
6.181: Filesystems (pt. 1)

1

Adam Belay <abelay@mit.edu>

Why do we need filesystems?

• Durability across restarts and crashes
• Naming and organization
• Sharing data between processes and users

2

What makes them interesting?

• Crash recovery
• Performance + concurrency
• Sharing + security
• Powerful abstractions (e.g., proc, afs, 9P, pipes, etc.)

3

xv6 FS software layers

0: System calls

1: Names + FDs

2: Inodes

3: Inode cache + Buffer cache

4: Log

5: Virtio disk driver

Focus for today

4

High-level design choices in system calls

• Objects: Use files (not virtual disks or databases)
• Content: Use byte arrays (not structured)
• Naming: Human-readable (not ID numbers)
• Organization: Name hierarchy
• Synchronization: None (no locking, no versions)
• link() and unlink() can change names concurrently w/ open()

5

0: System call layer

fd = open(“x/y”, flags); // creates a fd
write(fd, “abc”, 3); // writes 3 bytes
link(“x/y”, “x/z”); // creates a link
unlink(“x/y”); // removes x/y
write(fd, “def”, 3); // writes 3 more bytes
close(fd); // closes the fd

File x/z contains abcdef

6

xv6 FS software layers

0: System calls

1: Names + FDs

2: Inodes

3: Inode cache + Buffer cache

4: Log

5: Virtio disk driver

Focus for today

7

1: Name layer

• Path names are organized as a tree
• No cycles, but multiple names can

refer to the same file (i.e., via link())
• Processes share the namespace
• But each process has a current

working directory (CWD)
• Absolute path: /x/y
• Relative path: x/y

/

y z

x CWD

8

1: FD Layer

• Each process has its own FD number namespace

• Each FD identifies a file created by open()
• By convention STDIN (0), STDOUT (1), STDERR (2)
• Lowest available FD number is allocated during open()
• Survives even if the file is unlinked (i.e., deleted)

• A file is an object that you can read and write to like a stream

9

Interacting with a file

• FDs access file as an array of bytes,
very similar to an address space
• Each FD has a ”cursor” to the file

0 10

Interacting with a file

• FDs access file as an array of bytes,
very similar to an address space
• Each FD has a ”cursor” to the file
• read() advances the cursor

0

8

read(fd, buf, 8)

11

Interacting with a file

• FDs access file as an array of bytes,
very similar to an address space
• Each FD has a ”cursor” to the file
• read() advances the cursor
• write() does too

0

8

read(fd, buf, 8)

16

write(fd, buf, 8)

12

Some files are special

• e.g., a pipe()
• Usage: int fds[2]; pipe(fds);

Bufferwrite(fd[1], …) read(fd[0], …)

13

xv6 FS software layers

0: System calls

1: Names + FDs

2: Inodes

3: Inode cache + Buffer cache

4: Log

5: Virtio disk driver

Focus for today

14

2: Inode layer

• Inode: Records the details of a file
• Tracks the size of the file and where on the disk the data is stored
• Has a link count (and open FD count) to figure out when to free
• Deallocation deferred until link + open count is zero

• I-number: Refers to an inode, similar to an FD
• Uniquely identifies a position on disk

15

Where is data stored?

• On a persistent storage medium
• Data doesn’t go away under loss of power

• Common storage mediums
• HDDs: High capacity, slow, inexpensive
• SSDs: Lower capacity, faster, more expensive
• More choices on the horizon

• Disks accessed in fixed-sized units (like pages)
• Called sectors, historically 512 bytes

16

Performance characteristics

• Applies to both HDDs and SSDs
• Sequential access much faster than random
• Big reads/writes much faster than small ones
• Both facts influence FS design

17

Disk blocks

• Typically, multiple sectors are combined to form blocks
• e.g., a 4KB block is 8 sectors

• Needed to reduce book-keeping and seek overhead
• xv6 uses two sector blocks
• Every block has a block number
• think of it like an address that identifies the location on the disk

18

xv6 FS software layers

0: System calls

1: Names + FDs

2: Inodes

3: Inode cache + Buffer cache

4: Log

5: Virtio disk driver

Focus for today

19

3: Inode + buffer cache

• Problem: Disk accesses are slow and random
• Idea: Store copies of inodes and blocks in RAM
• Works well because the same data is often accessed many times
• e.g., the same inodes and blocks are accessed each time a file is read
• No need to access the disk if a copy is available!

20

On-disk layout

1: Superblock
2: Log head

3: Log blocks

32: Inodes

45: Free block bitmap
46: Actual data

21

xv6 provides mkfs program

• Generates this layout for a new (empty) FS
• The layout is static for the lifetime of the FS
• What is metadata?
• Everything other than file content
• Super block, inodes, bitmap, directory content

22

On-disk inode layout

• Type: Free, file, directory, or device
• Nlink: number of links
• Size: the size of the file in bytes
• Addrs: addresses of data blocks (array)
• Example: Find file’s byte at 4000
• 4000 / BSIZE (=1024) = 3; Look at 3rd addr entry

Block #410 Block #124 Block #124 Block #52
…

0 1 2 3 23

Problem: Inode is fixed size!

• How can we fit large files into addrs?
• Idea: Use indirect block: a full block of more addrs

Block #410 Block #124 Block #134 Block #52
…

0 1 2 3

Block #81

NDIRECT

Block #534 Block #127 Block #84 Block #85
…

NDIRECT + 0 NDIRECT + 1 NDIRECT + 2 NDIRECT + 3

In
Inode

Indirect
Block

24

How to turn i-number to inode?

• i-number functions as an index to a disk block
• But have to skip log metadata
• Each inode is 64 bytes long
• Inode(i-number) = 32*BSIZE + 64*i-number

25

What about directories

• Represented much like a file
• But users can not directly write contents

• Content is an array of dirents
• Each dirent:
• i-number (of the file in the directory)
• 14-byte file name
• dirent is free (unused) if inum == 0

26

On-disk structure is tree-based

• Layer 1: Directory tree
• Layer 2: Inodes
• Layer 3: Blocks

Allocation pools: Inodes and Blocks

27

Example: Writing a file

28

Concurrency in FS

• xv6 has modest goals
• Parallel read/write of different files
• Parallel pathname lookup

• Disk also operates concurrently (e.g., intr)
• Even these pose interesting challenges

29

Conclusion

• File system maintains address space-like view of disk blocks
• Uses trees (like a page table) for naming and tracking disk blocks
• Next lecture: more details of xv6 and logging

30

