Journaling the Linux ext2fs Filesystem

Stephen C. Tweedie
sct@dcs.ed.ac.uk

Abstract

This paper describes a work-in-progress to design and implement a transactional metadata journal for
the Linux ext2fs filesystem. We review the problem of recovering filesystems after a crash, and describe a
design intended to increase ext2fs's speed and reliability of crash recovery by adding a transactional

journal to the filesystem.

| ntroduction

Filesystemsare centralpartsof any modernoperat-
ing systemandareexpectedto be bothfastandex-
ceedingly reliable. However, problemsstill occur,
and machinescan go down unexpectedlydue to
hardware, software or power failures.

After an unexpectedeboot,it may take sometime

for asystemto recoverits filesystemdo a consistent
state.As disk sizesgrow, this time can becomea

serious problem, leaving a systemoffline for an

hour or more as the disk is scannedcheckedand

repaired.Although disk drives are becomingfaster
eachyear, this speedincreaseis modestcompared
with their enormousincreasein capacity.Unfortu-

nately, every doubling of disk capacityleadsto a

doubling of recoverytime when using traditional
filesystem checking techniques.

Wheresystemavailability is important,this may be
time which cannotbe sparedso a mechanisnis re-
quired which will avoid the needfor an expensive
recovery stage every time a machine reboots.

What'sin afilesystem?

What functionality do we requireof anyfilesystem?
There are obviousrequirementsvhich are dictated
by the operating systemwhich the filesystemis

serving.The way that the filesystemappearso ap-
plicationsis one—operatingystemaypically require
thatfilenamesadhereo certainconventionsandthat

LinuxExpo '98

files possesgertainattributeswhich areinterpreted
in a specific way.

However,thereare many internal aspectsf a file-

systemwhich are not so constrainedand which a
filesystem implementorcan designwith a certain
amountof freedom.The layout of dataon disk (or
alternatively, perhaps,its network protocaol, if the
filesystemis not local), details of internal caching,
and the algorithmsusedto scheduledisk |O-these
are all thingswhich canbe changedwithout neces-
sarily violating the specificationof the filesystem’s
application interface.

There are a number of reasonswhy we might
chooseone designover another.Compatibility with
older filesystemsmight be anissue:for example,
Linux provides a UMSDOS filesystem which
implementghe semanticof a POSIX filesystemon
top of the standard MSDOS on-disk file structure.

Whentrying to addresghe problemof long filesys-
tem recoverytimeson Linux, we kept a numberof
goals in mind:

¢ Performanceshouldnot suffer seriouslyasare-
sult of using the new filesystem;

e Compatibility with existing applications must
not be broken

* The reliability of the filesystem must not be
compromised in any way.

Journalling the ext2fs Filesystem Pagel



Filesystem Reliability

Therearea numberof issuesat stakewhenwe talk
aboutfilesystemreliability. For the purposeof this
particularproject,we areinterestedorimarily in the
reliability with which we canrecoverthe contentsof
a crashedfilesystem,and we can identify several
aspects of this:

Preservation: datawhich was stableon disk before
the crashshouldnevereverbe damagedObviously,
files which werebeingwritten out at the time of the
crash cannotbe guaranteedo be perfectly intact,
but any files which were alreadysafeon disk must
not be touched by the recovery system.

Predictability: the failure modesfrom which we
haveto recovershouldbe predictablein orderfor us
to recover reliably.

Atomicity: manyfilesystemoperationgequirea sig-
nificant numberof separatéOs to complete A good
examples therenamingof afile from onedirectory
to another.Recoveryis atomic if such filesystem
operationsareeitherfully completedon disk or fully

undoneafter recoveryfinishes.(For the renameex-
ample, recoveryshouldleave either the old or the
new filename committedto disk after a crash,but
not both.)

