generalizes CSL
to support distributed systems with RPCs, leases, replication,
reconfiguration, and crash recovery. We demonstrate Grove
by implementing and verifying a range of distributed system
components, such as primary-backup replication, locking,
client caching, and a configuration service. Verifying these
components in Grove eliminates broad classes of bugs, and
comes with a 12× proof-to-code ratio, in line with previous
efforts to verify concurrent and distributed systems. vKV,
a key-value store built out of these components, supports
primary-backup replication and reconfiguration, achieves 67-
73% the throughput of Redis on a single core, and scales read
throughput with more replicas due to its use of leases.

Acknowledgments
Thanks to the anonymous reviewers, Jay Lorch, members of
the MIT PDOS group, and our shepherd, Chris Hawblitzel, for
feedback that improved this paper. This work was supported
by NSF awards CCF-2123864 and CCF-2318722.

References
[1] Martín Abadi and Leslie Lamport. The existence of

refinement mappings. In Proceedings of the 3rd Annual
IEEE Symposium on Logic in Computer Science, pages
165–175, Edinburgh, Scotland, July 1988.

[2] Masoud Saeida Ardekani and Douglas B. Terry. A self-
configurable geo-replicated cloud storage system. In
Proceedings of the 11th USENIX Symposium on Op-
erating Systems Design and Implementation (OSDI),
Broomfield, CO, October 2014.

[3] Jason Baker, Chris Bond, James C. Corbett, JJ Fur-
man, Andrey Khorlin, James Larson, Jean-Michel Leon,
Yawei Li, Alexander Lloyd, and Vadim Yushprakh.
Megastore: Providing scalable, highly available storage

20



for interactive services. In Proceedings of the 5th Con-
ference on Innovative Data Systems Research (CIDR),
pages 223–234, Asilomar, CA, January 2011.

[4] Mike Burrows. The Chubby lock service for loosely-
coupled distributed systems. In Proceedings of the 7th
USENIX Symposium on Operating Systems Design and
Implementation (OSDI), Seattle, WA, November 2006.

[5] Keren Censor-Hillel, Erez Petrank, and Shahar Tim-
nat. Help! In Proceedings of the 2015 ACM SIGACT-
SIGOPS Symposium on Principles of Distributed Com-
puting (PODC), pages 241–250, Donostia-San Se-
bastián, Spain, July 2015.

[6] Tej Chajed, M. Frans Kaashoek, Butler Lampson, and
Nickolai Zeldovich. Verifying concurrent software us-
ing movers in CSPEC. In Proceedings of the 13th
USENIX Symposium on Operating Systems Design and
Implementation (OSDI), pages 307–322, Carlsbad, CA,
October 2018.

[7] Tej Chajed, Joseph Tassarotti, M. Frans Kaashoek, and
Nickolai Zeldovich. Verifying concurrent, crash-safe
systems with Perennial. In Proceedings of the 27th ACM
Symposium on Operating Systems Principles (SOSP),
pages 243–258, Huntsville, Ontario, Canada, October
2019.

[8] Tej Chajed, Joseph Tassarotti, Mark Theng, Ralf Jung,
M. Frans Kaashoek, and Nickolai Zeldovich. GoJournal:
a verified, concurrent, crash-safe journaling system. In
Proceedings of the 15th USENIX Symposium on Operat-
ing Systems Design and Implementation (OSDI), pages
423–439, Virtual conference, July 2021.

[9] Fay Chang, Jeffrey Dean, Sanjay Ghemawat, Wilson C.
Hsieh, Deborah A. Wallach, Mike Burrows, Tushar
Chandra, Andrew Fikes, and Robert E. Gruber. Bigtable:
A distributed storage system for structured data. In Pro-
ceedings of the 7th USENIX Symposium on Operating
Systems Design and Implementation (OSDI), Seattle,
WA, November 2006.

[10] Yun-Sheng Chang, Ralf Jung, Upamanyu Sharma,
Joseph Tassarotti, M. Frans Kaashoek, and Nickolai Zel-
dovich. Verifying vMVCC, a high-performance trans-
action library using multi-version concurrency control.
In Proceedings of the 17th USENIX Symposium on Op-
erating Systems Design and Implementation (OSDI),
Boston, MA, July 2023.

[11] Haogang Chen, Daniel Ziegler, Tej Chajed, Adam Chli-
pala, M. Frans Kaashoek, and Nickolai Zeldovich. Us-
ing Crash Hoare Logic for certifying the FSCQ file
system. In Proceedings of the 25th ACM Symposium
on Operating Systems Principles (SOSP), pages 18–37,
Monterey, CA, October 2015.

