
LinuxExpo ’98 Journalling the ext2fs Filesystem Page 1

Journaling the Linux ext2fs Filesystem
Stephen C. Tweedie

sct@dcs.ed.ac.uk

Abstract
This paper describes a work-in-progress to design and implement a transactional metadata journal for
the Linux ext2fs filesystem. We review the problem of recovering filesystems after a crash, and describe a
design intended to increase ext2fs’s speed and reliability of crash recovery by adding a transactional
journal to the filesystem.

Introduction
Filesystems are central parts of any modern operat-
ing system, and are expected to be both fast and ex-
ceedingly reliable. However, problems still occur,
and machines can go down unexpectedly, due to
hardware, software or power failures.

After an unexpected reboot, it may take some time
for a system to recover its filesystems to a consistent
state. As disk sizes grow, this time can become a
serious problem, leaving a system offline for an
hour or more as the disk is scanned, checked and
repaired. Although disk drives are becoming faster
each year, this speed increase is modest compared
with their enormous increase in capacity. Unfortu-
nately, every doubling of disk capacity leads to a
doubling of recovery time when using traditional
filesystem checking techniques.

Where system availability is important, this may be
time which cannot be spared, so a mechanism is re-
quired which will avoid the need for an expensive
recovery stage every time a machine reboots.

What’s in a filesystem?
What functionality do we require of any filesystem?
There are obvious requirements which are dictated
by the operating system which the filesystem is
serving. The way that the filesystem appears to ap-
plications is one−operating systems typically require
that filenames adhere to certain conventions and that

files possess certain attributes which are interpreted
in a specific way.

However, there are many internal aspects of a file-
system which are not so constrained, and which a
filesystem implementor can design with a certain
amount of freedom. The layout of data on disk (or
alternatively, perhaps, its network protocol, if the
filesystem is not local), details of internal caching,
and the algorithms used to schedule disk IO−these
are all things which can be changed without neces-
sarily violating the specification of the filesystem’s
application interface.

There are a number of reasons why we might
choose one design over another. Compatibility with
older filesystems might be an issue: for example,
Linux provides a UMSDOS filesystem which
implements the semantics of a POSIX filesystem on
top of the standard MSDOS on-disk file structure.

When trying to address the problem of long filesys-
tem recovery times on Linux, we kept a number of
goals in mind:

• Performance should not suffer seriously as a re-
sult of using the new filesystem;

• Compatibility with existing applications must
not be broken

• The reliability of the filesystem must not be
compromised in any way.

LinuxExpo ’98 Journalling the ext2fs Filesystem Page 2

Filesystem Reliability
There are a number of issues at stake when we talk
about filesystem reliability. For the purpose of this
particular project, we are interested primarily in the
reliability with which we can recover the contents of
a crashed filesystem, and we can identify several
aspects of this:

Preservation: data which was stable on disk before
the crash should never ever be damaged. Obviously,
files which were being written out at the time of the
crash cannot be guaranteed to be perfectly intact,
but any files which were already safe on disk must
not be touched by the recovery system.

Predictability: the failure modes from which we
have to recover should be predictable in order for us
to recover reliably.

Atomicity: many filesystem operations require a sig-
nificant number of separate IOs to complete. A good
example is the renaming of a file from one directory
to another. Recovery is atomic if such filesystem
operations are either fully completed on disk or fully
undone after recovery finishes. (For the rename ex-
ample, recovery should leave either the old or the
new filename committed to disk after a crash, but
not both.)

Existing implementations
The Linux ext2fs filesystem offers preserving re-
covery, but it is non-atomic and unpredictable. Pre-
dictability is in fact a much more complex property
than appears at first sight. In order to be able to pre-
dictably mop up after a crash, the recovery phase
must be able to work out what the filesystem was
trying to do at the time if it comes across an incon-
sistency representing an incomplete operation on the
disk. In general, this requires that the filesystem
must make its writes to disk in a predictable order
whenever a single update operation changes mul-
tiple blocks on disk.