Existing implementations

The Linux ext2fs filesystem offers preservingre-

covery,but it is non-atomicand unpredictablePre-
dictability is in fact a much more complexproperty
thanappearstfirst sight.In orderto be ableto pre-
dictably mop up after a crash,the recoveryphase
must be able to work out what the filesystemwas
trying to do at thetime if it comesacrossanincon-
sistencyrepresentinginincompleteoperationonthe
disk. In general,this requiresthat the filesystem
must makeits writes to disk in a predictableorder
whenevera single update operationchangesmul-

tiple blocks on disk.

Therearemanywaysof achievingthis orderingbe-
tweendisk writes. The simplestis simply to wait for

the first writes to completebefore submitting the
next onesto the device driver—the “synchronous
metadataupdate” approach.This is the approach
taken by the BSD FastFile Systenfil], which ap-

pearedin 4.2BSD and which hasinspired many of

the Unix filesystems which followed, including

ext2fs.

LinuxExpo '98

However, the big drawbackof synchronouaneta-
dataupdateis its performancelf filesystemsopera-
tion require that we wait for disk IO to complete,
thenwe cannotbatchup multiple filesystemupdates
into a singledisk write. For example,if we createa
dozendirectory entriesin the samedirectory block
on disk, then synchronousupdatesrequire us to

write that block back to disk a dozen separate times.

There are ways aroundthis performanceproblem.
One wayto keepthe orderingof disk writes without
actually waiting for the 10s to completeis to main-
tain an ordering between the disk buffers in

memory,andto ensurethat whenwe do eventually
go to write back the data,we neverwrite a block
until all of its predecessorare safely on disk-the
“deferred ordered write” technique.

One complicationof deferredorderedwritesis that
it is easyto getinto a situationwherethereare cy-

clic dependenciebetweencachedbuffers. For ex-

ample,if we try to renamea file betweertwo direc-
toriesandat the sametime renameanotherfile from

the seconddirectory into the first, thenwe end up

with a situationwhereboth directoryblocksdepend
on eachother: neithercanbe written until the other
one is on disk.

Ganger's‘soft updates’mechanisri2] neatlyside-
stepsthis problemby selectivelyrolling back spe-
cific updateswithin a buffer if thoseupdatesstill
have outstandingdependenciesshenwe first try to
write thatbuffer outto disk. The missingupdatewill
be restoredlater once all of its own dependencies
are satisfied.This allows us to write out buffersin
any orderwe choosewhenthereare circular depen-
dencies. The soft update mechanismhas been
adoptedby FreeBSDandwill be availableaspartof
their next major kernel version.

All of theseapproachesharea commonproblem,
however.Although they ensurethat the stateof the
disk is in a predictablestateall the way throughthe
courseof a filesystemoperation,the recoverypro-

cessstill hasto scanthe entiredisk in orderto find

and repair any uncompletedoperations.Recovery
becomesmore reliable, but is not necessarilyany
faster.

It is, however possibleto makefilesystemrecovery
fastwithout sacrificingreliability and predictability.
This is typically doneby filesystemswhich guaran-
tee atomic completion of filesystem updates (a
single filesystemupdateis usually referredto asa
transaction in such systems) The basic principle

Journalling the ext2fs Filesystem Page2



behind atomic updatesis that the filesystem can
write an entire batchof new datato disk, but that
thoseupdatego not takeeffectuntil afinal, commit
updateis madeon thedisk. If thecommitinvolvesa
write of a single block to the disk, thena crashcan
only resultin two cases:either the commit record
has beenwritten to disk, in which caseall of the
committedfilesystemoperationscan be assumedo
be completeand consistenton disk; or the commit
recordis missing,in which casewe haveto ignore
any of the otherwrites which occurreddueto par-
tial, uncommittedupdatesstill outstandingat the
time of the crash.This naturally requiresa filesys-
tem updateto keepboththe old andnew contentsof
the updateddataon disk somewhereright up until
the time of the commit.

