
The benefits and costs of writing a UNIX kernel in a
high-level language

Cody Cutler, M. Frans Kaashoek, Robert T. Morris

MIT CSAIL

1 / 64

What language to use for developing a kernel?

A hotly-debated question but often with few facts

6.828 students: why are we using C? why not a type-safe language?

To shed some light, we focus on:

• A new kernel or monitor

• A language with automatic memory management (i.e., with a garbage collector)

• A traditional, monolithic UNIX kernel

2 / 64

C is popular for kernels

Windows

Linux

*BSD

3 / 64

Why C is good: complete control

Control of memory allocation and freeing

Almost no implicit, hidden code

Direct access to memory

Few dependencies

4 / 64

Why C is bad

Writing secure C code is difficult

40 Linux kernel execute-code CVEs in 2017 due to memory-safety errors

(execute-code CVE is a bug that enables attacker to run malicious code in kernel)

5 / 64

High-level languages (HLLs) provide memory-safety

All 40 CVEs would not execute malicious code in an HLL

6 / 64

HLL benefits

Type safety

Automatic memory management with garbage collector

Concurrency

Abstraction

7 / 64

HLL potential downsides

Poor performance:

• Bounds, cast, nil-pointer checks

• Garbage collection

Incompatibility with kernel programming:

• No direct memory access

• No hand-written assembly

• Limited concurrency or parallelism

8 / 64

Goal: measure HLL trade-offs

Explore total effect of using HLL instead of C:

• Impact on safety

• Impact on programmability

• Performance cost

...for production-grade kernel

9 / 64

Prior work: HLL trade-offs

Many studies of HLL trade-offs for user programs (Hertz’05, Yang’04)

But kernels different from user programs

(ex: more careful memory management)

Need to measure HLL trade-offs in kernel

10 / 64

Prior work: HLL kernels

Singularity(SOSP’07), J-kernel(ATC’98), Taos(ASPLOS’87), Spin(SOSP’95),
Tock(SOSP’17), KaffeOS(ATC’00), House(ICFP’05),...

Explore new ideas and architectures

None measure HLL trade-offs vs C kernel

11 / 64

Measuring trade-offs is tricky

Must compare with production-grade C kernel (e.g., Linux)

Problem: can’t build production-grade HLL kernel

12 / 64

The most we can do

Build HLL kernel

Keep important parts the same as Linux

Optimize until performance is roughly similar to Linux

Measure HLL trade-offs

Risk: measurements of production-grade kernels differ

13 / 64

Methodology

Built HLL kernel

Same apps, POSIX interface, and monolithic organization

Optimized, measured HLL trade-offs
14 / 64

Contributions

BISCUIT, new x86-64 Go kernel

• source compatibility for Linux applications

New scheme to deal with heap exhaustion

Evaluation

• Measurements of HLL costs for two popular, kernel-intensive apps

• Description of qualitative ways HLL helped

15 / 64

Which HLL?

Go is a good choice:

• Easy to call assembly

• Compiled to machine code w/good compiler

• Easy concurrency

• Easy static analysis

• GC (Concurrent mark and sweep)

Rust might be a fine choice too

16 / 64

BISCUIT overview

58 system calls, LOC: 28k Go,

1.5k assembly (boot, entry/exit)

17 / 64

BISCUIT Features

• Multicore

• Threads

• Journaled FS (7k LOC)

• Virtual memory (2k LOC)

• TCP/IP stack (5k LOC)

• Drivers: AHCI and Intel 10Gb NIC (3k LOC)

18 / 64

User programs

Process has own address space

User/kernel memory isolated by hardware

Each user thread has companion kernel thread

Kernel threads are “goroutines”

19 / 64

System calls

User thread put args in registers

User thread executes SYSENTER

Control passes to kernel thread

Kernel thread executes system call, returns via SYSEXIT

20 / 64

BISCUIT design puzzles

Runtime on bare-metal

Goroutines run different applications

Device interrupts in runtime critical sections

Hardest puzzle: heap exhaustion

21 / 64

Puzzle: Heap exhaustion

22 / 64

Puzzle: Heap exhaustion

22 / 64

Puzzle: Heap exhaustion

22 / 64

Puzzle: Heap exhaustion

22 / 64

Puzzle: Heap exhaustion

Can’t allocate heap memory =⇒ nothing works
All kernels face this problem

22 / 64

How to recover?