There are many ways of achieving this ordering be-
tween disk writes. The simplest is simply to wait for
the first writes to complete before submitting the
next ones to the device driver−the ‘‘synchronous
metadata update’’ approach. This is the approach
taken by the BSD Fast File System[1], which ap-
peared in 4.2BSD and which has inspired many of
the Unix filesystems which followed, including
ext2fs.

However, the big drawback of synchronous meta-
data update is its performance. If filesystems opera-
tion require that we wait for disk IO to complete,
then we cannot batch up multiple filesystem updates
into a single disk write. For example, if we create a
dozen directory entries in the same directory block
on disk, then synchronous updates require us to
write that block back to disk a dozen separate times.

There are ways around this performance problem.
One way to keep the ordering of disk writes without
actually waiting for the IOs to complete is to main-
tain an ordering between the disk buffers in
memory, and to ensure that when we do eventually
go to write back the data, we never write a block
until all of its predecessors are safely on disk−the
‘‘deferred ordered write’’ technique.

One complication of deferred ordered writes is that
it is easy to get into a situation where there are cy-
clic dependencies between cached buffers. For ex-
ample, if we try to rename a file between two direc-
tories and at the same time rename another file from
the second directory into the first, then we end up
with a situation where both directory blocks depend
on each other: neither can be written until the other
one is on disk.

Ganger’s ‘‘soft updates’’ mechanism[2] neatly side-
steps this problem by selectively rolling back spe-
cific updates within a buffer if those updates still
have outstanding dependencies when we first try to
write that buffer out to disk. The missing update will
be restored later once all of its own dependencies
are satisfied. This allows us to write out buffers in
any order we choose when there are circular depen-
dencies. The soft update mechanism has been
adopted by FreeBSD and will be available as part of
their next major kernel version.

All of these approaches share a common problem,
however. Although they ensure that the state of the
disk is in a predictable state all the way through the
course of a filesystem operation, the recovery pro-
cess still has to scan the entire disk in order to find
and repair any uncompleted operations. Recovery
becomes more reliable, but is not necessarily any
faster.

It is, however, possible to make filesystem recovery
fast without sacrificing reliability and predictability.
This is typically done by filesystems which guaran-
tee atomic completion of filesystem updates (a
single filesystem update is usually referred to as a
transaction in such systems). The basic principle

LinuxExpo ’98 Journalling the ext2fs Filesystem Page 3

behind atomic updates is that the filesystem can
write an entire batch of new data to disk, but that
those updates do not take effect until a final, commit
update is made on the disk. If the commit involves a
write of a single block to the disk, then a crash can
only result in two cases: either the commit record
has been written to disk, in which case all of the
committed filesystem operations can be assumed to
be complete and consistent on disk; or the commit
record is missing, in which case we have to ignore
any of the other writes which occurred due to par-
tial, uncommitted updates still outstanding at the
time of the crash. This naturally requires a filesys-
tem update to keep both the old and new contents of
the updated data on disk somewhere, right up until
the time of the commit.

There are a number of ways of achieving this. In
some cases, filesystems keep the new copies of the
updated data in different locations from the old cop-
ies, and eventually reuse the old space once the up-
dates are committed to disk. Network Appliance’s
WAFL filesystem[6] works this way, maintaining a
tree of filesystem data which can be updated atomi-
cally simply by copying tree nodes to new locations
and then updating a single disk block at the root of
the tree.

Log-Structured Filesystems achieve the same end
by writing all filesystem data−both file contents and
metadata−to the disk in a continuous stream (the
‘‘log’’). Finding the location of a piece of data using
such a scheme can be more complex than in a tradi-
tional filesystem, but logs have the big advantage
that it is relatively easy to place marks in the log to
indicate that all data up to a certain point is commit-
ted and consistent on disk. Writing to such a filesys-
tem is also particularly fast, since the nature of the
log makes most writes occur in a continuous stream
with no disk seeks. A number of filesystems have
been written based on this design, including the
Sprite LFS[3] and the Berkeley LFS[4]. There is
also a prototype LFS implementation on Linux[5].