There are a numberof ways of achievingthis. In

somecasesfilesystemskeepthe new copiesof the
updateddatain differentlocationsfrom the old cop-
ies, and eventuallyreusethe old spaceoncethe up-
datesare committedto disk. Network Appliance’s
WAFL filesysteni6] works this way, maintaininga
tree of filesystemdatawhich canbe updatedatomi-
cally simply by copyingtreenodesto newlocations
andthenupdatinga single disk block at the root of

the tree.

Log-StructuredFilesystemsachievethe sameend

by writing all filesystemdata—botHile contentsand

metadata—tathe disk in a continuousstream (the

“log”). Findingthelocationof a pieceof datausing

sucha schemecanbe morecomplexthanin atradi-

tional filesystem,but logs have the big advantage
that it is relatively easyto placemarksin thelog to

indicatethatall dataup to a certainpointis commit-

tedandconsistenbn disk. Writing to sucha filesys-

tem is also particularly fast, sincethe natureof the

log makesmostwrites occurin a continuousstream
with no disk seeks.A numberof filesystemshave

been written basedon this design, including the

Sprite LFS[3] and the Berkeley LFS[4]. Thereis

also a prototype LFS implementation on Lif&jx

Finally, thereis a classof atomically-updatedile-
systemsin which the old and new versionsof in-
completeupdatesare preservedoy writing the new
versionsto a separatdocation on disk until such
time asthe updatehasbe committed.After commit,
the filesystemis free to write the new versionsof
the updateddisk blocksbackto their homelocations
on disk.

LinuxExpo '98

This is the way in which “journaling” (sometimes
referredto as “log enhanced”)filesystemswork.
When metadataon the disk is updatedthe updates
arerecordedin a separateareaof the disk reserved
for useasa journal. Filesystemtransactionsvhich
completehavea commitrecordaddedto thejournal,
andonly afterthe commitis safelyon disk may the
filesystem write the metadataback to its original
location. Transactionsare atomic becausewe can
always either undo a transaction(throw away the
new datain the journal) or redoit (copythe journal
copy back to the original copy) after a crash,ac-
cording to whether or not the journal containsa
commit record for the transaction.Many modern
filesystems have adopted variations on this design.

Designing a new filesystem
for Linux

The primary motivation behindthis new filesystem
designfor Linux wasto eliminateenormouslylong
filesystemrecoverytimesaftera crash.For this rea-
son,we chosea filesystemjournalingschemeasthe
basisfor the work. Journalingachievedast filesys-
tem recoverybecauseat all timeswe know that all

datawhich is potentially inconsistenton disk must
be recordedalsoin the journal. As a result, filesys-
temrecoverycanbe achievedby scanninghe jour-
nal and copying back all committed data into the
main filesystemarea.This is fast becausedhe jour-
nal is typically very muchsmallerthanthe full file-

systemlt needonly belargeenoughto recordafew
seconds-worth of uncommitted updates.

The choiceof journaling hasanotherimportantad-
vantage A journalingfilesystemdiffers from a tra-
ditional filesystemin thatit keepstransientdatain a
new location, independentof the permanentdata
and metadateon disk. Becauseof this, sucha file-

systemdoesnot dictatethat the permanentiatahas
to be storedin any particularway. In particular,it is
quite possiblefor the ext2fs filesystem’s on-disk
structureto be usedin the new filesystem,and for

the existing ext2fs codeto be usedasthe basisfor

the journaling version.

As aresult,we are not designinga new filesystem
for Linux. Rather, we are adding a new
feature—transactionafilesystem journaling—-to the
existing ext2fs.

Journalling the ext2fs Filesystem Page3



Anatomy of a transaction

A centralconceptwhenconsideringa journaledfile-

systemis the transactioncorrespondingo a single
update of the filesystem. Exactly one transaction
resultsfrom any single filesystemrequestmadeby

anapplication,andcontainsall of thechangedneta-
data resulting from that request.For example,a
write to afile will resultin an updateto the modifi-

cation timestampin the file’s inode on disk, and
may also update the length information and the
block mappinginformationif thefile is extendedy

the write. Quotainformation, free disk spaceand
used block bitmapswill all haveto be updatedif

new blocksareallocatedto thefile, andall this must
be recorded in the transaction.

