
6.5840: Byzantine
Fault Tolerance

Lecture 22

Last week: security
Lecture 20: Fork Consistency → SUNDR

Lecture 21: Decentralized payments → Bitcoin

Last week: security
Lecture 20: Fork Consistency → SUNDR

Lecture 21: Decentralized payments → Bitcoin

• Can we replicate state in an open system?

• Solved problem thought to be impossible!

Last week: security
Lecture 20: Fork Consistency → SUNDR

Lecture 21: Decentralized payments → Bitcoin

• Can we replicate state in an open system?

• Solved problem thought to be impossible!

But, limitations…

• Throughput: ~1K txns/min Latency: ~1hr (6-block depth)

• No linearizability guarantee!

Idea: RSM? (Raft)
But Raft has a linearizability guarantee…

• When insufficient connections, wait to recover

Can we implement RSM with malicious replicas?

• Throughput: ~1K txns/min Latency: ~1hr (6-block depth)

• No linearizability guarantee!

Can we implement RSM with malicious replicas?

 “Byzantine”

•

Can we implement RSM with malicious replicas?

 “Byzantine”

•

Practical Byzantine Fault Tolerance
(Castro + Liskov ’99)

• “Academic problem” in 1999

• Ancestor of many of today’s cryptocurrency protocols

Can we implement RSM with malicious replicas?

 “Byzantine”

•

Practical Byzantine Fault Tolerance
(Castro + Liskov ’99)

Aside: About me

• Class project: Implement PBFT 
(6.5840 lab 5 final project)

• Job: Implement BFT protocol at company 
(Algorand, Inc.)

• Ph.D. project: Implement BFT without bugs 
(Formal verification with Frans + Nickolai Zeldovich)

PBFT solves harder
problem than Raft

Similar idea: RSM, but with malicious nodes

• Leaders ≈ Primaries

• Terms ≈ Views

• Timeouts

3.

PBFT solves harder
problem than Raft

Similar idea: RSM, but with malicious nodes

• Leaders ≈ Primaries

• Terms ≈ Views

• Timeouts

Additional ingredients needed

1. Authenticity of messages

2. More honest nodes

3. Leadership “fairness”

Protocol rules
Goal: RSM under the following assumptions

• Nodes

• Attacker controls f machines

• Detail: client honest in paper

• Cryptography protects messages of honest machines

• Network

• Attacker can reorder messages

• Attacker can delay messages for limited time (denial of service)

Protocol rules
Goal: RSM under the following assumptions Are these realistic?

• Nodes

• Attacker controls f machines

• Detail: client honest in paper

• Cryptography protects messages of honest machines

• Network

• Attacker can reorder messages

• Attacker can delay messages for limited time (denial of service)

Let’s build a PBFT

Start with one client

One-client protocol

For consistency and progress:

Can tolerate <N/3 faults! (i.e., N >= 3f+1)

Multiple clients?

Need to elect a primary

Problem: what if the primary is bad?

Bad primaries

These make PBFT expensive

Recovery example

Bad primaries impose
requirements

• Need to elect a good leader: all-to-all communication

• Prepare messages might be lost: new commit round

• New view messages must be justified: signature stapling

• Op executed ⇒  
Commit received by some node ⇒  
Prepares received by honest majority ⇒ 
View-change includes value ⇒ 
Future new-views include value ⇒

Additional details

• No value: use special value null

• Multiple views: new-view guaranteed to have max view
with 2f+1 prepares (ensures no commit missed)

• If timeout wrong, exponential backoff

• Subtle detail: Can timeout early with f+1 nodes

Extending from op to RSM

• (Like Raft): Primary pipelines many client requests

• Low- and high-water mark prevent sequence #
exhaustion

• Checkpoints allow log compaction (c.f. Raft)

• Clients get f+1 replies

Optimizations

• Hash of values (c.f. Bitcoin)

• Tentative replies

• Read-only operations: don’t need to hit log

• MACs vs. signatures

• Network NACKs

Questions