Finally, there is a class of atomically-updated file-
systems in which the old and new versions of in-
complete updates are preserved by writing the new
versions to a separate location on disk until such
time as the update has be committed. After commit,
the filesystem is free to write the new versions of
the updated disk blocks back to their home locations
on disk.

This is the way in which ‘‘journaling’’ (sometimes
referred to as ‘‘log enhanced’’) filesystems work.
When metadata on the disk is updated, the updates
are recorded in a separate area of the disk reserved
for use as a journal. Filesystem transactions which
complete have a commit record added to the journal,
and only after the commit is safely on disk may the
filesystem write the metadata back to its original
location. Transactions are atomic because we can
always either undo a transaction (throw away the
new data in the journal) or redo it (copy the journal
copy back to the original copy) after a crash, ac-
cording to whether or not the journal contains a
commit record for the transaction. Many modern
filesystems have adopted variations on this design.

Designing a new filesystem
for Linux
The primary motivation behind this new filesystem
design for Linux was to eliminate enormously long
filesystem recovery times after a crash. For this rea-
son, we chose a filesystem journaling scheme as the
basis for the work. Journaling achieves fast filesys-
tem recovery because at all times we know that all
data which is potentially inconsistent on disk must
be recorded also in the journal. As a result, filesys-
tem recovery can be achieved by scanning the jour-
nal and copying back all committed data into the
main filesystem area. This is fast because the jour-
nal is typically very much smaller than the full file-
system. It need only be large enough to record a few
seconds-worth of uncommitted updates.

The choice of journaling has another important ad-
vantage. A journaling filesystem differs from a tra-
ditional filesystem in that it keeps transient data in a
new location, independent of the permanent data
and metadata on disk. Because of this, such a file-
system does not dictate that the permanent data has
to be stored in any particular way. In particular, it is
quite possible for the ext2fs filesystem’s on-disk
structure to be used in the new filesystem, and for
the existing ext2fs code to be used as the basis for
the journaling version.

As a result, we are not designing a new filesystem
for Linux. Rather, we are adding a new
feature−transactional filesystem journaling−to the
existing ext2fs.

LinuxExpo ’98 Journalling the ext2fs Filesystem Page 4

Anatomy of a transaction
A central concept when considering a journaled file-
system is the transaction, corresponding to a single
update of the filesystem. Exactly one transaction
results from any single filesystem request made by
an application, and contains all of the changed meta-
data resulting from that request. For example, a
write to a file will result in an update to the modifi-
cation timestamp in the file’s inode on disk, and
may also update the length information and the
block mapping information if the file is extended by
the write. Quota information, free disk space and
used block bitmaps will all have to be updated if
new blocks are allocated to the file, and all this must
be recorded in the transaction.

There is another hidden operation in a transaction
which we have to be aware about. Transactions also
involve reading the existing contents of the filesys-
tem, and that imposes an ordering between transac-
tions. A transaction which modifies a block on disk
cannot commit after a transaction which reads that
new data and then updates the disk based on what it
read. The dependency exists even if the two transac-
tions do not ever try to write back the same
blocks−imagine one transaction deleting a filename
from one block in a directory and another transac-
tion inserting the same filename into a different
block. The two operations may not overlap in the
blocks which they write, but the second operation is
only valid after the first one succeeds (violating this
would result in duplicate directory entries).

Finally, there is one ordering requirement which
goes beyond ordering between metadata updates.
Before we can commit a transaction which allocates
new blocks to a file, we have to make absolutely
sure that all of the data blocks being created by the
transaction have in fact been written to disk (we
term these data blocks dependent data). Missing out
this requirement would not actually damage the in-
tegrity of the filesystem’s metadata, but it could po-
tentially lead to a new file still containing a previous
file contents after crash recovery, which is a security
risk as well as being a consistency problem.