[12] Brian F. Cooper, Adam Silberstein, Erwin Tam, Raghu
Ramakrishnan, and Russell Sears. Benchmarking cloud
serving systems with YCSB. In Proceedings of the 1st
ACM Symposium on Cloud Computing (SOCC), pages
143–154, Indianapolis, IN, June 2010.

[13] James C. Corbett, Jeffrey Dean, Michael Epstein, An-
drew Fikes, Christopher Frost, JJ Furman, Sanjay Ghe-
mawat, Andrey Gubarev, Christopher Heiser, Peter
Hochschild, Wilson Hsieh, Sebastian Kanthak, Eugene
Kogan, Hongyi Li, Alexander Lloyd, Sergey Melnik,
David Mwaura, David Nagle, Sean Quinlan, Rajesh
Rao, Lindsay Rolig, Dale Woodford, Yasushi Saito,
Christopher Taylor, Michal Szymaniak, and Ruth Wang.
Spanner: Google’s globally-distributed database. In
Proceedings of the 10th USENIX Symposium on Op-
erating Systems Design and Implementation (OSDI),
Hollywood, CA, October 2012.

[14] Aleksandar Dragojević, Dushyanth Narayanan, Ed-
mund B. Nightingale, Matthew Renzelmann, Alex
Shamis, Anirudh Badam, and Miguel Castro. No com-
promises: distributed transactions with consistency,
availability, and performance. In Proceedings of the
25th ACM Symposium on Operating Systems Princi-
ples (SOSP), pages 54–70, Monterey, CA, October
2015.

[15] Mostafa Elhemali, Niall Gallagher, Nicholas Gordon,
Joseph Idziorek, Richard Krog, Colin Lazier, Erben Mo,
Akhilesh Mritunjai, Somu Perianayagam, Tim Rath,
Swami Sivasubramanian, James Christopher Sorenson
III, Sroaj Sosothikul, Doug Terry, and Akshat Vig. Ama-
zon DynamoDB: A scalable, predictably performant,
and fully managed NoSQL database service. In Proceed-
ings of the 2022 USENIX Annual Technical Conference,
Carlsbad, CA, July 2022.

[16] Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Le-
ung. The Google file system. In Proceedings of the
19th ACM Symposium on Operating Systems Princi-
ples (SOSP), Bolton Landing, NY, October 2003.

[17] Léon Gondelman, Simon Oddershede Gregersen, Abel
Nieto, Amin Timany, and Lars Birkedal. Distributed
causal memory: modular specification and verification
in higher-order distributed separation logic. In Pro-
ceedings of the 48th ACM Symposium on Principles of
Programming Languages (POPL), Virtual conference,
January 2021.

[18] Léon Gondelman, Jonas Kastberg Hinrichsen, Mário
Pereira, Amin Timany, and Lars Birkedal. Verifying
reliable network components in a distributed separation
logic with dependent separation protocols. In Proceed-
ings of the 28th ACM SIGPLAN International Confer-

21



ence on Functional Programming (ICFP), Seattle, WA,
September 2023.

[19] Cary G. Gray and David R. Cheriton. Leases: An effi-
cient fault-tolerant mechanism for distributed file cache
consistency. In Proceedings of the 12th ACM Sympo-
sium on Operating Systems Principles (SOSP), pages
202–210, Litchfield Park, AZ, December 1989.

[20] Travis Hance, Yi Zhou, Andrea Lattuada, Reto Acher-
mann, Alex Conway, Ryan Stutsman, Gerd Zellweger,
Chris Hawblitzel, Jon Howell, and Bryan Parno. Shard-
ing the state machine: Automated modular reasoning
for complex concurrent systems. In Proceedings of the
17th USENIX Symposium on Operating Systems Design
and Implementation (OSDI), Boston, MA, July 2023.

[21] Chris Hawblitzel, Jon Howell, Manos Kapritsos, Ja-
cob R. Lorch, Bryan Parno, Michael L. Roberts, Sri-
nath Setty, and Brian Zill. IronFleet: Proving practi-
cal distributed systems correct. In Proceedings of the
25th ACM Symposium on Operating Systems Princi-
ples (SOSP), pages 1–17, Monterey, CA, October 2015.

[22] Wolf Honore, Ji-Yong Shin, Jieung Kim, and Zhong
Shao. Adore: Atomic distributed objects with certified
reconfiguration. In Proceedings of the 43rd ACM SIG-
PLAN Conference on Programming Language Design
and Implementation (PLDI), San Diego, CA, June 2022.