Strawman 0: panic (xv6)

Strawman 1: Wait for memory in allocator?

• May deadlock!

Strawman 2: Check/handle allocation failure, like C kernels?

• Difficult to get right
• Can’t – Go implicitly allocates
• Doesn’t expose failed allocations

Both cause problems for Linux; see “too small to fail” rule

23 / 64

How to recover?

Strawman 0: panic (xv6)

Strawman 1: Wait for memory in allocator?

• May deadlock!

Strawman 2: Check/handle allocation failure, like C kernels?

• Difficult to get right
• Can’t – Go implicitly allocates
• Doesn’t expose failed allocations

Both cause problems for Linux; see “too small to fail” rule

23 / 64

How to recover?

Strawman 0: panic (xv6)

Strawman 1: Wait for memory in allocator?

• May deadlock!

Strawman 2: Check/handle allocation failure, like C kernels?

• Difficult to get right
• Can’t – Go implicitly allocates
• Doesn’t expose failed allocations

Both cause problems for Linux; see “too small to fail” rule

23 / 64

How to recover?

Strawman 0: panic (xv6)

Strawman 1: Wait for memory in allocator?

• May deadlock!

Strawman 2: Check/handle allocation failure, like C kernels?

• Difficult to get right
• Can’t – Go implicitly allocates
• Doesn’t expose failed allocations

Both cause problems for Linux; see “too small to fail” rule

23 / 64

How to recover?

Strawman 0: panic (xv6)

Strawman 1: Wait for memory in allocator?

• May deadlock!

Strawman 2: Check/handle allocation failure, like C kernels?

• Difficult to get right

• Can’t – Go implicitly allocates
• Doesn’t expose failed allocations

Both cause problems for Linux; see “too small to fail” rule

23 / 64

How to recover?

Strawman 0: panic (xv6)

Strawman 1: Wait for memory in allocator?

• May deadlock!

Strawman 2: Check/handle allocation failure, like C kernels?

• Difficult to get right
• Can’t – Go implicitly allocates
• Doesn’t expose failed allocations

Both cause problems for Linux; see “too small to fail” rule
23 / 64

BISCUIT solution: reserve memory

To execute system call...

24 / 64

BISCUIT solution: reserve memory

To execute system call...

24 / 64

BISCUIT solution: reserve memory

To execute system call...

24 / 64

BISCUIT solution: reserve memory

To execute system call...

24 / 64

BISCUIT solution: reserve memory

To execute system call...

24 / 64

BISCUIT solution: reserve memory

To execute system call...

No checks, no error handling code, no deadlock

24 / 64

Heap reservation bounds

How to compute max memory for each system call?

Smaller heap bounds =⇒ more concurrent system calls

25 / 64

Heap bounds via static analysis

HLL easy to analyze

Tool computes reservation via escape analysis

Using Go’s static analysis packages

Annotations for difficult cases

≈ three days of expert effort to apply tool

26 / 64

BISCUIT implementation

Building BISCUIT was similar to other kernels

BISCUIT adopted many Linux optimizations:

• large pages for kernel text

• per-CPU NIC transmit queues

• RCU-like directory cache

• execute FS ops concurrently with commit

• pad structs to remove false sharing

Good OS performance more about optimizations, less about HLL

27 / 64

BISCUIT implementation

Building BISCUIT was similar to other kernels

BISCUIT adopted many Linux optimizations:

• large pages for kernel text

• per-CPU NIC transmit queues

• RCU-like directory cache

• execute FS ops concurrently with commit

• pad structs to remove false sharing

Good OS performance more about optimizations, less about HLL

27 / 64

Evaluation

Part 1: HLL benefits

Part 2: HLL performance costs

28 / 64

Evaluation: HLL benefits

Should we use high-level languages to build OS kernels?