Merging transactions
Much of the terminology and technology used in a
journaled filesystem comes from the database
world, where journaling is a standard mechanism
for ensuring atomic commits of complex transac-
tions. However, there are many differences between

the traditional database transaction and a filesystem,
and some of these allow us to simplify things enor-
mously.

Two of the biggest differences are that filesystems
have no transaction abort, and all filesystem transac-
tions are relatively short-lived. Whereas in a data-
base we sometimes want to abort a transaction half-
way through, discarding any changes we have made
so far, the same is not true in ext2fs−by the time we
start making any changes to the filesystem, we have
already checked that the change can be completed
legally. Aborting a transaction before we have
started writing changes (for example, a create file
operation might abort if it finds an existing file of
the same name) poses no problem since we can in
that case simply commit the transaction with no
changes and achieve the same effect.

The second difference−the short life term of filesys-
tem transactions−is important since it means that we
can simplify the dependencies between transactions
enormously. If we have to cater for some very long-
term transactions, then we need to allow transac-
tions to commit independently in any order as long
as they do not conflict with each other, as otherwise
a single stalled transaction could hold up the entire
system. If all transactions are sufficiently quick,
however, then we can require that transactions com-
mit to disk in strict sequential order without signifi-
cantly hurting performance.

With this observation, we can make a simplification
to the transaction model which can reduce the com-
plexity of the implementation substantially while at
the same time increasing performance. Rather than
create a separate transaction for each filesystem up-
date, we simply create a new transaction every so
often, and allow all filesystem service calls to add
their updates to that single system-wide compund
transaction.

There is one great advantages of this mechanism.
Because all operations within a compound transac-
tion will be committed to the log together, we do not
have to write separate copies of any metadata blocks
which are updated very frequently. In particular, this
helps for operations such as creating new files,
where typically every write to the file results in the
file being extended, thus updating the same quota,
bitmap blocks and inode blocks continuously. Any
block which is updated many times during the life
of a compound transaction need only be committed
to disk once.

LinuxExpo ’98 Journalling the ext2fs Filesystem Page 5

The decision about when to commit the current
compound transaction and start a new one is a
policy decision which should be under user control,
since it involves a trade-off which affects system
performance. The longer a commit waits, the more
filesystem operations can be merged together in the
log and so less IO operations are required in the
long term. However, longer commits tie up larger
amounts of memory and disk space, and leave a
larger window for loss of updates if a crash occurs.
They may also lead to storms of disk activity which
make filesystem response times less predictable.

On-disk representation
The layout of the journaled ext2fs filesystem on disk
will be entirely compatible with existing ext2fs ker-
nels. Traditional UNIX filesystems store data on
disk by associating each file with a unique num-
bered inode on the disk, and the ext2fs design al-
ready includes a number of reserved inode numbers.
We use one of these reserved inodes to store the
filesystem journal, and in all other respects the file-
system will be compatible with existing Linux ker-
nels. The existing ext2fs design includes a set of
compatibility bitmaps, in which bits can be set to
indicate that the filesystem uses certain extensions.
By allocating a new compatibility bit for the jour-
naling extension, we can ensure that even though
old kernels will be able to successfully mount a
new, journaled ext2fs filesystem, they will not be
permitted to write to the filesystem in any way.

Format of the filesystem journal
The journal file’s job is simple: it records the new
contents of filesystem metadata blocks while we are
in the process of committing transactions. The only
other requirement of the log is that we must be able
to atomically commit the transactions it contains.

We write three different types of data blocks to the
journal: metadata, descriptor and header blocks.

A journal metadata block contains the entire con-
tents of a single block of filesystem metadata as up-
dated by a transaction. This means that however
small a change we make to a filesystem metadata
block, we have to write an entire journal block out
to log the change. However, this turns out to be rela-
tively cheap for two reasons:

• Journal writes are quite fast anyway, since most
writes to the journal are sequential, and we can
easily batch the journal IOs into large clusters

which can be handled efficiently by the disk
controller;

• By writing out the entire contents of the
changed metadata buffer from the filesystem
cache to the journal, we avoid having to do
much CPU work in the journaling code.

