
6.828: Locking
Adam Belay <abelay@mit.edu>

Plan for today

• Multithreaded hash table example
• Lock abstraction + Deadlocks
• Atomic instructions and how to implement locks

HW: Multithreaded hash table

• Parallel operations
• Put() and Get()
• Collisions resolved

with chaining

struct entry {
int key, value;
struct entry *next;

};
…

Why run on multiple cores?

CPU 0 CPU 1 CPU 2 CPU 3

RAM

bus

Parallelism is unavoidable

• ILP wall: Increasingly difficult to find enough parallelism in
instruction stream to keep a powerful single thread busy
• Use multiple hardware threads (harts) instead

hash0.c
Plan: No synchronization

Where are the missing keys?

• Suppose put(5) and
put(10) run in parallel
• Both threads read and

write to table[0], but
in what order?
• When a possible

ordering could cause
incorrect behavior, it’s
known as a race
condition

put(5)

put(10)
Race condition

Race condition example

Thread 1: put(5)
READ table[0] -> tmp

WRITE tmp -> e->next

WRITE e -> table[0]

Thread 2: put(10)

READ table[0] -> tmp

WRITE tmp -> e->next

WRITE e -> table[0]

Time Last writer wins!

hash1.c
Plan: Big lock / coarse-grained synchronization

Big lock
Lock

hash2.c
Plan: Bucket locks / fine-grained synchronization

Bucket locks

Lock #0

Lock #1

Lock #2

Lock #3

Lock #4

hash[0-2].c run-time w/ 20 cores

0

2

4

6

8

10

12

14

16

18

No synchronization Big lock Bucket locks

Ti
m

e
(s

ec
on

ds
)

The lock abstraction

Using locks:
lock l;
acquire(&l);

x = x + 1; // ”critical section”
release(&l);

• A lock itself is an object
• Suppose multiple threads call acquire(&l):

• Only one returns right away
• The others must wait for release(&l)

• Protect different data with different locks
• Allows independent critical sections to run in parallel

• Locks not implicitly tied to data, programmer must plan

When to lock?

1. Do two or more threads touch a memory location?
2. Does at least one thread write to the memory

location?
If so, you need a lock!

Too conservative: Sometimes deliberate races are fine!
Too liberal: Think about invariants of entire data
structure, not just single memory locations (e.g. console)

Could locking be automatic?

• Idea: The language could associate a lock with

every object

• Compiler adds acquire() and release() around every use

• No room for programmer to forget!

• Can be awkward in practice

• E.g. rename(“d1/foo”, ”d2/foo”);

• Acquire d1; erase foo; release d1

• Acquire d2; add foo; release d2

• At one point, foo doesn’t exist at all!

• Programmer needs explicit control to hide

intermediate states

Perspectives on what locks
achieve
• Locks help avoid lost updates
• Locks help you create atomic multi-step operations,

hiding intermediate states
• Locks help maintain invariants on a data structure
• Assume: Invariants are true at start of critical region
• Intermediate states may violate invariants
• Restore invariants before releasing lock

Problem: Locks can cause
deadlock
What if:

CPU 0:
rename(”a/f1”, “b/f1”);
acquire(&a);
…
acquire(&b);
…

CPU 1:
Rename(“b/f2”, “a/f2”);
acquire(&b);
…
acquire(&a);
…

Hangs forever!

Solution to lock deadlocks

• Programmer works out an order in which locks are
acquired
• One idea: Use the VA of the lock, least to greatest

• Always acquire locks in the same order
• Complex!

Reality: There’s a tradeoff
between locking and modularity
• Locks make it hard to hide details inside modules
• E.g.: to avoid deadlock, you have to know which

locks are acquired by each function
• Locks aren’t necessarily the private business of

each individual module
• Too much abstraction can make it hard to write

correct, well-performing locking

Where to place locks?

One strategy:
1. Write the module to be correct under serial

execution
2. Then add locks to force serial execution

Each locked section can only be executed by one CPU
at a time, so you can reason about it as serial code!

What about
performance?
Otherwise, run on a single core

Locks prevent parallelism!

• To maintain parallelism split up data and locks
• Choosing the best split is a design challenge
• Whole ph.c table, each table[] row, or each entry?
• Whole FS, each file/directory, or each disk block?

• May need to make design changes to promote
parallelism
• Example: Break single free list into per-core free list

Lock granularity

• Start with big locks --- one per module perhaps
• Less opportunity for deadlock
• Less reasoning about invariants

• Then measure to see if there’s a problem
• Big locks could be enough, maybe little time is spent in

the module
• Redesign only if you have to

Example: printf

Lock

Console

How to implement locks?

struct lock { int locked; };
acquire(l){
while(1){
if(l->locked == 0){ // A
l->locked = 1; // B
return;

}
}

}

Memory ordering

• The compiler and CPU can reorder reads and
writes!
• They do not have to obey the source program’s order of

memory references
• Legal behaviors are referred to as a “memory model”

• If you use locks, you don’t have to understand
memory ordering
• For exotic lock-free code, you’ll need to know every

detail

RISC-V Atomic Instructions

• AMO* instructions
1. v1 = *addr
2. *addr = OP(v1, v2)

• Supported operations:
• SWAP, ADD, AND, OR, XOR, MAX, MIN

• Read and write to memory location happens
atomically

RISC-V Fences

• fence instruction constrains ordering between
reads and writes
• fence(predecessor, successor): cannot observe any

operation in the successor set following a FENCE
before any operation in the predecessor set
• Example: FENCE(r, rw)

Special instruction for locks

• Combines ideas from fences and atomics
• Why did the designers choose this approach?

• amoswap.w.aq: no later memory operations can be
observed to take place before the swap
• amoswap.w.rl: the swap will not be observed before

any memory operations that happen before it

See C/C++ acquire and release semantics for a more
detailed discussion….

How to really implement a lock

li t0, 1 # Initialize
swap value.

again:
amoswap.w.aq t0, t0, (a0) #

Attempt to acquire lock.
bnez t0, again # Retry

if held.
...
Critical section.
...
amoswap.w.rl x0, x0, (a0) #

Release lock by storing 0.
Excerpted from The RISC-V Instruction Set Manual.

spinlock.c
xv6 support for locks

Why spin locks

• CPU cycles wasted while lock is waiting
• Idea: give up the CPU and switch to another

process
• Guidelines:
• Spin locks for very short critical sections
• What about longer critical sections?

• Blocking locks available in most systems
• Higher overheads typically
• But ability to yield the CPU

Conclusion

• Don’t share if you don’t have to
• Start with coarse-grained locking
• Don’t assume, measure! Which locks prevent

parallelism?
• Insert fine-grained locking only when you need

more parallelism
• Use automatized tools like race detectors to find

locking bugs

