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Abstract

First-generationµ-kernels have a reputation for being too
slow and lacking sufficient flexibility. To determine whether
L4, a lean second-generationµ-kernel, has overcome these
limitations, we have repeated several earlier experiments and
conducted some novel ones. Moreover, we ported the Linux
operating system to run on top of the L4µ-kernel and com-
pared the resulting system with both Linux running native,
and MkLinux, a Linux version that executes on top of a first-
generation Mach-derivedµ-kernel.

For L4Linux, the AIM benchmarks report a maximum
throughput which is only 5% lower than that of native Linux.
The corresponding penalty is 5 times higher for a co-located
in-kernel version of MkLinux, and 7 times higher for a user-
level version of MkLinux. These numbers demonstrate both
that it is possible to implement a high-performance conven-
tional operating system personality above aµ-kernel, and
that the performance of theµ-kernel is crucial to achieve this.

Further experiments illustrate that the resulting system is
highly extensible and that the extensions perform well. Even
real-time memory management including second-level cache
allocation can be implemented at user-level, coexisting with
L4Linux.

1 Introduction

The operating systems research community has almost com-
pletely abandoned research on system architectures that are
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based onpure µ-kernels, i. e. kernels that provide only ad-
dress spaces, threads and IPC, or an equivalent set of primi-
tives. This trend is due primarily to the poor performance ex-
hibited by such systems constructed in the 1980’s and early
1990’s. This reputation has not changed even with the advent
of fasterµ-kernels; perhaps because theseµ-kernel have for
the most part only been evaluated using microbenchmarks.

Many people in the OS research community have adopted
the hypothesis that the layer of abstraction provided by pure
µ-kernels is either too low or too high. The “too low” fac-
tion concentrated on the extensible-kernel idea. Mechanisms
were introduced to add functionality to kernels and their ad-
dress spaces, either pragmatically (co-location in Chorus or
Mach) or systematically. Various means were invented to
protect kernels from misbehaving extensions, ranging from
the use of safe languages [5] to expensive transaction-like
schemes [34]. The “too high” faction started building kernels
resembling a hardware architecture at their interface [12].
Software abstractions have to be built on top of that. It is
claimed thatµ-kernels can be fast on a given architecture but
cannot be moved to other architectures without losing much
of their efficiency [19].

In contrast, we investigate the pureµ-kernel approach by
systematically repeating earlier experiments and conducting
some novel experiments using L4, a second-generationµ-
kernel. (Most first-generationµ-kernels like Chorus [32]
and Mach [13] evolved from earlier monolithic kernel ap-
proaches; second-generationµ-kernels like QNX [16] and
L4 more rigorously aim at minimality and are designed from
scratch [24].)

The goal of this work is to show thatµ-kernel based sys-
tems are usable in practice with good performance. L4 is a
lean kernel featuring fast message-based synchronous IPC,
a simple-to-use external paging mechanism and a security
mechanism based on secure domains. The kernel imple-
ments only a minimal set of abstractions upon which oper-
ating systems can be built [22]. The following experiments
were performed:� A monolithic Unix kernel, Linux, was adapted to run

as a user-level single server on top of L4. This makes
L4 usable in practice, and gives us some evidence (at
least an upper bound) on the penalty of using a standard



OS personality on top of a fastµ-kernel. The perfor-
mance of the resulting system is compared to the native
Linux implementation and MkLinux, a port of Linux to
a Mach 3.0 derivedµ-kernel [10].

Furthermore, comparing L4Linux and MkLinux gives
us some insight in how theµ-kernel efficiency influ-
ences the overall system performance.� The objective of three further experiments was to
show the extensibility of the system and to evaluate
the achievable performance. Firstly, pipe-based local
communication was implemented directly on theµ-
kernel and compared to the native Linux implementa-
tion. Secondly, some mapping-related OS extensions
(also presented in the recent literature on extensible ker-
nels) have been implemented as user-level tasks on L4.
Thirdly, the first part of a user-level real-time memory
management system was implemented. Coexisting with
L4Linux, the system controls second-level cache alloca-
tion to improve the worst-case performance of real-time
applications.� To check whether the L4 abstractions are reasonably in-
dependent of the Pentium platform L4 was originally
designed for, theµ-kernel was reimplemented from
scratch on an Alpha 21164, preserving the original L4
interface.

Starting from the IPC implementation in L4/Alpha, we
also implemented a lower-level communication prim-
itive, similar to Exokernel’s protected control trans-
fer [12], to find out whether and to what extent the L4
IPC abstraction can be outperformed by a lower-level
primitive.

After a short overview of L4 in Section 3, Section 4 ex-
plains the design and implementation of our Linux server.
Section 5 then presents and analyzes the system’s perfor-
mance for pure Linux applications, based on microbench-
marks as well as macrobenchmarks. Section 6 shows the
extensibility advantages of implementing Linux above aµ-
kernel. In particular, we show (1) how performance can be
improved by implementing some Unix services and variants
of them directly above the L4µ-kernel, (2) how additional
services can be provided efficiently to the application, and
(3) how whole new classes of applications (e. g. real time)
can be supported concurrently with general-purpose Unix
applications. Finally, Section 7 discusses alternative basic
concepts from a performance point of view.

2 Related Work

Most of this paper repeats experiments described by Bershad
et al. [5], des Places, Stephen & Reynolds [10], and En-
gler, Kaashoek & O’Toole [12] to explore the influence of
a second-generationµ-kernel on user-level application per-
formance. Kaashoeket al. describe in [18] how to build a

Unix-compatible operating system on top of a small kernel.
We concentrate on the problem of porting an existing mono-
lithic operating system to aµ-kernel.

A large bunch of evaluation work exists which addresses
how certain application or system functionality, e. g. a pro-
tocol implementation, can be accelerated using system spe-
cialization [31], extensible kernels [5, 12, 34], layered path
organisation [30], etc. Two alternatives to the pureµ-kernel
approach, grafting and the Exokernel idea, are discussed in
more detail in Section 7.

Most of the performance evaluation results published else-
where deal with parts of the Unix functionality. An analy-
sis of two complete Unix-like OS implementations regard-
ing memory-architecture-based influences, is described in
[8]. Currently, we do not know of any other full Unix
implementation on a second-generationµ-kernel. And we
know of no other recent end-to-end performance evaluation
of µ-kernel-based OS personalities. We found no substantia-
tion for the “common knowledge” that early Mach 3.0-based
Unix single-server implementations achieved a performance
penalty of only 10% compared to bare Unix on the same
hardware. For newer hardware, [9] reports penalties of about
50%.

3 L4 Essentials

The L4µ-kernel [22] is based on two basic concepts, threads
and address spaces. Athreadis an activity executing inside
an address space. Cross-address-space communication, also
called inter-process communication (IPC), is one of the most
fundamentalµ-kernel mechanisms. Other forms of commu-
nication, such as remote procedure call (RPC) and controlled
thread migration between address spaces, can be constructed
from the IPC primitive.

A basic idea of L4 is to support recursive construction
of address spacesby user-level servers outside the kernel.
The initial address spaceσ0 essentially represents the phys-
ical memory. Further address spaces can be constructed by
granting, mappingandunmappingflexpages, logical pages
of size 2n, ranging from one physical page up to a complete
address space. The owner of an address space can grant or
map any of its pages to another address space, provided the
recipient agrees. Afterwards, the page can be accessed in
both address spaces. The owner can also unmap any of its
pages from all other address spaces that received the page
directly or indirectly from the unmapper. The three basic
operations are secure since they work on virtual pages, not
on physical page frames. So the invoker can only map and
unmap pages that have already been mapped into its own ad-
dress space.