The Linux kernel already provides us with a very
efficient mechanism for writing out the contents of
an existing block in the buffer cache to a different
location on disk. Every buffer in the buffer cache is
described by a structure known as a buffer_head,
which includes information about which disk block
the buffer’s data is to be written to. If we want to
write an entire buffer block to a new location with-
out disturbing the buffer_head, we can simply create
a new, temporary buffer_head into which we copy
the description from the old one, and then edit the
device block number field in the temporary buffer
head to point to a block within the journal file. We
can then submit the temporary buffer_head directly
to the device IO system and discard it once the IO is
complete.

Descriptor blocks are journal blocks which describe
other journal metadata blocks. Whenever we want
to write out metadata blocks to the journal, we need
to record which disk blocks the metadata normally
lives at, so that the recovery mechanism can copy
the metadata back into the main filesystem. A de-
scriptor block is written out before each set of meta-
data blocks in the journal, and contains the number
of metadata blocks to be written plus their disk
block numbers.

Both descriptor and metadata blocks are written se-
quentially to the journal, starting again from the
start of the journal whenever we run off the end. At
all times, we maintain the current head of the log
(the block number of the last block written) and the
tail (the oldest block in the log which has not been
unpinned, as described below). Whenever we run
out of log space−the head of the log has looped back
round and caught up with the tail−we stall new log
writes until the tail of the log has been cleaned up to
free more space.

Finally, the journal file contains a number of header
blocks at fixed locations. These record the current
head and tail of the journal, plus a sequence number.
At recovery time, the header blocks are scanned to
find the block with the highest sequence number,
and when we scan the log during recovery we just

LinuxExpo ’98 Journalling the ext2fs Filesystem Page 6

run through all journal blocks from the tail to the
head, as recorded in that header block.

Committing and checkpointing the
journal
At some point, either because we have waited long
enough since the last commit or because we are run-
ning short of space in the journal, we will wish to
commit our outstanding filesystem updates to the
log as a new compound transaction.

Once the compound transaction has been com-
pletely committed, we are still not finished with it.
We need to keep track of the metadata buffers re-
corded in a transaction so that we can notice when
they get written back to their main locations on disk.

Recall that when we commit a transaction, the new
updated filesystem blocks are sitting in the journal
but have not yet been synced back to their perma-
nent home blocks on disk (we need to keep the old
blocks unsynced in case we crash before committing
the journal). Once the journal has been committed,
the old version on the disk is no longer important
and we can write back the buffers to their home lo-
cations at our leisure. However, until we have fin-
ished syncing those buffers, we cannot delete the
copy of the data in the journal.

To completely commit and finish checkpointing a
transaction, we go through the following stages:

1. Close the transaction. At this point we make a
new transaction in which we will record any
filesystem operations which begin in the fu-
ture. Any existing, incomplete operations will
still use the existing transaction: we cannot
split a single filesystem operation over mul-
tiple transactions!

2. Start flushing the transaction to disk. In the
context of a separate log-writer kernel thread,
we begin writing out to the journal all meta-
data buffers which have been modified by the
transaction. We also have to write out any de-
pendent data at this stage (see the section
above, Anatomy of a transaction).

When a buffer has been committed, mark it as
pinning the transaction until it is no longer
dirty (it has been written back to the main stor-
age by the usual writeback mechanisms).

3. Wait for all outstanding filesystem operations
in this transaction to complete. We can safely

start writing the journal before all operations
have completed, and it is faster to allow these
two steps to overlap to some extent.