1 Does BISCUIT use HLL features?

2 Does HLL simplify BISCUIT code?

3 Would HLL prevent kernel exploits?

29 / 64

1: Does BISCUIT use HLL features?

Counted HLL feature use in BISCUIT and two huge Go projects

(Moby and Golang, >1M LOC)

30 / 64

1: BISCUIT uses HLL features

 0
 2
 4
 6
 8

 10
 12
 14
 16
 18

Allocations

M
aps

Slices

Channel

String

M
ulti-return

Closure

Finalizer

Defer

Go stm
t

Interface

Type asserts

Im
ports

C
o
u
n
t/

1
K

 l
in

e
s

Biscuit
Golang

Moby

Biscuit uses most HLL features similarly

31 / 64

1: BISCUIT uses HLL features

 0
 2
 4
 6
 8

 10
 12
 14
 16
 18

Allocations

M
aps

Slices

Channel

String

M
ulti-return

Closure

Finalizer

Defer

Go stm
t

Interface

Type asserts

Im
ports

C
o
u
n
t/

1
K

 l
in

e
s

Biscuit
Golang

Moby

Biscuit uses most HLL features similarly 31 / 64

2: Does HLL simplify BISCUIT code?

Qualitatively, my favorite features:

• GC’ed allocation

• slices

• defer

• multi-valued return

• strings

• closures

• maps

Net effect: simpler code
32 / 64

2: Simpler concurrency

Simpler data sharing between threads

In HLL, GC frees memory

In C, programmer must free memory

33 / 64

2: Simpler concurrency example

buf := new(object_t)

// Initialize buf...

go func() {

process1(buf)

}()

process2(buf)

// When should C code free(buf)?

34 / 64

2: Simpler read-lock-free concurrency

Locks and reference counts expensive in hot paths

Good for performance to avoid them

Challenge in C: when is object free?

35 / 64

2: Read-lock-free example

var Head *Node

func get() *Node {
return atomic_load(&Head)

}

func pop() {
Lock()

v := Head

if v != nil {
atomic_store(&Head, v.next)

}

Unlock()

}

// When should C code free(v)?

36 / 64

2: Simpler read-lock-free concurrency

Linux safely frees via RCU (McKenney’98)

Defers free until all CPUs context switch

Programmer must follow RCU rules:

• Prologue and epilogue surrounding accesses

• No sleeping or scheduling

Error prone in more complex situations

GC makes these challenges disappear

HLL significantly simplifies read-lock-free code

37 / 64

2: Simpler read-lock-free concurrency

Linux safely frees via RCU (McKenney’98)

Defers free until all CPUs context switch

Programmer must follow RCU rules:

• Prologue and epilogue surrounding accesses

• No sleeping or scheduling

Error prone in more complex situations

GC makes these challenges disappear

HLL significantly simplifies read-lock-free code

37 / 64

3: Would HLL prevent kernel exploits?

Inspected fixes for all publicly-available execute code CVEs in Linux kernel for 2017

Classify based on outcome of bug in BISCUIT

38 / 64

3: HLL prevents kernel exploits

Category # Outcome in Go

— 11 unknown
logic 14 same
use-after-free/double-free 8 disappear due to GC
out-of-bounds 32 panic or disappear

panic likely better than malicious code execution

HLL would prevent kernel exploits

39 / 64

3: HLL prevents kernel exploits

Category # Outcome in Go

— 11 unknown
logic 14 same
use-after-free/double-free 8 disappear due to GC
out-of-bounds 32 panic or disappear

panic likely better than malicious code execution

HLL would prevent kernel exploits
39 / 64

Evaluation: HLL performance

Should we use high-level languages to build OS kernels?