There is anotherhidden operationin a transaction
which we haveto be awareabout.Transactionslso
involve readingthe existing contentsof the filesys-
tem, andthatimposesan orderingbetweentransac-
tions. A transactionwhich modifiesa block on disk
cannotcommit after a transactionwhich readsthat
new dataandthenupdateghe disk basedon whatit
read.Thedependencgxistsevenif thetwo transac-
tions do not ever try to write back the same
blocks—imagineonetransactiondeletinga filename
from one block in a directory and anothertransac-
tion inserting the same filename into a different
block. The two operationsmay not overlapin the
blockswhich they write, but the secondoperationis
only valid afterthefirst one succeedsgviolating this
would result in duplicate directory entries).

Finally, there is one ordering requirementwhich
goes beyond ordering betweenmetadataupdates.
Beforewe cancommita transactiorwhich allocates
new blocks to a file, we haveto make absolutely
surethatall of the datablocks being createdby the
transactionhave in fact beenwritten to disk (we
termthesedatablocksdependent data). Missing out
this requirementvould not actually damagethe in-
tegrity of the filesystem’smetadatabut it could po-
tentially leadto anewfile still containinga previous
file contentsaftercrashrecoverywhichis a security
risk as well as being a consistency problem.

Merging transactions

Much of the terminologyandtechnologyusedin a

journaled filesystem comes from the database
world, where journaling is a standardmechanism
for ensuringatomic commits of complex transac-
tions. However,thereare manydifferencesbetween

LinuxExpo '98

Journalling the ext2fs Filesystem

thetraditionaldatabasd¢ransactioranda filesystem,
andsomeof theseallow usto simplify thingsenor-
mously.

Two of the biggestdifferencesare that filesystems
haveno transactiorabort,andall filesystemtransac-
tions are relatively short-lived. Whereasin a data-
basewe sometimesvantto aborta transactiorhalf-

way through,discardingany changesve havemade
sofar, the sameis nottruein ext2fs—bythetime we

startmakingany changedo thefilesystem we have
alreadycheckedthat the changecan be completed
legally. Aborting a transaction before we have
startedwriting changes(for example,a createfile

operationmight abortif it finds an existing file of

the samename)posesno problemsincewe canin

that case simply commit the transactionwith no

changes and achieve the same effect.

The seconddifference—theshortlife term of filesys-
temtransactions—igmportantsinceit meanghatwe
cansimplify the dependenciebetweentransactions
enormouslyIf we haveto caterfor somevery long-
term transactionsthen we needto allow transac-
tions to commitindependentlyin any orderaslong
astheydo not conflict with eachother,asotherwise
a single stalledtransactioncould hold up the entire
system.If all transactionsare sufficiently quick,
however thenwe canrequirethattransactiongom-
mit to disk in strict sequentiabrderwithout signifi-
cantly hurting performance.

With this observationywe canmakea simplification
to the transactiormodelwhich canreducethe com-
plexity of the implementationsubstantiallywhile at
the sametime increasingperformance Ratherthan
createa separatdransactiorfor eachfilesystemup-
date, we simply createa new transactionevery so
often, and allow all filesystemservicecalls to add
their updatesto that single system-widecompund
transaction.

Thereis one greatadvantage®f this mechanism.
Becauseall operationswithin a compoundtransac-
tion will be committedto thelog togetherwe do not
haveto write separateopiesof any metadatdlocks
which areupdatedvery frequently.In particular this
helps for operationssuch as creating new files,
wheretypically everywrite to the file resultsin the
file being extendedthus updatingthe samequota,
bitmap blocks and inode blocks continuously.Any
block which is updatedmany times during the life
of a compoundransactiomeedonly be committed
to disk once.