4. Wait for all outstanding transaction updates to
be completely recorded in the journal.

5. Update the journal header blocks to record the
new head and tail of the log, committing the
transaction to disk.

7. When we wrote the transaction’s updated buff-
ers out to the journal, we marked them as pin-
ning the transaction in the journal. These buffers
become unpinned only when they have been
synced to their homes on disk. Only when the
transaction’s last buffer becomes unpinned can
we reuse the journal blocks occupied by the
transaction. When this occurs, write another set
of journal headers recording the new position of
the tail of the journal. The space released in the
journal can now be reused by a later transaction.

Collisions between transactions
To increase performance, we do not completely sus-
pend filesystem updates when we are committing a
transaction. Rather, we create a new compound
transaction in which to record updates which arrive
while we commit the old transaction.

This leaves open the question of what to do if an up-
date wants access to a metadata buffer already
owned by another, older transaction which is cur-
rently being committed. In order to commit the old
transaction we need to write its buffer to the journal,
but we cannot include in that write any changes
which are not part of the transaction, as that would
allow us to commit incomplete updates.

If the new transaction only wants to read the buffer
in question, then there is no problem: we have cre-
ated a read/write dependency between the two trans-
actions, but since compound transactions always
commit in strict sequential order we can safely ig-
nore the collision.

Things are more complicated if the new transaction
wants to write to the buffer. We need the old copy
of the buffer to commit the first transaction, but we
cannot let the new transaction proceed without let-
ting it modify the buffer.

The solution here is to make a new copy of the
buffer in such cases. One copy is given to the new
transaction for modification. The other is left owned

LinuxExpo ’98 Journalling the ext2fs Filesystem Page 7

by the old transaction, and will be committed to the
journal as usual. This copy is simply deleted once
that transaction commits. Of course, we cannot re-
claim the old transaction’s log space until this buffer
has been safely recorded elsewhere in the filesys-
tem, but that is taken care of automatically due to
the fact that the buffer must necessarily be commit-
ted into the next transaction’s journal records.

Project status and future
work
This is still a work-in-progress. The design of the
initial implementation is both stable and simple, and
we do not expect any major revisions in design to be
necessary in order to complete the implementation.

The design described above is relatively straightfor-
ward and will require minimal modifications to the
existing ext2fs code other than the code to handle
the management of the journal file, the association
between buffers and transactions and the recovery
of filesystems after an unclean shutdown.

Once we have a stable codebase to test, there are
many possible directions in which we could extent
the basic design. Of primary importance will be the
tuning of the filesystem performance. This will re-
quire us to study the impact of arbitrary parameters
in the journaling system such as commit frequencies
and log sizes. It will also involve a study of bottle-
necks to determine if performance might be im-
proved through modifications to the design of the
system, and several possible extensions to the de-
sign already suggest themselves.

One area of study may be to consider compressing
the journal updates of updates. The current scheme
requires us to write out entire blocks of metadata to
the journal even if only a single bit in the block has
been modified. We could compress such updates
quite easily by recording only the changed values in
the buffer rather than logging the buffer in its en-
tirety. However, it is not clear right now whether
this would offer any major performance benefits.
The current scheme requires no memory-to-memory
copies for most writes, which is a big performance
win in terms of CPU and bus utilisation. The IOs
which result from writing out the whole buffers are
cheap−the updates are contiguous and on modern
disk IO systems they are transferred straight out
from main memory to the disk controller without
passing through the cache or CPU.

Another important possible area of extension is the
support of fast NFS servers. The NFS design allows
a client to recover gracefully if a server crashes: the
client will reconnect when the server reboots. If
such a crash occurs, any client data which the server
has not yet written safely to disk will be lost, and so
NFS requires that the server must not acknowledge
completion of a client’s filesystem request until that
request has been committed to the server’s disk.

This can be an awkward feature for general purpose
filesystems to support. The performance of an NFS
server is usually measured by the response time to
client requests, and if these responses have to wait
for filesystem updates to be synchronised to disk
then overall performance is limited by the latency of
on-disk filesystem updates. This contrasts with most
other uses of a filesystem, where performance is
measured in terms of the latency of in-cache up-
dates, not on-disk updates.