[23] Bart Jacobs and Frank Piessens. Expressive modular
fine-grained concurrency specification. In Proceedings
of the 38th ACM Symposium on Principles of Program-
ming Languages (POPL), pages 271–282, Austin, TX,
January 2011.

[24] Cliff B. Jones. The role of auxiliary variables in the
formal development of concurrent programs. In A. W.
Roscoe, Cliff. B. Jones, and Kenneth R. Wood, editors,
Reflections on the Work of C. A. R. Hoare, pages 167–
187. Springer, 2010.

[25] Ralf Jung, David Swasey, Filip Sieczkowski, Kasper
Svendsen, Aaron Turon, Lars Birkedal, and Derek
Dreyer. Iris: Monoids and invariants as an orthogonal
basis for concurrent reasoning. In Proceedings of the
42nd ACM Symposium on Principles of Programming
Languages (POPL), Mumbai, India, January 2015.

[26] Ralf Jung, Robbert Krebbers, Jacques-Henri Jourdan,
Ales Bizjak, Lars Birkedal, and Derek Dreyer. Iris
from the ground up: a modular foundation for higher-
order concurrent separation logic. Journal of Functional
Programming, 28:e20, 2018.

[27] Ralf Jung, Rodolphe Lepigre, Gaurav Parthasarathy,
Marianna Rapoport, Amin Timany, Derek Dreyer, and

Bart Jacobs. The future is ours: prophecy vari-
ables in separation logic. In Proceedings of the 47th
ACM Symposium on Principles of Programming Lan-
guages (POPL), pages 45:1–45:32, New Orleans, LA,
January 2020.

[28] Apache Kafka. https://cwiki.apache.
org/confluence/display/kafka/kafka+
replication, 2013. Accessed: 2023-04-10.

[29] Thomas Kleymann. Hoare logic and auxiliary variables.
Formal Aspects of Computing, 11(5):541–566, Decem-
ber 1999.

[30] Igor Konnov and Josef Widder. ByMC: Byzantine
model checker. In Proceedings of the 8th International
Symposium on Leveraging Applications of Formal Meth-
ods, Verification, and Validation, pages 327–342, Li-
massol, Cyprus, November 2018.

[31] Robbert Krebbers, Amin Timany, and Lars Birkedal.
Interactive proofs in higher-order concurrent separation
logic. In Proceedings of the 44th ACM Symposium on
Principles of Programming Languages (POPL), pages
205–217, Paris, France, January 2017.

[32] Morten Krogh-Jespersen, Amin Timany, Marit Edna
Ohlenbusch, Simon Oddershede Gregersen, and Lars
Birkedal. Aneris: A mechanised logic for modular rea-
soning about distributed systems. In Proceedings of the
29th European Symposium on Programming (ESOP),
pages 336–365, Dublin, Ireland, April 2020.

[33] Leslie Lamport. The temporal logic of actions. ACM
Transactions on Programming Languages and Systems,
16(3):872–923, May 1994.

[34] Leslie Lamport. Specifying Systems, The TLA+ Lan-
guage and Tools for Hardware and Software Engineers.
Addison-Wesley, 2002. ISBN 0-3211-4306-X.

[35] Jacob R. Lorch, Yixuan Chen, Manos Kapritsos, Bryan
Parno, Shaz Qadeer, Upamanyu Sharma, James R.
Wilcox, and Xueyuan Zhao. Armada: Low-effort ver-
ification of high-performance concurrent program. In
Proceedings of the 41st ACM SIGPLAN Conference
on Programming Language Design and Implementa-
tion (PLDI), pages 197–210, London, United Kingdom,
June 2020.

[36] Haojun Ma, Aman Goel, Jean-Baptiste Jeannin, Manos
Kapritsos, Baris Kasikci, and Karem A. Sakallah. I4:
Incremental inference of inductive invariants for ver-
ification of distributed protocols. In Proceedings of
the 27th ACM Symposium on Operating Systems Prin-
ciples (SOSP), Huntsville, Ontario, Canada, October
2019.

22

https://cwiki.apache.org/confluence/display/kafka/kafka+replication
https://cwiki.apache.org/confluence/display/kafka/kafka+replication
https://cwiki.apache.org/confluence/display/kafka/kafka+replication


[37] John MacCormick, Nick Murphy, Marc Najork, Chan-
dramohan A. Thekkath, and Lidong Zhou. Boxwood:
Abstractions as the foundation for storage infrastruc-
ture. In Proceedings of the 6th USENIX Symposium on
Operating Systems Design and Implementation (OSDI),
pages 105–120, San Francisco, CA, December 2004.