1 Is BISCUIT’s performance roughly similar to Linux?

2 What is the breakdown of HLL tax?

3 How much might GC cost?

4 What are the GC pauses?

5 What is the performance cost of Go compared to C?

6 Does BISCUIT’s performance scale with cores?

40 / 64

Experimental setup

Hardware:

• 4 core 2.8Ghz Xeon-X3460

• 16 GB RAM

• Hyperthreads disabled

Eval applications:

• NGINX (1.11.5) – webserver

• Redis (3.0.5) – key/value store

• CMailbench – mail-server benchmark

41 / 64

Applications are kernel intensive

No idle time; 79%-92% kernel time

In-memory FS

Ran for a minute

512MB heap RAM for BISCUIT

42 / 64

1: Is BISCUIT’s perf roughly similar to Linux?

i.e. is BISCUIT’s performace similar to production-grade kernel?

Compare app throughput on BISCUIT and Linux

43 / 64

Linux setup

Debian 9.4, Linux 4.9.82

Disabled features that slowed Linux down on our apps:

• page-table isolation

• retpoline

• kernel address space layout randomization

• transparent huge-pages

• ...

44 / 64

1: Is BISCUIT’s perf roughly similar to Linux?

BISCUIT ops/s Linux ops/s Ratio

45 / 64

1: Is BISCUIT’s perf roughly similar to Linux?

BISCUIT ops/s Linux ops/s Ratio

CMailbench (mem) 15,862 17,034 1.07
NGINX 88,592 94,492 1.07
Redis 711,792 775,317 1.09

45 / 64

1: Is BISCUIT’s perf roughly similar to Linux?

BISCUIT ops/s Linux ops/s Ratio

CMailbench (mem) 15,862 17,034 1.??
NGINX 88,592 94,492 1.??
Redis 711,792 775,317 1.??

45 / 64

1: Is BISCUIT’s perf roughly similar to Linux?

BISCUIT ops/s Linux ops/s Ratio

CMailbench (mem) 15,862 17,034 1.??
NGINX 88,592 94,492 1.??
Redis 711,792 775,317 1.??

Linux has more features: NUMA, scales to many cores, ...

Not apples-to-apples, but BISCUIT perf roughly similar

45 / 64

2: What is the breakdown of HLL tax?

Record CPU time profile of our apps

Categorize samples into HLL cost buckets

46 / 64

GC GCs Prologue Write barrier Safety
cycles cycles cycles cycles

CMailbench 3% 42 6% < 1% 3%
NGINX 2% 32 6% < 1% 2%
Redis 1% 30 4% < 1% 2%

Benchmarks allocate kernel heap rapidly

but have few long-lived kernel heap objects

47 / 64

2: Prologue cycles are most expensive

GC GCs Prologue Write barrier Safety
cycles cycles cycles cycles

CMailbench 3% 42 6% < 1% 3%
NGINX 2% 32 6% < 1% 2%
Redis 1% 30 4% < 1% 2%

48 / 64

2: Prologue cycles are most expensive

GC GCs Prologue Write barrier Safety
cycles cycles cycles cycles

CMailbench 3% 42 6% < 1% 3%
NGINX 2% 32 6% < 1% 2%
Redis 1% 30 4% < 1% 2%

48 / 64

2: Prologue cycles are most expensive

GC GCs Prologue Write barrier Safety
cycles cycles cycles cycles

CMailbench 3% 42 6% < 1% 3%
NGINX 2% 32 6% < 1% 2%
Redis 1% 30 4% < 1% 2%

48 / 64

2: Prologue cycles are most expensive

GC GCs Prologue Write barrier Safety
cycles cycles cycles cycles

CMailbench 3% 42 6% < 1% 3%
NGINX 2% 32 6% < 1% 2%
Redis 1% 30 4% < 1% 2%

48 / 64

2: Prologue cycles are most expensive

GC GCs Prologue Write barrier Safety
cycles cycles cycles cycles

CMailbench 3% 42 6% < 1% 3%
NGINX 2% 32 6% < 1% 2%
Redis 1% 30 4% < 1% 2%

Benchmarks allocate kernel heap rapidly
but have few long-lived kernel heap objects

48 / 64

GC cost varies by program

More live data =⇒ more cycles per GC

Less free heap RAM =⇒ GC more frequent

Total GC cost ∝ ratio of live data to free heap RAM

49 / 64

GC cost varies by program

More live data =⇒ more cycles per GC

Less free heap RAM =⇒ GC more frequent

Total GC cost ∝ ratio of live data to free heap RAM

49 / 64

3: How much might GC cost?