All address spaces are thus constructed and maintained by
user-level servers, also calledpagers; only the grant, map
and unmap operations are implemented inside the kernel.
Whenever a page fault occurs, theµ-kernel propagates it
via IPC to the pager currently associated with the faulting
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thread. The threads can dynamically associate individual
pagers with themselves. This operation specifies to which
user-level pager theµ-kernel should send the page-fault IPC.
The semantics of a page fault is completely defined by the
interaction of user thread and pager. Since the bottom-level
pagers in the resulting address-space hierarchy are in fact
main-memory managers, this scheme enables a variety of
memory-management policies to be implemented on top of
theµ-kernel.

I/O ports are treated as parts of address spaces so that they
can be mapped and unmapped in the same manner as mem-
ory pages. Hardware interrupts are handled as IPC. Theµ-
kernel transforms an incoming interrupt into a message to
the associated thread. This is the basis for implementing all
device drivers as user-level servers outside the kernel.

In contrast to interrupts, exceptions and traps are syn-
chronous to the raising thread. The kernel simply mirrors
them to the user level. On the Pentium processor, L4 mul-
tiplexes the processor’s exception handling mechanism per
thread: an exception pushes instruction pointer and flags on
the thread’s user-level stack and invokes the thread’s (user-
level) exception or trap handler.

A Pentium-specific feature of L4 is thesmall-address-
space optimization. Whenever the currently-used portion
of an address space is “small”, 4 MB up to 512 MB, this
logical space can be physically shared through all page ta-
bles and protected by Pentium’s segment mechanism. As
described in [22], this simulates a tagged TLB for context
switching to and from small address spaces. Since the vir-
tual address space is limited, the total size of all small spaces
is also limited to 512 MB by default. The described mech-
anism is solely used for optimization and does not change
the functionality of the system. As soon as a thread accesses
data outside its current small space, the kernel automatically
switches it back to the normal 3 GB space model. Within a
single task, some threads might use the normal large space
while others operate on the corresponding small space.

Pentium — Alpha — MIPS

Originally developed for the 486 and Pentium architecture,
experimental L4 implementations now exist for Digital’s Al-
pha 21164 [33] and MIPS R4600 [14]. Both new implemen-
tations were designed from scratch. L4/Pentium, L4/Alpha
and L4/MIPS are differentµ-kernels with the same logical
API. However, theµ-kernel-internal algorithms and the bi-
nary API (use of registers, word and address size, encoding
of the kernel call) are processor dependent and optimized
for each processor. Compiler and libraries hide the binary
API differences from the user. The most relevant user-visible
difference probably is that the Pentiumµ-kernel runs in 32-
bit mode whereas the other two are 64-bit-mode kernels and
therefore support larger address spaces.

The L4/Alpha implementation is based on a complete re-
placement of Digital’s original PALcode [11]. Short, time-
critical operations are hand-tuned and completely performed

in PALcode. Longer, interruptible operations enter PAL-
code, switch to kernel mode and leave PALcode to perform
the remainder of the operation using standard machine in-
structions. A comparison of IPC performance of the three
L4 µ-kernels can be found in [25].

4 Linux on Top of L4

Many classical systems emulate Unix on top of aµ-kernel.
For example, monolithic Unix kernels were ported to Mach
[13, 15] and Chorus [4]. Very recently, a single-server ex-
periment was repeated with Linux and newer, optimized ver-
sions of Mach [10].

To add a standard OS personality to L4, we decided to
port Linux. Linux is stable, performs well, and is on the way
to becoming ade-factostandard in the freeware world. Our
goal was a 100%-Linux-compatible system that could offer
all the features and flexibility of the underlyingµ-kernel.

To keep the porting effort low, we decided to forego any
structural changes to the Linux kernel. In particular, we felt
that it was beyond our means to tune Linux to ourµ-kernel
in the way the Mach team tuned their single-server Unix to
the features of Mach. As a result, the performance measure-
ments shown can be considered a baseline comparison level
for the performance that can be achieved with more signifi-
cant optimizations. A positive implication of this design de-
cision is that new versions of Linux can be easily adapted to
our system.

4.1 Linux Essentials

Although originally developed for x86 processors, the Linux
kernel has been ported to several other architectures, includ-
ing Alpha, M68k and SPARC [27]. Recent versions con-
tain a relatively well-defined interface between architecture-
dependent and independent parts of the kernel [17]. All in-
terfaces described in this paper correspond to Linux version
2.0.

Linux’ architecture-independentpart includes process and
resource management, file systems, networking subsystems
and all device drivers. Altogether, these are about 98% of the
Linux/x86 source distribution of kernel and device drivers.
Although the device drivers belong to the architecture-
independent part, many of them are of course hardware de-
pendent. Nevertheless, provided the hardware is similar
enough, they can be used in different Linux adaptions.

Except perhaps exchanging the device drivers, porting
Linux to a new platform should only entail changes to the
architecture-dependentpart of the system. This part com-
pletely encapsulates the underlying hardware architecture.
It provides support for interrupt-service routines, low-level
device driver support (e. g., for DMA), and methods for in-
teraction with user processes. It also implements switching
between Linux kernel contexts, copyin/copyout for transfer-
ring data between kernel and user address spaces, signal-
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ing, mapping/unmapping mechanisms for constructing ad-
dress spaces, and the Linux system-call mechanism. From
the user’s perspective, it defines the kernel’s application bi-
nary interface.

For managing address spaces, Linux uses a three-level
architecture-independent page table scheme. By defining
macros, the architecture-dependent part maps it to the under-
lying low-level mechanisms such as hardware page tables or
software TLB handlers.

Interrupt handlers in Linux are subdivided intotop halves
andbottom halves. Top halves run at the highest priority, are
directly triggered by hardware interrupts and can interrupt
each other. Bottom halves run at the next lower priority. A
bottom-half handler can be interrupted by top halves but not
by other bottom halves or the Linux kernel.

4.2 L4Linux — Design and Implementa-
tion

We chose to be fully binary compliant with Linux/x86. Our
test for compatibility was that any off-the-shelf software
for Linux should run on L4Linux. Therefore, we used all
application-binary-interface definition header files unmodi-
fied from the native Linux/x86 version.

In keeping with our decision to minimize L4-specific
changes to Linux, we restricted all our modifications to the
architecture-dependent part. Also, we restricted ourselves
from making any Linux-specific modifications to the L4µ-
kernel. Porting Linux was therefore also an experiment
checking whether performance can be achieved without sig-
nificantµ-kernel-directed optimizations in the Linux kernel,
and whether the L4 interface is truly general and flexible.

Under the constraints mentioned above, the natural solu-
tion is the straightforward single-server approach, similar to
[13]: µ-kernel tasks are used for Linux user processes and
provide Linux services via a single Linux server in a sepa-
rateµ-kernel task. This is indeed how we began our port.

The Linux Server (“Linux Kernel”). Native Linux
maps physical memory one-to-one to the the kernel’s address
space. We used the same scheme for the L4Linux server.
Upon booting, the Linux server requests memory from its
underlying pager. Usually, this isσ0, which maps the physi-
cal memory that is available for the Linux personality one-to-
one into the Linux server’s address space (see Figure 1). The
server then acts as a pager for the user processes it creates.

