
6.S081: OS Organization
Adam Belay <abelay@mit.edu>



Lecture topics

• OS design
• System calls
• Hardware isolation
• Micro kernels vs. monolithic kernels

• System calls in xv6



OS Organization (from last time)

vi gcc nginx sshd

Kernel

Userspace

Kernelspace

System calls

CPU RAM Disk Net



Multiplexing

• Must handle multiple applications
• Need isolation between them
• But must share resources too



Strawman solution

• Applications use hardware directly
• OS acts as a library

gcc

OS Library

CPU RAM Disk Net

vi
…



Problem: Can’t multiplex

• Each app must periodically give up hardware
• But weak isolation
• App forgets to give up -> nothing else runs
• Apps has end-less loop -> nothing else runs
• Can’t even kill the misbehaving app from another app

• This scheme is sometimes used in practice
• Called cooperative scheduling



Bigger problem: Memory isolation

• All apps share physical memory
• One app can overwrite another app’s memory
• One app can overwrite the OS library

• No security!



UNIX interface

• Processes (instead of cores): fork()
• OS transparently allocates cores

• Save + Restore registers
• Enforces that processes give them up

• Periodically re-allocates cores



UNIX interface

• Memory (instead of physical memory): exec(), brk()
• Each process has its own memory
• OS decides where to place app in memory
• OS enforces isolation between apps
• OS stores image in file system (loaded with exec)



UNIX interface

• Files instead of disk blocks: open(), read(), write()
• OS provides convenient names
• OS allows files to be shared by apps and users

• Pipes instead of shared physical memory: pipe()
• OS buffers data
• OS stops sender if it transmits too fast



OS must be defensive

• An app shouldn’t be able to crash OS
• An app shouldn’t be able to break out of isolation
• Need strong isolation between apps and OS

Solution: use CPU hardware support
• User/kernel mode (privilege modes)
• Virtual memory



CPUs provide user/kernel mode

• Kernel mode: can execute “privileged” instructions
• E.g., changing back to user mode
• E.g., programming a timer chip
• E.g., controlling virtual memory

• User mode: can’t execute “privileged” instructions
• If it tries, faults to kernel

Plan: Run kernel is kernel mode, apps in user mode
* (RISC-V M-mode not used in this class)



CPUs provide virtual memory

• Page tables translate virtual address to physical
• Defines what physical memory an app can access
• OS sets up page table so each app can only access 

its memory



System calls

• Apps need to communicate with kernel
• Solution add instruction to change mode in 

controlled way
• ecall on Risc-V
• Enters kernel at pre-agreed instruction address



System calls

App -> printf() -> write()

… <- sys_write() <- trampoline

Userspace

Kernelspace

System Call

CPU RAM Disk Net



Kernel is trusted computing base

• Kernel must be “correct”
• Bugs could allow user apps to circumvent isolation

• Kernel must treat user apps as suspect
• Each system call argument must be validated
• User/kernel mode transitions must be set up correctly

• Requires a security mindset
• Any bug could be a security exploit!



Aside: is isolation possible 
without HW support?
• Imagine no kernel/user mode or virtual memory
• Yes! Use a strongly-typed programming language
• E.g., singularity OS

• The compiler is then the TCB
• But HW support is the most common plan



Monolithic kernels

• OS runs in kernel space
• xv6 does this, so does Linux
• Kernel interface == system call interface
• Kernel is one big program with everything (filesystem, 

drivers, memory management, etc.)
• Pros:

• Easy for subsystems to cooperate
• E.g., one cache for file system and virtual memory

• Good performance
• Cons:

• Interactions are complex, leads to bugs
• No isolation within



Microkernels

• Runs OS services as ordinary user programs
• E.g., a server provides the file system

• kernel implements minimal mechanism to run 
services in user space
• Processes with memory
• Interprocess communication

• Kernel interface != system call interface
• Pro: More isolation, more fault tolorance
• Con: Hard to get good performance, complexity



Microkernels

vi gcc File 
Server

Net 
Driver

Kernel

Userspace

Kernelspace

System calls

CPU RAM Disk Net



Xv6 case study

• Monolithic kernel
• UNIX system calls are the kernel interface

• Source code reflects OS organization
• user/ apps in user mode
• kernel/ kernel’s implementation

• Kernel has several parts
• kernel/defs.h, kernel/proc.c, kernel/fs.c, etc.

Goal: simple, easily readable/understandable



Building xv6 (e.g., make)

.c

.c

gcc
.o

gcc
.o

a.outld



Risc-V’s (emulated) computer

• A very simple board, e.g., no display
• Risc-V processor with N cores
• RAM (128 MB)
• Supports interrupts (PLIC, CLINT)
• Supports UART (serial port)
• Xv6 uses this to provide a console (out)
• Xv6 uses this to get keyboard input (in)

• Supports E1000 network card (over PCIe)



Why develop with qemu?

• More convenient than using real hardware
• Qemu emulates several types of computers
• we use the "virt" one https://github.com/riscv/riscv-

qemu/wiki
• close to the SiFive board 

(https://www.sifive.com/boards) but with virtio for disk

https://github.com/riscv/riscv-qemu/wiki


CPU emulation

• What is it to “emulate”?
• qemu is a C program that faithfully implements a 

RISC-V processor

for (;;) {
read next instructions
decode instruction
execute instruction (updating processor state)

}