Paged



The decision about when to commit the current
compound transactionand start a new one is a
policy decisionwhich shouldbe underusercontrol,
since it involves a trade-off which affects system
performanceThe longera commit waits, the more
filesystemoperationscan be mergedtogetherin the
log and so less 10 operationsare requiredin the
long term. However, longer commitstie up larger
amountsof memory and disk space,and leave a
largerwindow for lossof updatesf a crashoccurs.
They may alsoleadto stormsof disk activity which
make filesystem response times less predictable.

On-disk representation

Thelayoutof the journaledext2fsfilesystemon disk
will be entirely compatiblewith existingext2fsker-
nels. Traditional UNIX filesystemsstore data on
disk by associatingeachfile with a unique num-
beredinode on the disk, and the ext2fs designal-
readyincludesa numberof reservednodenumbers.
We use one of thesereservedinodesto store the
filesystemjournal, andin all otherrespectghe file-
systemwill be compatiblewith existing Linux ker-
nels. The existing ext2fs designincludesa set of
compatibility bitmaps,in which bits can be setto
indicate that the filesystemusescertainextensions.
By allocatinga new compatibility bit for the jour-
naling extension,we can ensurethat even though
old kernelswill be able to successfullymount a
new, journaled ext2fs filesystem,they will not be
permitted to write to the filesystem in any way.

Format of the filesystem journal

The journal file’s job is simple:it recordsthe new
contentsof filesystemmetadatalockswhile we are
in the processof committingtransactionsThe only
otherrequiremenof thelog is thatwe mustbe able
to atomically commit the transactions it contains.

We write threedifferenttypesof datablocksto the
journal: metadata, descriptor and header blocks.

A journal metadatablock containsthe entire con-
tentsof asingleblock of filesystemmetadataasup-
dated by a transaction.This meansthat however
small a changewe maketo a filesystemmetadata
block, we haveto write an entire journal block out
to log thechangeHowever thisturnsoutto berela-
tively cheap for two reasons:

« Journalwrites are quite fastanyway,sincemost
writes to the journal are sequentialandwe can
easily batchthe journal IOs into large clusters

LinuxExpo '98

which can be handledefficiently by the disk
controller;

e« By writing out the entire contents of the
changedmetadatabuffer from the filesystem
cacheto the journal, we avoid having to do
much CPU work in the journaling code.

The Linux kernel already providesus with a very
efficient mechanisnfor writing out the contentsof

an existing block in the buffer cacheto a different
locationon disk. Every buffer in the buffer cacheis

describedby a structureknown as a buffer_head,

which includesinformation aboutwhich disk block
the buffer’'s datais to be written to. If we wantto

write an entire buffer block to a new locationwith-

outdisturbingthe buffer_headye cansimply create
a new, temporarybuffer_headnto which we copy
the descriptionfrom the old one, and then edit the
device block numberfield in the temporarybuffer
headto point to a block within the journal file. We
canthensubmitthe temporarybuffer_headdirectly
to thedevicelO systemanddiscardit oncethelO is

complete.

Descriptorblocksarejournal blockswhich describe
other journal metadatablocks. Wheneverwe want
to write out metadatéblocksto the journal, we need
to recordwhich disk blocks the metadatanormally
lives at, so that the recoverymechanismcan copy
the metadataback into the main filesystem.A de-
scriptorblockis written out beforeeachsetof meta-
datablocksin the journal, and containsthe number
of metadatablocks to be written plus their disk
block numbers.

Both descriptorand metadatablocks are written se-
quentially to the journal, starting again from the
startof the journalwhenevemwe run off the end. At
all times, we maintainthe currentheadof the log
(the block numberof the last block written) andthe
tail (the oldestblock in the log which hasnot been
unpinned,as describedbelow). Wheneverwe run
out of log space—thdeadof thelog hasloopedback
round and caughtup with the tail-we stall new log
writes until thetail of thelog hasbeencleanedup to
free more space.

