
Lec 6: MapReduce Q&A
03/04/2021

Agenda

1. Lab1 solution walkthrough

2. Some alternative solution designs

3. Design mistakes and bugs

4. General tips

5. Q&A (submitted + any other questions you have!)

Code Walkthrough

1. Implement RPC structs

2. Write coordinator handers for RPCs

3. Create worker loop to send out GetTask RPCs and handle replies

4. Write worker helper functions to handle temporary/intermediate files

5. Implement worker map

6. Implement worker reduce

7. Create coordinator loop to handle requests and assign tasks

Alternative Synchronization Designs

● Wait in worker instead of coordinator
○ Sleep every loop if no task is available
○ Pros/Cons?

● Use time.Sleep() in coordinator instead of CondVar

● Channels (which actually are built using locks!)

Note: Waiting for map tasks to be done/synchronization is on a single server
(cross-server communication only done by RPC!)

● Pushing too much work to the coordinator
○ Coordinator sorts results
○ Coordinator reads file contents

● Sending redundant RPCs

Common (but Passing) Design Mistakes

Interesting Bugs?

General Tips

● Printfs for debugging:
○ Conditional Printf (see DPrintf in raft/utils.go)
○ Formatting tricks: color scheme for RPCs, columns, server IDs
○ Redirect output to file (command &> debug_output.txt)

● Type Ctrl-\ to kill a program and dump all its goroutine stacks

● Defers pushed onto stack, executed in FIFO order when fxn returns
mu.Lock()
defer mu.Unlock()
defer FxnToRunBeforeUnlock()

Your questions!

MapReduce Questions

● MapReduce seems fairly easy to use for counting
and sorting; what are some more complex tasks?

○ Many data mining, ML tasks (see Hadoop apps)
○ Anything that takes local computed statistics and

computes a global statistic over them

● Can we use Raft or something similar to make
the coordinator fault-tolerant?

○ Yes… but simpler to checkpoint progress

https://cwiki.apache.org/confluence/display/HADOOP2/PoweredBy

● When does the shuffle (combiner) step happen, and what does it do?
○ Combining occurs at map (e.g., summing up word counts), result written to intermediate file

○ Sorting occurs at reduce after all (potentially combined) outputs from map are read by reducer

● Is there a successor to MapReduce that doesn't splitting a task to map and
reduce phases, or has looser requirements?

○ Google Cloud Dataflow (user-specified directed computation graph and application code for
individual nodes, execution plan dataflow graph)

● How are inputs partitioned in practice?
○ Natural divisions, or split into reasonable sizes of work (map task latency)

○ Up to programmer to specify

MapReduce Questions

https://cloudplatform.googleblog.com/2014/06/reimagining-developer-productivity-and-data-analytics-in-the-cloud-news-from-google-io.html

MapReduce Questions

● Why do mappers store files locally and not on GFS?
○ As the paper states: Network bandwidth is a relatively scarce resource in our computing

environment. We conserve network bandwidth by taking advantage of the fact that the input
data (managed by GFS) is stored on the local disks of the machines

● Are leaders necessary to have for distributed systems?
○ No, think of Bitcoin → decentralized

● Running MR on distributed servers---how?
○ Set up your RPCs to communicate over TCP/IP instead of than Unix sockets (see commented

out line in Coordinator.server())
○ Read/write files using a shared file system (ssh into multiple Athena cluster machines at MIT,

which use AFS to share files; or you could rent a couple AWS instances and use S3 for
storage)

Code Design

● How to organize massive pieces of code? (e.g., for lab 2)

○ Separate by RPC sender+handler (use different files)

○ Put all definitions of state (structs) together

○ Factor out common pieces of code into functions (e.g., checking for stale term)

○ Good environment (vim + ctags, autocomplete, keyword search etc.) can help a lot!

● Has using Go for labs decreased the amount of time students spend
debugging compared to C++?

○ Go uses garbage collection! (How many of you ran into segfaults?)

● What is the difference between using a pointer and a value for the arguments
object to an RPC call?

○ Passing a reference can be cheaper (doesn’t require copying the struct to invoke RPC)

● Using both locks and channels possible?

○ Yes! You’ll do so in Raft too

● How to choose timeouts? How sensitive are tests to timeouts?

○ What is reasonable: want to allow for chance to receive RPCs from other servers, so has to be
greater than heartbeat; will likely need to experiment

Code Design

Implementation Questions

● Why do we have a timeout to retry failed tasks in the labs, instead backup
tasks as described in the MapReduce paper?

○ Paper describes timeouts are used to restart tasks when workers fail

○ Backup tasks as described are used to speed lagging tasks at the end of execution

○ Our design uses timeouts both to detect worker failure, and also to detect slow tasks!

● If the servers were not in the same machine, do you have to use different
synchronization approaches?

○ Nope! All synchronization is local; RPCs are used for cross-server communication

Implementation Questions

● What were common sources of race conditions?
○ Forgetting to lock/unlock; using a counter of number tasks completed, which might

accidentally count one task twice

○ Data races are undefined behavior! (Might seem benign, but you should handle them)

● What is a clean way to exit the workers and coordinator?
○ Send an “Exit” RPC from coordinator to worker as final response to GetTask RPC

○ Messy exit ok?

● Where do unexpected EOF errors come from?
○ RPC Clients (workers) calling socket when coordinator has closed

○ https://github.com/golang/go/blob/master/src/net/rpc/client.go#L157