For security reasons, the true hardware page tables are
kept inside L4 and cannot be directly accessed by user-level
processes. As a consequence, the Linux server has to keep
and maintain additional logical page tables in its own ad-
dress space. For the sake of simplicity, we use the orig-
inal Pentium-adapted page tables in the server unmodified
as logical page tables. Compared to native Linux, this dou-
bles the memory consumption by page tables. Although cur-
rent memory pricing lets us ignore the additional memory

initial spaceσ0 (physical memory)

66666666666666Linux server

XXXXy @@@I ������������:user process

user process
user process

user process

Figure 1:L4Linux Address Spaces.Arrows denote mapping. The
Linux server space can be a subset ofσ0. Although plotted as smaller boxes,
the user address spaces can be larger than the server’s address space.

costs, double bookkeeping could decrease speed. However,
the benchmarks in Section 5 suggest that this is not a prob-
lem.

Only a single L4 thread is used in the L4Linux server
for handling all activities induced by system calls and page
faults. Linux multiplexes this thread to avoid blocking in
the kernel. Multithreading at the L4 level might have been
more elegant and faster. However, it would have implied a
substantial change to the original Linux kernel and was thus
rejected.

The native uniprocessor Linux kernel uses interrupt dis-
abling for synchronization and critical sections. Since L4
also permits privileged user-level tasks, e. g. drivers, to dis-
able interrupts, we could use the existing implementation
without modification.

Interrupt Handling and Device Drivers. The L4 µ-
kernel maps hardware interrupts to messages (Figure 2). The
Linux top-half interrupt handlers are implemented as threads
waiting for such messages, one thread per interrupt source:

interrupt handler thread:
do

wait for interrupt f L4-IPC g ;
top half interrupt handler ()

od .

Another thread executes all bottom halves once the pend-
ing top halves have been completed. Executing the interrupt
threads and the bottom-half thread on a priority level above
that of the Linux server thread avoids concurrent execution
of interrupt handlers and the Linux server, exactly as on na-
tive uniprocessor Linux.

interrupt
threadsbottom half threadthread

main

message
send

wakeup

L4
Interrupt

Device

Linux Server

Figure 2:Interrupt handling in L4Linux.
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Since the L4 platform is nearly identical to a bare Pentium
architecture platform, we reused most of the device driver
support from Linux/x86. As a result, we are able to employ
all Linux/x86 device drivers without modification.

Linux User Processes. EachLinux user processis im-
plemented as an L4 task, i. e. an address space together with
a set of threads executing in this space. The Linux server cre-
ates these tasks and specifies itself as their associated pager.
L4 then converts any Linux user-process page fault into an
RPC to the Linux server. The server usually replies by map-
ping and/or unmapping one or more pages of its address
space to/from the Linux user process. Thereby, it completely
controls the Linux user spaces.

In particular, the Linux server maps the emulation library
and the signal thread code (both described in the following
paragraphs) into an otherwise unused high-address part of
each user address space.

In accordance with our decision to keep Linux changes
minimal, the “emulation” library handles only communica-
tion with the Linux server and does not emulate Unix func-
tionality on its own. For example, agetpid or read system
call is always issued to the server and never handled locally.

System-Call Mechanisms. L4Linux system calls are
implemented using remote procedure calls, i. e. IPCs be-
tween the user processes and the Linux server. There are
three concurrently usable system-call interfaces:

1. a modified version of the standard shared C librarylibc.sowhich uses L4 IPC primitives to call the Linux
server;

2. a correspondingly modified version of thelibc.a li-
brary;

3. a user-level exception handler (“trampoline”) which
emulates the native system-call trap instruction by call-
ing a corresponding routine in the modified shared li-
brary.

The first two mechanisms are slightly faster, and the third
one establishes true binary compatibility. Applications that
are linked against the shared library automatically obtain the
performance advantages of the first mechanism. Applica-
tions statically linked against an unmodifiedlibc suffer the
performance degradation of the latter mechanism. All mech-
anisms can be arbitrarily mixed in any Linux process.

Most of the available Linux software is dynamically
linked against the shared library; many remaining programs
can be statically relinked against our modifiedlibc.a. We
consider therefore the trampoline mechanism to be necessary
for binary compatibility but of secondary importance from a
performance point of view.

As required by the architecture-independent part of Linux,
the server maps all available physical memory one-to-one
into its own address space. Except for a small area used

for kernel-internal virtual memory, the server’s virtual ad-
dress space is otherwise empty. Therefore, all Linux server
threads execute in a small address spaces which enables im-
proved address-space switching by simulating a tagged TLB
on the Pentium processor. This affects all IPCs with the
Linux server: Linux system calls, page faults and hardware
interrupts. Avoiding TLB flushes improves IPC performance
by at least a factor of 2; factors up to 6 are possible for user
processes with large TLB working sets.

The native Linux/x86 kernel always maps the current user
address space into the kernel space. Copyin and copyout are
done by simple memory copy operations where the required
address translation is done by hardware. Surprisingly, this
solution turned out to have bad performance implications un-
der L4 (see Section 4.3).

Instead, the L4Linux server uses physical copyin and copy-
out to exchange data between kernel and user processes.
For each copy operation, it parses the server-internal logical
page tables to translate virtual user addresses into the corre-
sponding “physical” addresses in the server’s address space,
and then performs the copy operation using the physical ad-
dresses.

Signaling. The native Linux kernel delivers signals to
user processes by directly manipulating their stack, stack
pointer and instruction pointer. For security reasons, L4 re-
stricts such inter-thread manipulations to threads sharing the
same address space. Therefore, an additional signal-handler
thread was added to each Linux user process (see Figure 3).
Upon receiving a message from the Linux server, the signal
thread causes the main thread (which runs in the same ad-
dress space) to save its state and enter Linux by manipulating
the main thread’s stack pointer and instruction pointer.

Linux Server

Linux User Process

(3)
Enter Linux

manipulate thread (2)user
thread

signal
thread

main
thread

resume (4) forward signal (1)

Figure 3:Signal delivery in L4Linux. Arrows denote IPC. Numbers
in parentheses indicate the sequence of actions.

The signal thread and the emulation library are not pro-
tected against the main thread. However, the user process
can only damage itself by modifying them. Global effects
of signaling, e. g. killing a process, are implemented by the
Linux server. The signal thread only notifies the user pro-
cess.

Scheduling. All threads mentioned above are scheduled
by the L4µ-kernel’s internal scheduler. This leaves the tra-
ditional Linuxschedule() operation with little work to do.
It only multiplexes the single Linux server thread across the
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multiple coroutines resulting from concurrent Linux system
calls.

Whenever a system call completes and the server’s
reschedule flag is not set (meaning there is no urgent need
to switch to a different kernel coroutine, or there is nothing
to do in the kernel), the server resumes the corresponding
user thread and then sleeps waiting for a new system-call
message or a wakeup message from one of the interrupt han-
dling threads.

This behaviour resembles the original Linux scheduling
strategy. By deferring the call toschedule() until a pro-
cess’ time slice is exhausted instead of calling it immediately
as soon as a kernel activity becomes ready, this approach
minimizes the number of coroutine switches in the server
and gives user processes the chance to make several system
calls per time slice without blocking.

