
6.828: Using Virtual
Memory

Adam Belay
abelay@mit.edu

1

Outline

Cool things you can do with virtual memory:
• Virtual memory recap
• Lazy page allocation
• Better performance/efficiency
• E.g. One zero-filled page
• E.g. Copy-on-write w/ fork()

• New features
• E.g. Memory-mapped files

• This lecture may generate final project ideas

2

Recap: Virtual memory

• Primary goal: Isolation – each process has its own
address space
• But… virtual memory provides a level of indirection

that allows the kernel to do cool stuff

vi sh gcc

SATP

Kernel
Trampoline

3

Page table entries (PTE)

Some important bits:
• Physical page number (PPN): Identifies 44-bit physical page

location; MMU replaces virtual bits with these physical bits
• U: If set, userspace can access this virtual address
• W: writeable, R: readable, X: executable
• V: If set, an entry for this virtual address exists
• RSW: Ignored by MMU

4

RISC-V page faults

• RISC-V supports 16 exceptions
• Three related to paging

• Exceptions are controlled transfers into the kernel
• Seen in previous and future lectures

• Information we might need to handle a page fault:
1. The VA that caused the fault
2. The type of violation that caused the fault
3. The instruction where the fault occurred

5

SCAUSE register
Intr Exception Code Description
0 0 Instruction address misaligned

0 1 Instruction access fault

0 2 Illegal instruction

0 3 Breakpoint

0 4 Reserved

0 5 Load access fault

0 6 AMO address misaligned

0 7 Store/AMO access fault

0 8 Environment call

0 9-11 Reserved

0 12 Instruction page fault
0 13 Load page fault
0 14 Reserved

0 15 Store/AMO page fault
0 >16 Reserved 6

STVAL register

• Contains exception-specific information
• Some exceptions don’t use it (set to zero)
• Page faults set it to the faulting address!
• Use r_stval() in xv6 to access

7

Gathering info to handle a pgfault

1. The VA that caused the fault?
• STVAL, or r_stval() in xv6

2. The type of violation that caused the fault?
• Encoded in SCAUSE, or r_scause() in xv6
• 12: page fault caused by an instruction fetch
• 13: page fault caused by a read
• 15: page fault cause by a write

3. The IP and privilege mode where fault occurred?
• User IP: tf->epc
• U/K: SSTATUS, or r_sstatus() & SSTATUS_SPP in xv6

8

xv6 user memory layout

9

Idea: On-demand page allocation

• Problem: sbrk() is old-
fashioned
• Allocates memory that

may never be used
• Modern OSes allocate

memory lazily
• Insert physical pages

when they’re accessed
instead of in advance

BRK address

Accessed

Unused

Accessed

10

On-demand page
allocation demo

11

Optimization: Zero pages

• Observation: In practice,
some memory is never
written to
• All memory gets initialized

to zero
• Idea: Use just one zeroed

page for all zero mappings
• Copy the zero page on

write

BRK address

R/W

Zero (Read-only)

R/W

Zero (Read-only)

Zero Page

12

Zeroed page allocation
demo

13

Caveats

• Page faults below user stack are invalid
• Page faults too high could overwrite the kernel
• Many more caveats… (in lab assignment)

• Real kernels are difficult to build, every detail
matters

14

Optimization: Share page
mappings
• Observation: Every page table has identical kernel

mappings
• Idea: Could we share kernel level 2 tables across all

page tables?

vi sh gcc

Kernel
Trampoline

15

Feature: Stack guard pages

• Observation: Stack has a finite size
• Push too much data and it could overflow into

adjacent memory
• Idea: Install an empty mapping (PTE_V cleared) at

the bottom of the stack
• Could automatically increase stack size in page fault

handler

16

Optimization: Copy-on-write fork()

• Observation: Fork() copies all pages in new process
• But often, exec() is called immediately after fork()
• Wasted copies

• Idea: modify fork() to mark pages copy-on-write
• All pages in both processes become read-only
• On page fault, copy page and mark R/W
• Extra PTE bits (RSV) useful for indicating COW mappings

17

Optimization: Demand paging

• Observation: exec() loads entire object file into
memory
• Expensive, requires slow disk block access
• Maybe not all of the file will be used

• Idea: Mark mapping as demand paged
• On page fault, read disk block and install PTE

• Challenge: What if file is larger than physical
memory?

18

Feature: Support more virtual
memory than physical RAM
• Observation: More disk capacity than RAM
• Idea: “Page in” and out data between disk and RAM
• Use page table entries to detect when disk access is

needed
• Use page table to find least recently used disk blocks to

write back
• Works well when working set fits in RAM

19

Feature: Memory-mapped files

• Normally files accessed through read(), write(), and
lseek()
• Idea: Use load and store to access file instead
• New system call mmap() can place file at location in

memory
• Use memory offset to select block rather than seeking

• Any holes in file mappings require zeroed pages!

20

Feature: Distributed shared
memory
• Idea: Use virtual memory to pretend that physical

memory is shared between several machines on
the network

RAM RAM RAM

Distributed Memory

21

Optimization: TLB management

• CPUs cache paging translations for speed
• xv6 flushes entire TLB during user/kernel

transitions
• Why?

• RISC-V TLB is sophisticated in reality
• PTE_G: global TLB bits
• SATP: takes ASID number
• sfence.vma: ASID number, addr
• Large pages: 2MB and 1GB support

22

Virtual memory is still evolving

Recent Linux Kernel Changes:

• Support for 5-level page tables

• 57 address bits!

• Support for ASIDs

• TLB can cache multiple page tables at a time

And less recently:

• Support for large (2MB sized pages)

• NX (No eXecute) PTE_X flag

23

Conclusion

• There’s no one way to design an OS
• Many OSes use virtual memory
• Enables powerful features and optimizations

• xv6 presents one example of OS design
• They lack many features of real OSes
• But still quite complex!

• Our goal: Teach you ideas so you can extrapolate

24