Created two million vnodes of live data

Varied free heap RAM

Ran CMailbench, measured GC cost

50 / 64

3: How much might GC cost?

Live Free Ratio Tput GC%
(MB) (MB)

51 / 64

3: How much might GC cost?

Live Free Ratio Tput GC%
(MB) (MB)

640 320 2 10,448 34%

51 / 64

3: How much might GC cost?

Live Free Ratio Tput GC%
(MB) (MB)

640 320 2 10,448 34%
640 640 1 12,848 19%

51 / 64

3: How much might GC cost?

Live Free Ratio Tput GC%
(MB) (MB)

640 320 2 10,448 34%
640 640 1 12,848 19%
640 1280 0.5 14,430 9%

51 / 64

3: How much might GC cost?

Live Free Ratio Tput GC%
(MB) (MB)

640 320 2 10,448 34%
640 640 1 12,848 19%
640 1280 0.5 14,430 9%

⇒ Need 3× heap RAM to keep GC < 10%

51 / 64

3: GC memory cost in practice?

Few programs allocate millions of resources

MIT’s big time-sharing machines:

80 users, 800 tasks, 9-16GB RSS, <2GB kernel heap

(Exception: cached files, maybe evictable)

Memory cost acceptable in common situations?

52 / 64

GC pauses

GC must eventually execute

Could delay latency-sensitive work

Some GCs cause one large pause, but not Go’s

• Go’s GC is interleaved with execution (Baker’78, McCloskey’08)

• Causes many small delays

53 / 64

4: What are the GC pauses?

Measured duration of each GC pause during NGINX

Multiple pauses occur during a single request

Sum pause durations over each request

54 / 64

4: What are the GC pauses?

Max single pause: 115 µs

(marking large part of TCP connection table)

Max total pauses during request: 582 µs

Less than 0.3% of requests paused > 100µs

55 / 64

4: GC pauses OK?

Some programs can’t tolerate rare 582 µs pauses

But many probably can

99%-ile latency in service of Google’s “Tail at Scale” was 10ms

56 / 64

5: What is the cost of Go compared to C?

Compared OS code paths with identical functionality

Chose paths that are:

• core OS paths

• small enough to make them have same functionality

Two code paths in OSDI’18 paper

• pipe ping-pong (systems calls, context switching)

• page-fault handler (exceptions, VM)

57 / 64

5: What is the cost of Go compared to C?

Pipe ping-pong code path:

• LOC: 1.2k Go, 1.8k C

• No allocation; no GC

• Top-10 most expensive instructions match

58 / 64

5: C is 15% faster

Pipe ping-pong:

C Go
(ops/s) (ops/s) Ratio

536,193 465,811 1.15

Prologue/safety-checks⇒ 16% more instructions

Go slower, but competitive

59 / 64

6: Does BISCUIT scale?

Can BISCUIT efficiently use many cores?

Is Go scalability bottleneck?

60 / 64

6: Does BISCUIT scale?

Ran CMailbench, varied cores from 1 to 20

Measured throughput

61 / 64

6: BISCUIT scales well to 10 cores

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 5 10 15 20

T
h
ro

u
g
h
p
u
t

(k
/s

)

Cores

Perfect
Biscuit

Lock contention in CMailbench at 20 cores, not NUMA-aware
62 / 64

Should one use HLL for a new kernel?

The HLL worked well for kernel development

Performance is paramount⇒ use C (up to 15%)

Minimize memory use⇒ use C (↓ mem. budget, ↑ GC cost)

Safety is paramount⇒ use HLL (40 CVEs stopped)

Performance merely important⇒ use HLL (pay 15%, memory)

63 / 64

6.S081/6.828 and HLL

Should we use HLL in 6.828?

git clone https://github.com/mit-pdos/biscuit.git

64 / 64