However, there can be many concurrently executing user
processes, and the actual multiplexing of user threads to the
processor is controlled by the L4µ-kernel and mostly beyond
the control of the Linux server. Native L4 uses hard pri-
orities with round-robin scheduling per priority. User-level
schedulers can dynamically change priority and time slice of
any thread. The current version of L4Linux uses 10 ms time
slices and only 4 of 256 priorities, in decreasing order: inter-
rupt top-half, interrupt bottom-half, Linux kernel, Linux user
process. As a result, Linux processes are currently sched-
uled round robin without priority decay. Experiments using
more sophisticated user-level schedulers are planned, includ-
ing one for the classical Unix strategy.

Supporting Tagged TLBs or Small Spaces. TLBs
are becoming larger in order to hide the increasing costs
of misses relative to processor speed. Depending on the
TLB size, flushing a TLB upon address-space switch induces
high miss costs for reestablishing the TLB working set when
switching back to the original address space. Tagged TLBs,
currently offered by many processors, form the architectural
basis to avoid unnecessary TLB flushes. For the Pentium
processor, small address spaces offer a possibility to emu-
late TLB tagging. However, frequent context switches — in
the near future, we expect time slices in the order of 10µs
— can also lead to TLB conflicts having effects comparable
to flushes. Two typical problems: (1) due to extensive use
of huge libraries, the ‘hello-world’ program compiled and
linked in the Linux standard fashion has a total size of 80 KB
and needs 32 TLB entries to execute; (2) identical virtual al-
location of code and data in all address spaces maximizes
TLB conflicts between independent applications. In many
cases, the overall effect might be negligible. However some
applications, e. g., a predictable multi-media file system or
active routing, might suffer significantly.

Constructing small, compact, application-dependent
address-space layouts can help to avoid the mentioned con-
flicts. For this reason, L4Linux offers a special library per-
mitting the customization of the code and data used for com-

municating with the L4Linux server. In particular, the em-
ulation library and the signal thread can be mapped close to
the application instead of always mapping to the default high
address-space region. By using this library, special servers
can be built that can execute in small address spaces, avoid-
ing systematic allocation conflicts with standard Linux pro-
cesses, while nevertheless using Linux system calls. Exam-
ples of such servers are the pagers used for implementing the
memory operations described in Section 6.2.

4.3 The Dual-Space Mistake

In the engineering sciences, learning about mistakes and
dead ends in design is as important as telling success stories.
Therefore, this section describes a major design mistake we
made in an early version of L4Linux.

For each Linux process, native Linux/x86 creates a 4 GB
address space containing both the user space and the ker-
nel space. This makes it very simple for the Linux kernel
to access user data: address translation and page-fault sig-
naling are done automatically by the hardware. We tried
to imitate this approach by also mapping the current pro-
cess’ user address space into the Linux server’s address space
(Figure 4). The implementation using a user-level pager was
simple. However, we could not map multiple 2.5 GB Linux-
process spaces simultaneously into the server’s 3 GB address
space. Either the user-space mapping had to be changed on
each Linux context switch or the server space had to be repli-
cated. Since the first method was considered too expensive,
we ended up creating one server address space per Linux
process. Code and data of the server were shared through all
server spaces. However, the server spaces differed in their
upper regions which had mapped the respective Linux user
space.

L4 address space of Linux server

L4 address space of Linux user process

simple memory copy

Linux kernel
space Linux process space

Linux process space

Figure 4:Copyin/out using hardware address translation in
an early version of L4Linux. Arrows denote memory read/write op-
erations.

Replicating the server space, unfortunately, also required
replicating the server thread. To preserve the single-server
semantics required by the uniprocessor version of Linux, we
thus had to add synchronization to the Linux kernel. Syn-
chronization required additional cycles and turned out to be
nontrivial and error-prone.

Even worse, 3 GB Linux-server spaces made it impossible
to use the small-space optimization emulating tagged TLBs.
Since switching between user and server therefore always re-
quired a TLB flush, the Linux server had to re-establish its
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TLB working set for every system call or page fault. Corre-
spondingly, the user process was penalized by reloading its
TLB working set upon return from the Linux server.

We discarded this dual-space approach because it was
complicated and not very efficient;getpid took 18µs in-
stead of 4µs. Instead, we decided to use the single-space
approach described in Section 4.2: only one address space
per Linux user process is required and the server space is not
replicated. However, virtual addresses have to be translated
by software to physical addresses for any copyin and copyout
operation.

Ironically, analytical reasoning could have shown us prior
to implementation that the dual-space approach cannot out-
perform the single-space approach: a hardware TLB miss on
the Pentium costs about 25 cycles when the page-table en-
tries hit in the second-level cache because the Pentium MMU
does not load page-table entries into the primary cache. On
the same processor, translating a virtual address by soft-
ware takes between 11 and 30 cycles, depending on whether
the logical page-table entries hit in the first-level or in the
second-level cache. In general, hardware translation is nev-
ertheless significantly faster because the TLB caches trans-
lations for later reuse. However, the dual-space approach
systematically made this reuse for the next system call im-
possible: due to the large server address space, the TLB was
flushed every time the Linux-server was called.

4.4 The Resulting L 4Linux Adaption

Table 1 compares the source code size of the L4Linux adap-
tion with the size of the native Linux/x86 adaption and
the Linux kernel. Comment lines and blank lines are not
counted. 2000 lines of the original x86-dependent part could
be reused unchanged for the L4 adaption; 6500 new lines of
code had to be written. Starting from L4 and Linux, it took
about 14 engineer months to build the L4Linux system, to
stabilize it and to prepare the results presented in this paper.

lines of C code

Linux/x86 L4Linux

architecture 2,500 6,500
dependent 2,000 � 2,000
part 4,500 8,500

Linux kernel 105,000
drivers 232,700

Table 1:Source-code lines for Linux/x86 and L4Linux.

We appear to have been successful in our effort of achiev-
ing full Linux binary compatibility. We have used the sys-
tem as a development environment and regularly use such
applications as the X Window system, Emacs, Netscape and
X-Pilot. L4Linux appears to be stable, and, as we’ll show,
can run such extreme stress test as the AIM benchmark [2]
to completion.

5 Compatibility Performance

In this section, we discuss the performance of L4Linux from
the perspective of pure Linux applications. The conservative
criterion for accepting aµ-kernel architecture is that exist-
ing applications are not significantly penalized. So our first
question is� What is the penalty of using L4Linux instead of native

Linux?

To answer it, we ran identical benchmarks on native Linux
and on L4Linux using the same hardware. Our second ques-
tion is� Does the performance of the underlyingµ-kernel mat-

ter?

To answer it, we compare L4Linux to MkLinux [10], an
OSF-developed port of Linux running on the OSF Mach
3.0 µ-kernel. MkLinux and L4Linux differ basically in
the architecture-dependent part, except that the authors of
MkLinux slightly modified Linux’ architecture-independent
memory system to get better performance on Mach. There-
fore, we assume that performance differences are mostly due
to the underlyingµ-kernel.

First, we compare L4Linux (which always runs in user
mode) to the MkLinux variant that also runs in user mode.
Mach is known for slow user-to-user IPC and expensive user-
level page-fault handling [5, 21]. So benchmarks should re-
port a distinct difference between L4Linux and MkLinux if
the µ-kernel efficiency influences the whole system signifi-
cantly.

A faster version of MkLinux uses a co-located server run-
ning in kernel mode and executing inside theµ-kernel’s ad-
dress space. Similar to Chorus’ supervisor tasks [32], co-
located (in-kernel) servers communicate much more effi-
ciently with each other and with theµ-kernel than user-mode
servers do. However, in order to improve performance, co-
location violates the address-space boundaries of aµ-kernel
system, which weakens security and safety. So our third
question is� How much does co-location improve performance?