Finally, thejournalfile containsa numberof header
blocks at fixed locations. Theserecordthe current
headandtail of thejournal,plusa sequencaumber.
At recoverytime, the headerblocks are scannedo
find the block with the highestsequencenumber,
and whenwe scanthe log during recoverywe just

Journalling the ext2fs Filesystem Pageb



run throughall journal blocks from the tail to the
head, as recorded in that header block.

Committing and checkpointing the
journal

At somepoint, eitherbecauseave havewaitedlong
enoughsincethelastcommitor becausave arerun-
ning short of spacein the journal, we will wish to
commit our outstandingfilesystem updatesto the
log as a new compound transaction.

Once the compound transaction has been com-
pletely committed,we are still not finished with it.
We needto keeptrack of the metadatabuffers re-
cordedin a transactionso that we can notice when

they get written back to their main locations on disk.

Recallthat whenwe commit a transactionthe new
updatedfilesystemblocks are sitting in the journal
but have not yet beensyncedbackto their perma-
nenthomeblockson disk (we needto keepthe old

blocksunsyncedn casewe crashbeforecommitting
the journal). Oncethe journal hasbeencommitted,
the old versionon the disk is no longerimportant
andwe canwrite backthe buffersto their homelo-

cationsat our leisure.However, until we havefin-

ished syncing those buffers, we cannotdeletethe
copy of the data in the journal.

To completelycommit and finish checkpointinga
transaction, we go through the following stages:

1. ClosethetransactionAt this point we makea
new transactionin which we will recordany
filesystem operationswhich beginin the fu-
ture. Any existing, incompleteoperationswill
still use the existing transaction:we cannot
split a single filesystem operationover mul-
tiple transactions!

2. Start flushing the transactionto disk. In the
contextof a separatdog-writer kernelthread,
we beginwriting out to the journal all meta-
databufferswhich have beemmodified by the
transactionWe alsohaveto write out any de-
pendent data at this stage (see the section
above, Anatomy of a transaction).

When a buffer hasbeencommitted,mark it as
pinning the transactionuntil it is no longer
dirty (it hasbeenwritten backto the main stor-
age by the usual writeback mechanisms).

3. Wait for all outstandingfilesystemoperations
in this transactionto complete.We can safely

LinuxExpo '98

start writing the journal before all operations
have completedandit is fasterto allow these
two steps to overlap to some extent.

4. Wait for all outstandingransactiorupdateso
be completely recorded in the journal.

5. Updatethe journal headerblocksto recordthe
new headandtail of the log, committing the
transaction to disk.

7. Whenwe wrote the transaction’supdatedbuff-
ersout to the journal, we markedthem as pin-
ning thetransactiorin thejournal. Thesebuffers
becomeunpinnedonly when they have been
syncedto their homeson disk. Only whenthe
transaction’dast buffer becomesunpinnedcan
we reusethe journal blocks occupiedby the
transactionWhenthis occurs,write anotherset
of journalheadergecordingthe new positionof
the tail of thejournal. The spacereleasedn the

journal can now be reused by a later transaction.

Collisions between transactions

To increaseperformanceywe do not completelysus-
pendfilesystemupdatesvhenwe are committinga
transaction. Rather, we create a new compound
transactionin which to recordupdateswhich arrive
while we commit the old transaction.

This leavesopenthe questionof whatto doif anup-
date wants accessto a metadatabuffer already
owned by another,older transactionwhich is cur-
rently beingcommitted.In orderto commit the old
transactiorwe needto write its buffer to thejournal,
but we cannotinclude in that write any changes
which are not part of the transactionasthat would
allow us to commit incomplete updates.