[38] Kenneth L. McMillan and Oded Padon. Ivy: A multi-
modal verification tool for distributed algorithms. In
Proceedings of the 32nd International Conference on
Computer Aided Verification (CAV), pages 190–202, Los
Angeles, CA, July 2020.

[39] Peter W. O’Hearn. Resources, concurrency, and local
reasoning. Theoretical Computer Science, 375(1):271–
307, 2007.

[40] Diego Ongaro and John Ousterhout. In search of an
understandable consensus algorithm. In Proceedings of
the 2014 USENIX Annual Technical Conference, pages
305–319, Philadelphia, PA, June 2014.

[41] Oded Padon, Giuliano Losa, Mooly Sagiv, and Sharon
Shoham. Paxos made EPR: decidable reasoning about
distributed protocols. In Proceedings of the 32nd An-
nual ACM Conference on Object-Oriented Program-
ming, Systems, Languages, and Applications (OOPSLA),
pages 108:1–108:31, Vancouver, Canada, October 2017.

[42] Ilya Sergey, James R. Wilcox, and Zachary Tatlock.
Programming and proving with distributed protocols. In
Proceedings of the 45th ACM Symposium on Principles
of Programming Languages (POPL), pages 28:1–28:30,
Los Angeles, CA, January 2018.

[43] Upamanyu Sharma. Modular verification of distributed
systems with Grove. Master’s thesis, Massachusetts
Institute of Technology, Department of Electrical Engi-
neering and Computer Science, September 2022.

[44] Upamanyu Sharma, Ralf Jung, Joseph Tassarotti,
M. Frans Kaashoek, and Nickolai Zeldovich. Grove:
a separation-logic library for verifying distributed sys-
tems. In Proceedings of the 29th ACM Symposium on
Operating Systems Principles (SOSP), Koblenz, Ger-
many, October 2023.

[45] The Coq Development Team. The Coq Proof Assistant,
version 8.17.1, June 2023. URL https://doi.org/
10.5281/zenodo.8161141.

[46] Robbert van Renesse and Fred B. Schneider. Chain
replication for supporting high throughput and availabil-
ity. In Proceedings of the 6th USENIX Symposium on
Operating Systems Design and Implementation (OSDI),
San Francisco, CA, December 2004.

[47] James R. Wilcox, Doug Woos, Pavel Panchekha,
Zachary Tatlock, Xi Wang, Michael D. Ernst, and
Thomas Anderson. Verdi: A framework for imple-
menting and formally verifying distributed systems. In
Proceedings of the 36th ACM SIGPLAN Conference
on Programming Language Design and Implementa-
tion (PLDI), pages 357–368, Portland, OR, June 2015.

[48] Jingyu Zhou, Meng Xu, Alexander Shraer, Bala Nama-
sivayam, Alex Miller, Evan Tschannen, Steve Ather-
ton, Andrew J. Beamon, Rusty Sears, John Leach,
Dave Rosenthal, Xin Dong, Will Wilson, Ben Collins,
David Scherer, Alec Grieser, Young Liu, Alvin Moore,
Bhaskar Muppana, Xiaoge Su, and Vishesh Yadav.
FoundationDB: A distributed unbundled transactional
key value store. In Proceedings of the 2021 ACM SIG-
MOD International Conference on Management of Data,
pages 2653–2666, Virtual conference, June 2021.

23

https://doi.org/10.5281/zenodo.8161141
https://doi.org/10.5281/zenodo.8161141

	Introduction
	Motivating case studies
	RPC library
	Replicated state machine library
	replica server: replicating writes
	reconfig using configservice
	replica server: lease-based reads
	storage library for replicas [E]
	Fault-tolerant configservice using paxos [E]
	Versioned state machine API [E]
	vRSM clerk [E]
	exactlyonce library [E]

	Applications on top of vRSM
	vKV
	Lease-based client-side caching
	Lock service [E]
	Bank transactions [E]


	Grove
	Execution model
	Separation logic for distributed systems
	Ownership reasoning
	Ghost resources
	Invariants

	Reasoning about RPCs
	Reasoning about leases
	Reasoning about clocks
	Reasoning about exactly-once operations [E]
	Linearizing read operations [E]
	Reasoning about crashes [E]

	How Grove rules out bugs
	Primary replica server
	Reconfiguration
	Lease-based reads
	Client cache consistency with leases
	Versioning read-only operations [E]
	Application state consistency in paxos [E]
	Bank transactions [E]

	Developing Grove proofs
	Proving top-level spec for vKV
	Evolving vKV to add leases
	Evolving configservice to use paxos [E]
	Line-by-line reasoning [E]
	Separate proofs of components [E]

	Implementation
	Evaluation
	Related work
	Conclusion