This question is evaluated by comparing user-mode L4Linux
to the in-kernel version of MkLinux.

5.1 Measurement Methodology

To obtain comparable and reproducible performance results,
the same hardware was used throughout all measurements,
including those of Section 6: a 133 MHz Pentium PC based
on an ASUS P55TP4N motherboard using Intel’s 430FX
chipset, equipped with a 256 KB pipeline-burst second-level
cache and 64 MB of 60 ns Fast Page Mode RAM.

We used version 2 of the L4µ-kernel.
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L4Linux is based on Linux version 2.0.21, MkLinux on
version 2.0.28. According to the ‘Linux kernel change sum-
maries’ [7], only performance-neutral bug fixes were added
to 2.0.28, mostly in device drivers. We consider both ver-
sions comparable.

Microbenchmarks are used to analyze the detailed be-
haviour of L4Linux mechanisms while macrobenchmarks
measure the system’s overall performance.

Different microbenchmarks give significantly different re-
sults when measuring operations which take only 1 to 5µs.
Statistical methods like calculating the standard deviation are
misleading: two benchmarks report inconsistent results and
both calculate very small standard deviation and high con-
fidence. The reason is that a deterministic system is being
measured that doesnot behave stochastically. For fast oper-
ations, most measurement errors are systematic. Some rea-
sons are cache conflicts between measurement code and the
system to be measured or miscalculation of the measurement
overhead. We therefore do not only report standard devia-
tions but show different microbenchmarks. Their differences
give an impression of the absolute error. Fortunately, most
measured times are large enough to show only small rela-
tive deviations. For larger operations, the above mentioned
systematic errors probably add up to a pseudo-stochastic be-
haviour.

5.2 Microbenchmarks

For measuring the system-call overhead,getpid, the short-
est Linux system call, was examined. To measure its cost un-
der ideal circumstances, it was repeatedly invoked in a tight
loop. Table 2 shows the consumed cycles and the time per in-
vocation derived from the cycle numbers. The numbers were
obtained using the cycle counter register of the Pentium pro-
cessor. L4Linux needs approximately 300 cycles more than
native Linux. An additional 230 cycles are required when-
ever the trampoline is used instead of the shared library. Mk-
Linux shows 3.9 times (in-kernel) or 29 times (user mode)
higher system-call costs than L4Linux using the shared li-
brary. Unfortunately, L4Linux still needs 2.4 times as many
cycles as native Linux.

System Time Cycles

Linux 1.68µs 223

L4Linux 3.95µs 526

L4Linux (trampoline) 5.66µs 753

MkLinux in-kernel 15.41µs 2050

MkLinux user 110.60µs 14710

Table 2:getpid system-call costs on the different implemen-
tations.(133 MHz Pentium)

Figure 5 shows a more detailed breakdown of the L4Linux
overhead. Under native Linux, the basic architectural over-
head for entering and leaving kernel mode is 82 cycles, the

Client Cycles Server

enter emulation library 20
send system call message 168 wait for message

131 — LINUX —
receive reply 188 send reply
leave emulation library 19

526

Figure 5:Cycles spent forgetpid in L4Linux. (133 MHz Pen-
tium)

bare hardware costs. In L4Linux, it corresponds to two IPCs
taking 356 cycles in total. After deducting the basic archi-
tectural overhead from the total system-call costs, 141 cy-
cles remain for native Linux, 170 cycles for L4Linux. The
small difference of both values indicates that indeed IPC is
the major cause for additional costs in L4Linux.

When removing the part calledLINUX in Figure 5, the
L4Linux overhead code remains. It uses 45 cache lines, 9%
of the first-level cache, including the cache L4 needs for IPC.

The lmbench[29] microbenchmark suite measures basic
operations like system calls, context switches, memory ac-
cesses, pipe operations, network operations, etc. by repeat-
ing the respective operation a large number of times.lm-
bench’s measurement methods have recently been criticized
by Brown and Seltzer [6]. Their improvedhbench:OSmi-
crobenchmark suite covers a broader spectrum of measure-
ments and measures short operations more precisely. Both
benchmarks have basically been developed to compare dif-
ferent hardware from the OS perspective and therefore also
include a variety of OS-independent benchmarks, in partic-
ular measuring the hardware memory system and the disk.
Since we always use the same hardware for our experiments,
we present only the OS-dependent parts. The hardware-
related measurements gave indeed the same results on all
systems.

Table 3 shows selected results oflmbenchandhbench. It
compares native Linux, L4Linux with and without trampo-
line, and both versions of MkLinux. Figure 6 plots the slow-
down of L4Linux, co-located and user-mode MkLinux, nor-
malized to native Linux. Both versions of MkLinux have a
much higher penalty than L4Linux. Surprisingly, the effect
of co-location is rather small compared to the effect of using
L4. However, even the L4Linux penalties are not as low as
we hoped.

5.3 Macrobenchmarks

In the first macrobenchmark experiment, we measured the
time needed to recompile the Linux server (Figure 7).
L4Linux was 6–7% slower than native Linux but 10–20%
faster than both MkLinux versions.

A more systematic evaluation was done using the com-
mercial AIM multiuser benchmark suite VII. It uses Load
Mix Modeling to test how well multiuser systems perform
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1 2 3 4 5 6 7 8 9 10 11 12 13 14

write /dev/null[lat]
null process[lat]
simple process[lat]
/bin/sh process[lat]
mmap[lat]
2-proc context switch[lat]
8-proc context switch[lat]
pipe [lat]
UDP [lat]
RPC/UDP[lat]
TCP[lat]
RPC/TCP[lat]
pipe [bw�1]
TCP[bw�1]
file reread[bw�1]
mmap reread[bw�1] Linux

��kLinux (user)


MkLinux (in-kernel).......................................L4Linux

Figure 6: lmbench results, normalized to native Linux.These are presented as slowdowns: a shorter bar is a better result. [lat] is a latency
measurement,[bw�1] the inverse of a bandwidth one. Hardware is a 133 MHz Pentium.

Linux 476 s
L4Linux 506 s (+6.3%)
L4Linux (trampo) 509 s (+6.9%)
MkLinux (kernel) 555 s (+16.6%)
MkLinux (user) 605 s (+27.1%)

Figure 7:Real time for compiling the Linux Server.(133 MHz
Pentium)

under different application loads [2]. (The AIM benchmark
results presented in this paper are not certified by AIM Tech-
nology.)

AIM uses the sharedlibc.so so that the trampoline over-
head is automatically avoided. Depending on simulated load,
Figures 8 and 9 show the required time and the achieved
throughput (jobs per minute) for native Linux, L4Linux, and
both MkLinux versions. The AIM benchmark successively
increases the load until the maximum throughput of the sys-
tem is determined. (For this reason, it stops at a lower load
for MkLinux than for L4Linux and native Linux.)

For native Linux, AIM measures a maximum load of 130
jobs per minute. L4Linux achieves 123 jobs per minute, 95%
of native Linux. The corresponding numbers for user-mode
MkLinux are 81 jobs per minute, 62% of native Linux, and
95 (73%) for the in-kernel version.

Averaged over all loads, L4Linux is 8.3% slower than na-
tive Linux, and 6.8% slower at the maximum load. This
is consistent with the 6–7% we measured for recompiling
Linux.

User-mode MkLinux is on average 49% slower than native
Linux, and 60% at its maximum load. The co-located in-
kernel version of MkLinux is 29% slower on average than
Linux, and 37% at maximum load.