If the newtransactioronly wantsto readthe buffer
in questionthenthereis no problem:we havecre-
atedaread/writedependencpetweerthetwo trans-
actions, but since compound transactionsalways
commitin strict sequentialorder we can safely ig-
nore the collision.

Thingsare more complicatedif the new transaction
wantsto write to the buffer. We needthe old copy

of the buffer to committhe first transactionput we

cannotlet the new transactionproceedwithout let-

ting it modify the buffer.

The solution here is to make a new copy of the
buffer in suchcasesOnecopy is givento the new
transactiorfor modification. The otheris left owned

Journalling the ext2fs Filesystem Page6



by the old transactionandwill be committedto the
journal as usual. This copy is simply deletedonce
that transactioncommits. Of course,we cannotre-
claim the old transaction’dog spaceuntil this buffer
has beensafely recordedelsewherein the filesys-
tem, but that is taken care of automaticallydue to
the fact thatthe buffer mustnecessarilype commit-
ted into the next transaction’s journal records.

Project statusand future
wor k

This is still a work-in-progress.The designof the
initial implementationis both stableandsimple,and
we do notexpectany majorrevisionsin designto be

necessary in order to complete the implementation.

The designdescribedaboveis relatively straightfor-

ward andwill requireminimal modificationsto the

existing ext2fs code other than the codeto handle
the managementf the journal file, the association
betweenbuffers and transactionsand the recovery
of filesystems after an unclean shutdown.

Once we have a stablecodebasdo test, there are
many possibledirectionsin which we could extent
the basicdesign.Of primary importancewill bethe
tuning of the filesystemperformanceThis will re-
quire usto studythe impactof arbitrary parameters
in thejournalingsystemsuchascommitfrequencies
andlog sizes.It will alsoinvolve a study of bottle-
necksto determineif performancemight be im-
proved through modificationsto the designof the
system,and severalpossibleextensionsto the de-
sign already suggest themselves.

One areaof study may be to considercompressing
the journal updatesof updates.The currentscheme
requiresusto write out entire blocks of metadatdo
the journal evenif only a singlebit in the block has
been modified. We could compresssuch updates
quite easilyby recordingonly the changedraluesin
the buffer ratherthan logging the buffer in its en-
tirety. However, it is not clear right now whether
this would offer any major performancebenefits.
The currentschemeequiresno memory-to-memory
copiesfor mostwrites, which is a big performance
win in termsof CPU and bus utilisation. The 10s
which resultfrom writing out the whole buffersare
cheap—theupdatesare contiguousand on modern
disk 10 systemsthey are transferredstraight out
from main memory to the disk controller without
passing through the cache or CPU.

LinuxExpo '98

Anotherimportantpossibleareaof extensionis the
supportof fastNFS serversThe NFS designallows
a clientto recovergracefullyif a servercrashesthe
client will reconnectwhen the server reboots. If
sucha crashoccurs,any clientdatawhich the server
hasnot yet written safelyto disk will belost,andso
NFS requiresthat the servermustnot acknowledge
completionof a client’s filesystemrequestuntil that
request has been committed to the server’s disk.

This canbe anawkwardfeaturefor generalpurpose
filesystemsto support.The performanceof an NFS

serveris usually measuredy the responsdime to

client requestsandif theseresponsesaveto wait

for filesystemupdatesto be synchronisedto disk

thenoverallperformancas limited by the latencyof

on-diskfilesystemupdatesThis contrastswith most
other usesof a filesystem, where performanceis

measuredin terms of the latency of in-cacheup-

dates, not on-disk updates.

Thereare filesystemswhich have beerspecifically
designedto addressthis problem. WAFL[6] is a
transactionatree-basedilesystemwhich canwrite
updatesanywhereon the disk, but the Calaveras
filesystenj7] achieveghe sameendthroughuseof
a journal much like the one proposedabove.The
differenceis that Calaveradogs a separatdransac-
tion to the journal for eachapplicationfilesystem
requestthus completingindividual updateson disk
as quickly as possible.The batchingof commitsin
the proposedext2fs journaling sacrificesthat rapid
commit in favour of committing severalupdatesat
once, gaining throughputat the expenseof latency
(the on-disk latencyis hiddenfrom applicationsby
the effects of the cache).

