
6.S081: Introduction
Adam Belay

abelay@mit.edu



6.S081 Objectives

• Understand how OSes are designed and 
implemented
• Hands-on experience building systems software
• Will extend a simple OS (xv6)
• Will learn about how hardware works (Risc-V)



Some things you’ll do in 6.S081

1. You will build a driver for a network stack that 
sends packets over the real Internet

2. You will redesign a memory allocator so that it 
can scale across multiple cores

3. You will implement fork and make it efficient 
through an optimization called copy-on-write



What is the purpose of an OS?

1. Abstraction
• Hides hardware details for portability and convenience
• Must not get in the way of high performance
• Must support a wide range of applications

2. Multiplexing
• Allows multiple applications to share hardware
• Isolation to contain bugs and provide security
• Sharing to allow cooperation



OS Organization

vi gcc nginx sshd

Kernel

Userspace

Kernelspace

System calls

CPU RAM Disk Net



OS abstractions

• Process (a running program)
• Memory allocation
• File descriptors
• File names and directories
• Access control and quotas
• Many others: users, IPC, network sockets, time, etc.



User <-> kernel interface

• Primarily system calls
• Examples:

fd = open(“out”, 1);
len = write(fd, “hello\n”, 6);
pid = fork();
• Look and behave like function calls, but they aren’t



Why OSes are interesting

• Unforgiving to build: Debugging is hard, a single 
bug can take down the entire machine
• Design tensions:
• Efficiency vs. Portability/Generality
• Powerful vs. Simple
• Flexible vs. Secure

• Challenge: good orthogonality, feature interactions
• Varied uses from smartbulbs to supercomputers
• Evolving HW: NVRAM, Multicore, 200Gbit networks



Take this course if you:

• Want to understand how computers really work 
from an engineering perspective
• Want to build future system infrastructure
• Want to solve bugs and security problems
• Care about performance



Logistics



Online resources

• Course website
• https://pdos.csail.mit.edu/6.S081/
• Schedule, course policies, lab assignments, etc.
• Videos and notes of 2020 lectures

• Piazza
• https://piazza.com/mit/fall2021/6s081
• Announcements and discussion
• Ask questions about labs and lecture

https://pdos.csail.mit.edu/6.S081/
https://piazza.com/mit/fall2021/6s081


Lectures

1. OS concepts
2. Case studies of xv6 --- a simple, small OS
3. Lab background and solutions
4. OS papers

• Submit a question before each lecture
• Resource: xv6 book



Labs

• Goal: Hands-on experience
• Three types of labs:

1. Systems programming: due next week
2. OS primitives: e.g., thread scheduling
3. OS extensions: e.g., networking driver



Collaboration

• Feel free to ask and discussion questions about lab 
assignments in class or on Piazza
• Discussion is great
• But all solutions (code and written work) must be your 

own
• Acknowledge ideas from others (e.g., classmates, open 

source software, stackoverflow, etc.)

• Do not post your solutions (including on github)



Covid-19 and in-person learning

• Masks are required; must be worn correctly
• If you have symptoms or test positive…
• Don’t attend class, contact us right away
• We will work with you to provide course materials



Grading

• 70% labs, based on the same tests you will run
• 20% lab check off meetings
• We will ask questions about randomly selected labs 

during office hours

• 10% homework and class/piazza participation



Back to system calls

• I’ll show examples of using system calls
• Will use xv6, the same OS you’ll build labs on
• xv6 is similar to UNIX or Linux, but way simpler
• Why? So you can understand the entire thing.

• Why UNIX?
• Clean design, widely used: Linux, OSx, Windows (mostly)

• xv6 runs on Risc-V, like 6.004
• You will use Qemu to run xv6 (emulation)