5.4 Analysis

The macrobenchmarks answer our first question. The cur-
rent implementation of L4Linux comes reasonably close to
the behavior of native Linux, even under high load. Typical
penalties range from 5% to 10%.
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Test Linux L4Linux MkLinuxlibc.so trampoline in-kernel user

lmbench Results
Latency [µs]

write to /dev/null 2.00 (0%) 5.26 (10%) 7.80 (6%) 24.33 (9%) 128.97 (2%)
Null Process 973 (1%) 2749 (4%) 2765 (1%) 3038 (1%) 3601 (1%)
Simple Process 7400 (1%) 12058 (2%) 12393 (1%) 14066 (1%) 19667 (1%)
/bin/sh Process 42412 (1%) 61115 (7%) 62353 (1%) 73201 (2%) 106853 (1%)
Mmap Latency 52.20 (2%) 64.28 (7%) 69.35 (8%) 345.33 (2%) 566.06 (1%)
2-proc ctxsw 7.00 (0%) 16.22 (6%) 18.20 (6%) 78.67 (9%) 79.87 (7%)
8-proc ctxsw 12.40 (4%) 22.22 (6%) 28.00 (4%) 85.67 (3%) 96.26 (6%)

Pipe 29.00 (2%) 52.07 (7%) 69.40 (6%) 308.33 (1%) 722.42 (2%)
UDP 159.40 (3%) 243.02 (4%) 263.80 (2%) 613.33 (4%) 1040.26 (2%)
RPC/UDP 321.40 (1%) 526.57 (3%) 528.80 (3%) 1095.33 (4%) 1743.29 (2%)
TCP 207.40 (2%) 287.57 (4%) 308.80 (5%) 562.00 (4%) 1047.03 (2%)
RPC/TCP 459.60 (2%) 729.76 (5%) 736.20 (4%) 1243.33 (4%) 2014.90 (2%)

Bandwidth [MB/s]

Pipe 40.50 (2%) 37.61 (3%) 35.25 (3%) 13.11 (2%) 10.57 (2%)
TCP 18.03 (2%) 13.23 (2%) 13.41 (3%) 11.54 (1%) 10.88 (2%)
File reread 41.51 (1%) 40.43 (1%) 40.26 (3%) 37.51 (3%) 34.04 (2%)
Mmap reread 65.73 (1%) 54.96 (6%) 55.03 (7%) 61.54 (0%) 58.66 (7%)

hbench:OS Results
Latency [µs]

getpid 1.69 (0%) 4.55 (1%) 6.91 (1%) 19.14 (1%) 111.9 (1%)
write to /dev/null 2.74 (0%) 6.67 (5%) 8.20 (4%) 26.30 (1%) 124.1 (1%)
Null Process 983 (1%) 2561 (1%) 2904 (1%) 3101 (1%) 3572 (1%)
Simple Process 7490 (1%) 12431 (1%) 12433 (1%) 14144 (1%) 19255 (0%)
/bin/sh Process 40864 (3%) 58845 (1%) 57968 (1%) 69990 (1%) 100763 (1%)
Mmap Latency 4KB 25.2 (0%) 35.0 (2%) 49.4 (2%) 242.7 (1%) 439.6 (1%)
Mmap Latency 8MB 53.7 (1%) 54.0 (2%) 74.9 (1%) 360.1 (1%) 561.9 (1%)
ctx 0K 2 8.05 (2%) 17.1 (4%) 20.0 (3%) 69.6 (3%) 79.9 (2%)
ctx2 0K 2 8.45 (3%) 17.0 (3%) 16.7 (6%) 76.2 (2%) 88.6 (3%)

Pipe 31.0 (2%) 62.3 (3%) 78.99 (3%) 316.1 (1%) 721.6 (1%)
UDP 154 (1%) 214 (1%) 251 (3%) 625 (1%) 1037 (1%)
RPC/UDP 328 (2%) 554 (2%) 577 (3%) 1174 (1%) 1763 (1%)
TCP 206 (2%) 264 (2%) 302 (1%) 568 (1%) 1030 (1%)
RPC/TCP 450 (2%) 754 (2%) 760 (3%) 1344 (1%) 2035 (1%)

Bandwidth [MB/s]

Pipe 64KB 40.3 (1%) 35.5 (1%) 32.6 (2%) 12.7 (1%) 10.4 (2%)
TCP 64KB 18.8 (1%) 14.6 (1%) 14.1 (1%) 11.6 (1%) 9.4 (2%)
File read 64/64 35.3 (1%) 34.5 (4%) 32.2 (1%) 32.7 (3%) 30.1 (4%)
Mmap reread 64KB 97.5 (1%) 91.4 (1%) 78.8 (1%) 89.4 (1%) 77.7 (3%)

Table 3:Selected OS-dependent lmbench and hbench-OS results.(133 MHz Pentium.) Standard deviations are shown in parentheses.

Both macro and microbenchmarks clearly indicate that the
performance of the underlyingµ-kernel matters. We are par-
ticular confident in this result because we did not compare
different Unix variants but twoµ-kernel implementations of
the same OS.

Furthermore, all benchmarks illustrate that co-location on
its own is not sufficient to overcome performance deficien-
cies when the basicµ-kernel does not perform well. It would
be an interesting experiment to see whether introducing co-
location in L4 would have a visible effect or not.

6 Extensibility Performance

No customer would use aµ-kernel if it offered only the clas-
sical Unix API, even if theµ-kernel imposed zero penalty

on the OS personality on top. So we have to ask for the
“added value” theµ-kernel gives us. One such is that it
enablesspecialization(improved implementation of special
OS functionality [31]) and buys usextensibility, i. e., permits
the orthogonal implementation of new services and policies
that are not covered by and cannot easily be added to a
conventional workstation OS. Potential application fields are
databases, real-time, multi-media and security.

In this section, we are interested in the corresponding per-
formance aspects for L4 with L4Linux running on top. We
ask three questions:� Can we add services outside L4Linux to improve per-

formance by specializing Unix functionality?� Can we improve certain applications by using nativeµ-
kernel mechanisms in addition to the classical API?
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� Can we achieve high performance for non-classical,
Unix-incompatible systems coexisting with L4Linux?

Currently, these questions can only be discussed on the ba-
sis of selected examples. The overall quantitative effects on
large systems remain still unknown. Nevertheless, we con-
sider the “existence proofs” of this section to be a necessary
precondition to answer the aforementioned questions posi-
tively for a broad variety of applications.

6.1 Pipes and RPC

It is widely accepted that IPC can be implemented sig-
nificantly faster in aµ-kernel environment than in classi-
cal monolithic systems. However, applications have to be
rewritten to make use of it. Therefore, in this section we
compare classical Unix pipes, pipe emulations throughµ-
kernel IPC, and blocking RPC to get an estimate for the cost
of emulation on various levels.

We compare four variants of data exchange. The first is the
standard pipe mechanism provided by the Linux kernel: (1)
runs on native Linux/x86; (1a) runs on L4Linux and uses the
shared library, (1b) uses the trampoline mechanism instead;
(1c) runs on the user-mode server of MkLinux, and (1d) on
the co-located MkLinux server.

Although the next three variants run on L4Linux, they
do not use the Linux server’s pipe implementation.Asyn-
chronous pipes on L4(2) is a user-level pipe implementation
that runs on bare L4, uses L4 IPC for communication, and
needs no Linux kernel. The emulated pipes are POSIX com-
pliant, except that they do not support signaling. Since L4
IPC is strictly synchronous, an additional thread is respon-
sible for buffering and cross-address-space communication
with the receiver.