There are filesystems which have been specifically
designed to address this problem. WAFL[6] is a
transactional tree-based filesystem which can write
updates anywhere on the disk, but the Calaveras
filesystem[7] achieves the same end through use of
a journal much like the one proposed above. The
difference is that Calaveras logs a separate transac-
tion to the journal for each application filesystem
request, thus completing individual updates on disk
as quickly as possible. The batching of commits in
the proposed ext2fs journaling sacrifices that rapid
commit in favour of committing several updates at
once, gaining throughput at the expense of latency
(the on-disk latency is hidden from applications by
the effects of the cache).

Two ways in which the ext2fs journaling might be
made more fit for use on an NFS server may be the
use of smaller transactions, and the logging of file
data as well as metadata. By tuning the size of the
transactions committed to the journal, we may be
able to substantially improve the turnaround for
committing individual updates. NFS also requires
that data writes be committed to disk as quickly as
possible, and there is no reason in principle why we
should not extend the journal file to cover writes of
normal file data.

Finally, it is worth noting that there is nothing in this
scheme which would prevent us from sharing a
single journal file amongst several different filesys-
tems. It would require little extra work to allow mul-
tiple filesystems to be journaled to a log on a

LinuxExpo ’98 Journalling the ext2fs Filesystem Page 8

separate disk entirely reserved for the purpose, and
this might give a significant performance boost in
cases where there are many journaled filesystems all
experiencing heavy load. The separate journal disk
would be written almost entirely sequentially, and
so could sustain high throughput without hurting the
bandwidth available on the main filesystem disks.

Conclusions
The filesystem design outlined in this paper should
offer significant advantages over the existing ext2fs
filesystem on Linux. It should offer increased avail-
ability and reliability by making the filesystem re-
cover more predictably and more quickly after a
crash, and should not cause much, if any, perfor-
mance penalty during normal operations.

The most significant impact on day-to-day perfor-
mance will be that newly created files will have to
be synced to disk rapidly in order to commit the cre-
ates to the journal, rather than allowing the deferred
writeback of data normally supported by the kernel.
This may make the journaling filesystem unsuitable
for use on /tmp filesystems.

The design should require minimal changes to the
existing ext2fs codebase: most of the functionality is
provided by a new journaling mechanism which will
interface to the main ext2fs code through a simple
transactional buffer IO interface.

Finally, the design presented here builds on top of
the existing ext2fs on-disk filesystem layout, and so
it will be possible to add a transactional journal to
an existing ext2fs filesystem, taking advantage of
the new features without having to reformat the file-
system.

References
[1] A fast file system for UNIX. McKusick, Joy,

Leffler and Fabry. ACM Transactions on
Computer Systems, vol. 2, Aug. 1984

[2] Soft Updates: A Solution to the Metadata Up-
date Problem in File Systems. Ganger and
Patt. Technical report CSE-TR-254-95, Com-
puter Science and Engineering Division, Uni-
versity of Michigan, 1995.

[3] The design and implementation of a log-
structured file system. Rosenblum and Oust-
erhout. Proceedings of the Thirteenth ACM

Symposium on Operating Systems Principles,
Oct. 1991

[4] An implementation of a log-structured file
system for Unix. Seltzer, Bostic, McKusick
and Staelin. Proceedings of the Winter 1993
USENIX Technical Conference, Jan. 1993

[5] Linux Log-structured Filesystem Project.
Deuel and Cook.
http://collective.cpoint.net/prof/lfs/

[6] File System Design for an NFS File Server
Appliance. Dave Hitz, James Lau and
Michael Malcolm.
http://www.netapp.com/technology/level3/30-
02.html#preface

[7] Metadata Logging in an NFS Server. Uresh
Vahalia, Cary G. Gray, Dennis Ting. Pro-
ceedings of the Winter 1995 USENIX Techni-
cal Conference, 1995: pp. 265-276