Two waysin which the ext2fs journaling might be
mademorefit for useon an NFS servermay bethe
use of smallertransactionsand the logging of file

dataaswell asmetadataBy tuning the size of the
transactionscommittedto the journal, we may be
able to substantiallyimprove the turnaround for

committing individual updates.NFS also requires
that datawrites be committedto disk as quickly as
possible,andthereis no reasonin principlewhy we

shouldnot extendthe journalfile to coverwrites of

normal file data.

Finally, it is worth notingthatthereis nothingin this
schemewhich would preventus from sharing a
single journal file amongstseveraldifferentfilesys-
tems.It would requirelittle extrawork to allow mul-
tiple filesystemsto be journaledto a log on a

Journalling the ext2fs Filesystem Page7



separatedisk entirely reservedor the purposeand
this might give a significant performanceboostin
casesvheretherearemanyjournaledfilesystemsall
experiencingheavyload. The separatgournal disk
would be written almostentirely sequentially,and
so could sustainhigh throughputwithout hurtingthe

bandwidth available on the main filesystem disks.

Conclusions

The filesystemdesignoutlinedin this papershould
offer significantadvantagesver the existing ext2fs
filesystemon Linux. It shouldoffer increasedvail-
ability and reliability by making the filesystemre-
cover more predictably and more quickly after a
crash,and should not causemuch, if any, perfor-
mance penalty during normal operations.

The most significant impact on day-to-dayperfor-

mancewill be that newly createdfiles will haveto

be syncedo disk rapidly in orderto committhecre-

atesto thejournal, ratherthanallowing the deferred
writebackof datanormally supportedby the kernel.
This may makethe journalingfilesystemunsuitable
for use on /tmp filesystems.

The designshould require minimal changego the
existingext2fscodebasemostof the functionalityis
providedby a newjournalingmechanisnwhich will
interfaceto the main ext2fs codethrougha simple
transactional buffer 10 interface.

Finally, the designpresentechere builds on top of
the existingext2fson-diskfilesystemlayout,andso
it will be possibleto add a transactionajournal to
an existing ext2fs filesystem, taking advantageof
the newfeatureswithout havingto reformatthefile-
system.

References

[1] A fast file system for UNIX. McKusick, Joy,
Leffler and FabryACM Transactions on
Computer Systems, vol. 2, Aug. 1984

[2] Soft Updates: A Solution to the Metadata Up-

date Problem in File Systems. Ganger and
Patt. Technical report CSE-TR-254-95, Com-

puter Science and Engineering Division, Uni-

versity of Michigan, 1995.

[3] The design and implementation of a log-

structured file system. Rosenblum and Oust-

erhout.Proceedings of the Thirteenth ACM

LinuxExpo '98

[4]

[5]

[6]

[7]

Journalling the ext2fs Filesystem

Symposium on Operating Systems Principles,
Oct. 1991

An implementation of a log-structured file
system for Unix. Seltzer, Bostic, McKusick
and StaelinProceedings of the Winter 1993
USENIX Technical Conference, Jan. 1993

Linux Log-structured Filesystem Project.
Deuel and Cook.
http: //collective.cpoint.net/prof/Ifs/

File System Design for an NFS File Server
Appliance. Dave Hitz, James Lau and
Michael Malcolm.

http: //mww.netapp.com/technol ogy/l evel 3/30-
02.html#preface

Metadata Logging in an NFS Server. Uresh
Vahalia, Cary G. Gray, Dennis Tingco-
ceedings of the Winter 1995 USENI X Techni-
cal Conference, 1995: pp. 265-276

Page3