Synchronous RPC(3) uses blocking IPC directly, without
buffering data. This approach is not semantically equivalent
to the previous variants but provides blocking RPC seman-
tics. We include it in this comparison because applications
using RPC in many cases do not need asynchronous pipes,
so they can benefit from this specialization.

Forsynchronous mapping RPC(4), the sender temporarily
maps pages into the receiver’s address space. Since mapping
is a special form of L4 IPC, it can be freely used between
user processes and is secure: mapping requires agreement
between sender and receiver and the sender can only map its
own pages. The measured times include the cost for subse-
quent unmapping operations. For hardware reasons, latency
here is measured by mapping one page, not one byte. The
bandwidth measurements map aligned 64 KB regions.

For measurements, we used the correspondinglmbench
routines. They measure latency by repeatedly sending 1 byte
back and forth synchronously (ping-pong) and bandwidth by
sending about 50 MB in 64 KB blocks to the receiver. The
results of Table 4 show that the latency and the bandwidth
of the original monolithic pipe implementation (1) on native

Linux can be improved by emulating asynchronous pipe op-
erations on synchronous L4 IPC (2). Using synchronous L4
RPC (2) requires changes to some applications but delivers a
factor of 6 improvement in latency over native Linux.

System Latency Bandwidth

(1) Linux pipe 29µs 41 MB/s

(1a) L4Linux pipe 46µs 40 MB/s

(1b) L4Linux (trampoline) pipe 56µs 38 MB/s

(1c) MkLinux (user) pipe 722µs 10 MB/s

(1d) MkLinux (in-kernel) pipe 316µs 13 MB/s

(2) L4 pipe 22µs 48–70 MB/s

(3) synchronous L4 RPC 5 µs 65–105 MB/s

(4) synchronous mapping RPC 12µs 2470–2900 MB/s

Table 4:Pipe and RPC performance.(133 MHz Pentium.) Only
communication costs are measured, not the costs to generateor consume
data.

Since the bandwidth measurement moves 64 KB chunks
of data, its performance is basically determined by the mem-
ory hardware, in particular by the direct-mapped second-
level cache. As proposed by Jonathan Shapiro [35], L4 IPC
simulates a write-allocate cache by prereading the destina-
tion area when copying longer messages. In the best case,
Linux allocates pages such that source and destination do
not overlap in the cache; in the worst case, the copy opera-
tion flushes every data prior to its next usage. A similar effect
can can be seen for L4 pipes.

Linux copies data twice for pipe communication but uses
only a fixed one-page buffer in the kernel. Since, for long
streams, reading/writing this buffer always hit in the primary
cache, this special double copy performs nearly as fast as
a single bcopy. The deviation is small because thelmbench
program always sends the same 64 KB and the receiver never
reads the data from memory. As a consequence, the source
data never hits the primary cache, always hits the secondary
cache and the destination data always misses both caches
since the Pentium caches do not allocate cache lines on write
misses.

Method (4) achieves a nearly infinite bandwidth due to the
low costs of mapping. To prevent misinterpretations: infinite
bandwidth only means that the receiver gets the data without
communication penalty. Memory reads are still required to
use the data.

6.2 Virtual Memory Operations

Table 5 shows the times for selected memory management
operations. The first experiment belongs to the extensibil-
ity category, i. e., it tests a feature that is not available un-
der pure Linux:Fault measures the time needed to resolve a
page fault by a user-defined pager in a separate user address
space that simply maps an existing page. The measured time
includes the user instruction, page fault, notification of the
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pager by IPC, mapping a page and completing the original
instruction.

L4 Linux

Fault 6.2µs n/a

Trap 3.4µs 12µs

Appel1 12 µs 55µs

Appel2 10 µs 44µs

Table 5: Processor time for virtual-memory benchmarks.
(133 MHz Pentium)

The next three experiments are taken from Appel and
Li [3]. We compare the Linux version with an implemen-
tation using native L4 mechanisms.Trap measures the la-
tency between a write operation to a write-protected page
and the invocation of the related exception handler.Ap-
pel1 measures the time to access a randomly selected pro-
tected page where the fault handler unprotects the page, pro-
tects some other page and and resumes the faulting access
(‘trap+prot1+unprot’).Appel2first protects 100 pages, then
accesses them in a random sequence where the fault handler
only unprotects the page and resumes the faulting operation
(‘protN+trap+unprot’). For L4, we reimplemented the fault
handlers by associating a specialized pager to the thread exe-
cuting the test. The new pager handles resolvable page faults
as described above and propagates unresolvable page faults
to the Linux server.

6.3 Cache Partitioning

Real-time applications need a memory management differ-
ent from the one Linux implements. L4’s hierarchical user-
level pagers allows both the L4Linux memory system and a
dedicated real-time one to be run in parallel. This section
evaluates how well this works in practice.

In real-time systems, the optimization criterion is not the
average but the worst-case execution time. Since a real-time
task has to meet its deadline under all circumstances, suffi-
cient resources for the worst-case must always be allocated
and scheduled. The real-time load is limited by the sum of
worst-case execution times, worst-case memory consump-
tion, etc. In contrast to conventional applications, the aver-
age behaviour is only of secondary importance.

All real-time applications rely on predictable scheduling.
Unfortunately, memory caches make it very hard to schedule
processor time predictably. If two threads use the same cache
lines, executing both threads interleaved increases the total
time not only by the context-switching costs but addition-
ally by the cache-interference costs which are much harder
to predict. If the operating system does not know or cannot
control the cache usage of all tasks, the cache-interference
costs are unpredictable.

In [26], we described how a main-memory manager (a
pager) on top of L4 can be used to partition the second-level

cache between multiple real-time tasks and to isolate real-
time from timesharing applications.

In one of the experiments, a 64�64-matrix multiplica-
tion is periodically interrupted by a synthetic load that max-
imizes cache conflicts. Uninterrupted, the matrix multiplica-
tion takes 10.9 ms. Interrupted every 100µs, its worst-case
execution time is 96.1 ms, a slowdown by a factor of 8.85.

In the cache-partitioning case, the pager allocates 3
secondary-cache pages exclusively to the matrix multipli-
cation out of a total of 64 such pages. This neither avoids
primary-cache interference nor secondary-cache misses for
the matrix multiplication whose data working set is 64 KB.
However, by avoiding secondary-cache interference with
other tasks, the worst-case execution time is reduced to
24.9 ms, a slowdown of only 2.29. From a real-time perspec-
tive, the partitioned matrix multiplication is nearly 4 times
“faster” than the unpartitioned one.

Allocating resources to the real-time system degrades
timesharing performance. However, the described tech-
nique enables customized dynamic partitioning of system re-
sources between real-time and timesharing system.

6.4 Analysis

Pipes and some VM operations are examples for improving
Unix-compatible functionality by usingµ-kernel primitives.
RPC and the use of user-level pagers for VM operations il-
lustrate that Unix-incompatible or only partially compatible
functions can be added to the system that outperform imple-
mentations based on the Unix API.

The real-time memory management shows that aµ-kernel
can offer good possibilities for coexisting systems that are
based on completely different paradigms. There is some ev-
idence that theµ-kernel architecture enables to implement
high-performance non-classical systems cooperating with a
classical timesharing OS.

7 Alternative Basic Concepts

In this section, we address questions whether a mechanism
lower-level than IPC or a grafting model could improve the
µ-kernel performance.

7.1 Protected Control Transfers

VM/370 [28] was built on the paradigm of virtualizing and
multiplexing the underlying hardware. Recently, Engler,
Kaashoek and O’Toole [12] applied a similar principle to
µ-kernels. Instead of a complete one-to-one virtualization
of the hardware (which had turned out to be inefficient in
VM/370), they support selected hardware-similar primitives
and claim: “The lower the level of a primitive, the more effi-
ciently it can be implemented and the more latitude it grants
to implementors of higher-level abstractions.” Instead of
implementing abstractions like IPC or address spaces, only
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hardware mechanisms such as TLBs should be multiplexed
and exported securely.

From this point of view, IPC might be too high-level an
abstraction to be implemented with optimum efficiency. In-
stead, aprotected control transfer(PCT) as proposed in [12]
might be more faster. PCT is similar to a hardware inter-
rupt: a parameterless cross-address-space procedure call via
a callee-defined call gate.

Indeed, when we started the design of L4/Alpha, we first
had the impression that PCT could be implemented more ef-
ficiently than simple IPC. We estimated 30 cycles against 80
cycles (no TLB or cache misses assumed).

However, applying techniques similar to those used for
IPC-path optimization in the Pentium version of L4, we
ended up with 45 cycles for IPC versus 38 cycles for PCT
on the Alpha processor. A detailed description can be found
in table 6. The 7 additional cycles required for IPC provide
synchronization, message transfer and stack allocation. Most
server applications need these features and must therefore
spend the cycles additionally to the PCT costs. Furthermore,
IPC makes 1-to-n messages simple since it includes starting
the destination threads.

Operation PCT IPC Comment
enter PAL mode 5 5
open frame 7 7 setup stack frame to allow multiple

interrupts, TLB misses and simplify
thread switching

send/receive – 0.5 determine operation
test receiver valid 2 2
test no chief xfer – 0.5
receiver accepts? – 1 can we do the transfer
set my rcv timeout – 1
save rcv parameters – 2 perform the receive
verify queuing status – 1 to set wakeup-queueing invalid, if

timeout NEVER
context switch 10 10 switch address-space number
kernel thread switch – 6
set caller id 2 – save caller id for pctret
find callee entry 2 – pct entry address in callee
close frame 7 7
leave PAL mode 2 2
total 38 45

Table 6:PCT versus IPC; required cycles on Alpha 21164.
For the PCT implementation we made the assumptions that (a) the entry

address for the callee is maintained in some kernel control structure; (b)

the callee must be able to specify a stack for the PCT call or – if the caller

specifies it – the callee must be able to check it (the latter case requires the

kernel to supply the callers identity); (c) stacking of return address and ad-

dress space is needed. The cycles needed on user level to check the identity

are left out of the comparison.

In addition, L4-style IPC provides message diversion (us-
ing Clans & Chiefs [20, 23]). A message crossing a clan bor-
der is redirected to the user-level chief of the clan which can
inspect and handle the message. This can be used as a basis
for the implementation of mandatory access control policies
or isolation of suspicious objects. For security reasons, redi-
rection has to be enforced by the kernel. Clan-based redi-
rection also enables distributed IPC by means of a user-level

network server. Each machine is encapsulated by a clan so
that inter-machine IPC is automatically redirected to the net-
work server which forwards it through the network.

Taking the additionally required user-level cycles into ac-
count, we currently see no performance benefit for PCT.
However, a conceptual difference should be noted: A PCT
takes the thread to another address space so that the set of
active threads does not change. An IPC transfers a message
from a sender thread to a destination thread; both threads re-
main in their respective address spaces but the set of active
threads changes. Lazy scheduling techniques [21] remove
the additional costs of the second model so that in most cases
both are equivalent from a performance point of view.

However, IPC requires a preallocated system resource, the
destination thread. Ifn threads want to execute RPCs to the
same server domain simultaneously, at leastn threads have
to be allocated in the server. This problem is not as signifi-
cant with PCT: onlyn user-level stacks have to be allocated,
no kernel resources. On the other hand, in the IPC model,
a server can easily preallocate kernel and user resources,
threads and stacks,dedicated to specific applications. This
helps to implement guaranteed real-time services.

7.2 Grafting

Grafting in general deals with the problem of how to in-
sert a graft into a server. We concentrate on the special sit-
uation when this server is the kernel. We do not address
the software-technological advantages and limitations of the
grafting model. Here, we are only interested whether down-
loading extensions into the kernel could perform better than
executing them as a user-level server (or downloading them
into a user-level server).

Grafts executing in kernel mode can reduce the number
of user/kernel mode switches and address-space switches.
However, they either have to be completely trusted or need
sand-boxing.

Various systems have been built on that basis. They range
from very pragmatic co-location techniques [1, 10] that sim-
ply trust co-located code to more sophisticated techniques
that confine the potential damage of kernel extensions. How-
ever, Section 5 shows that simple co-location is not neces-
sarily a promising technique. Co-located MkLinux performs
worse than user-mode L4Linux.

Vino [34] introduces a sophisticated yet expensive trans-
action mechanism; Exokernel [12, 36] enables application-
specific handlers using a variety of mechanisms ranging from
interpretable intermediate code to run time checking.

SPIN [5] is an example of a well-performing, sophisti-
cated grafting technique. Its kernel extensions use compile-
time sand-boxing as much as possible and thus avoid ad-
ditional runtime sand-boxing overhead except for subscript
checking. Of the performance results published in [5], the
virtual memory benchmarks favor SPIN’s approach most.
This makes sense, because for these tiny operations, the
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system-call and context-switching overhead counts heav-
ily. Table 5 shows equivalent benchmarks on L4, running
in user-mode. The L4 times are between 2 and 4.7 times
better (geometric mean: 3.1) than the times published for
SPIN [5]. However, due to the different hardware platforms
(SPIN: 133 MHz Alpha 21064, L4: 133 MHz Pentium) this
comparison must be interpreted very cautiously. Given that
both processors are double-issue, use a large second-level
cache and no byte operations are required for these exam-
ples (which are expensive on the Alpha), we think that the
current implementations perform roughly comparably; per-
haps L4 is slightly faster.

Currently, it is still an open question whether downloading
grafts into the kernel can outperform theµ-kernel approach.

8 Conclusions

The comparison of MkLinux and our Linux single-server ap-
proach on L4 demonstrates that the performance improve-
ments of second-generationµ-kernels significantly affect OS
personalities and applications. We demonstrated that fast
IPC and efficient mapping abstractions are more effective
than techniques such as co-location.

The comparison of L4Linux and monolithic Linux shows
that in a practical scenario, the penalty for usingµ-kernels
can be kept somewhere between 5% and 10% for applica-
tions. When working on a workstation there is no visible
difference whether the workstation is running native Linux
or L4Linux.

Using a few simple experiments, we compared extensibil-
ity using libraries and servers to extensibility using kernel
extension mechanisms. We found no indication that kernel
extensions achieve better results.

The goal of this work has been to understand whether the
L4 µ-kernel can provide a basis on which specialized appli-
cations, including those with real-time requirements, can be
built such that they run along with normal operating systems
and their applications on a single machine. The results de-
scribed in this paper encourage us to pursue that line of de-
velopment.

Availability

L4 and L4Linux are available from the L4Linux Web site athttp://os.inf.tu-dresden.de/L4/LinuxOnL4/.
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