
Department of Electrical Engineering and Computer Science

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

6.828 Fall 2017

Quiz I Solutions

Mean 70.5 Median 72 Standard deviation 15.8 Kurtosis -0.43

0

2

4

6

8

0 25 50 75 100

score (max: 100)

st
ud

en
ts

0

2

4

6

8
count

1

I Stack frame layout

Ben Bitdiddle is debugging his JOS implementation and observes the following state after pausing execution.

The bottom of the stack:

0xf011efe4: ...
0xf011efe0: 0x00001234
0xf011efdc: 0xf010012b
0xf011efd8: 0xf011eff8
0xf011efd4: 0xf0100064
0xf011efd0: 0xf011efd8
0xf011efcc: 0x00043110
0xf011efc8: 0xf0100059
0xf011efc4: 0xf011efd0 <-- ebp, esp

1. [7 points]: Which of the values in the stack above are return addresses?

Answer: 0xf0100059, 0xf0100064, 0xf010012b

With execution still paused at the same point, Ben notices that the eip register contains the address of an
instruction near the beginning of the following C function:

void hexprint(int v)
{

cprintf("%x\n", v);
}

2. [7 points]: If Ben were to continue execution until hexprint returned, what would the
cprintf call print?

Answer: 43110

2

II UNIX system call API

Here’s a program that uses the UNIX system call API, as described in Chapter 0 of the xv6 book:

main() {
char *message = "aaa\n";
int pid = fork();
if(pid != 0){

// parent process
message = "bbb\n";
close(1);

}
write(1, message, 4);
exit(0);

}

Assume that fork() succeeds, that file descriptor 1 is connected to the terminal when the program starts, and
that write() does nothing when called on a file descriptor that isn’t valid.

3. [5 points]: Which of the following best describes the output(s) that this program can produce?
Circle just one.

– It always prints just aaa.

– It always prints just bbb.

– It prints one or the other of aaa and bbb (but not both).

– It prints aaa, or bbb, or nothing (but not both aaa and bbb).

– It prints both aaa and bbb, in one order or the other.

– It prints nothing at all.

Answer: It always prints just aaa.

3

Looking at the xv6 source, Ben Bitdiddle notices that there can be at most one process or kernel thread
executing at a time on each core. He thinks that xv6’s kernel thread stack per process is wasteful, since only
a few of those stacks will be actively used by cores at any give time. Ben suggests modifying xv6 to get rid
of the separate kernel thread stack per process, and instead have just a single stack per core, a “core stack.”
Ben intends that system calls and interrupts on core i execute on core i’s core stack.

4. [7 points]: Explain to Ben why a separate kernel stack per process is very convenient for xv6’s
system call implementations.

Answer: Many xv6 system calls sometimes need to block. For example, read() and open() may
need to wait for disk reads, and wait() may need to wait for a child to exit. There may be many
processes at any given time blocking at various points in kernel system call code. Each needs to
preserve some kernel state in order to continue when it is unblocked (e.g. a saved call stack and saved
registers as of the point when the kernel code blocked). A kernel stack per process is a convenient
way to store that state.

4

III xv6 traps

Recall that the C function calling convention on the x86 divides the eight general-purpose registers into
caller-saved and callee-saved. The machine code for a C function must preserve the content of callee-saved
registers, either by not modifying them at all, or by saving them on entry and restoring them on exit (typically
on the stack). If C code is calling a function, and the machine code for the caller will need the content of a
register to still be there after the function returns, and the register is caller-saved, the caller must save and
restore the register (again, typically by pushing onto the stack before the call). EAX, ECX, and EDX are
caller-saved; EBX, EBP, ESI, and EDI are callee-saved.

Ben is thinking about xv6’s struct trapframe and alltraps/trapret in trapasm.S. He observes that user-space
C code makes system calls by calling C library functions (generated by usys.S), and that these C calls save
caller-saved registers if needed. Ben claims that this means it would be OK to modify alltraps, trapret, and
struct trapframe to not save the caller-saved registers. Ben starts by modifying alltraps, trapret, and struct
trapframe to get rid of ECX, which is caller-saved: he replaces the pushal/popal in trapasm.S with separate
pushes/pops of the other seven registers, and he deletes the uint ecx line from struct trapframe in x86.h.
Ben notes that system calls seem to work fine after this modification.

Ben’s modification means that only user programs that obey the C calling convention are supported, but you
should assume that is OK.

5. [7 points]: Explain to Ben why, even though his modification works for system calls, it may
cause programs to compute incorrectly if there are device interrupts.

Answer: A device interrupt can occur between any two user instructions, in particular at points where
the user program has not saved the ECX. So Ben’s modification may cause ECX to lose its content
whenever a device interrupt occurs, which will break user code that uses ECX.

5

IV Sleep and wakeup

You would like to add xv6 system calls that give lock-like functionality to user-level programs. You start
simple with a pair of system calls uacquire() and urelease(), that implement a single global lock
that all processes can use. These system calls take no arguments. uacquire() should wait until it acquires
the lock, and then return. urelease() should release the lock. Multiple processes might be waiting for
the lock at any given time.

6. [7 points]: Here are incomplete versions of xv6 kernel code implementing the two system calls.
Please add code to complete them. Use sleep() to wait for the lock, in order that processes not
waste too much CPU time while waiting.

Answer:

int taken; // does a process hold the lock?
struct spinlock mu; // protect taken (mu for mutual exclusion)

int
sys_uacquire(void)
{
acquire(&mu);
while(taken != 0){

sleep(&taken, &mu);
}
taken = 1;
release(&mu);
return 0;

}

int
sys_urelease(void)
{

acquire(&mu);
taken = 0;
wakeup(&taken);
release(&mu);
return 0;

}

6

V JOS Lab 2

Ben Bitdiddle is looking at this code from his Lab 2 kern/pmap.c:

void
mem_init(void)
{

...
// create initial page directory.
kern_pgdir = (pde_t *) boot_alloc(PGSIZE);
memset(kern_pgdir, 0, PGSIZE);

kern_pgdir[PDX(UVPT)] = PADDR(kern_pgdir) | PTE_U | PTE_P;

...
}

UVPT is 0xef400000.

7. [7 points]: Ben claims that the UVPT mapping allows any user program to discover the physical
address of the page directory. Is Ben right? Why or why not?

Answer: Yes, Ben is correct. The virtual address that contains the page directory’s physical address
is 0xef7bdef4 = UVPT + (UVPT >> 10) + (UVPT >> 20).

7

Ben recalls from lecture that the MMU checks the permission bits in both the page directory and the page
table, so it is safe to leave permissions in the page directory more permissive. He decides to change the code
to the following:

void
mem_init(void)
{

...
// create initial page directory.
kern_pgdir = (pde_t *) boot_alloc(PGSIZE);
memset(kern_pgdir, 0, PGSIZE);

kern_pgdir[PDX(UVPT)] = PADDR(kern_pgdir) | PTE_W | PTE_U | PTE_P;

...
}

8. [7 points]: What is wrong with Ben’s change?

Answer: Because this is a recursive mapping, the permission bits in the page directory entry are the
same as in the page table entry. So, with the PTE W bit set, any user program can modify the memory
mappings in the page directory.

8

VI Locking

Recall in homework 6 that some keys went missing after being inserted into the hash table. The problem
occurred because of a race condition between parallel threads executing the put() method. The solution
was to add synchronization to put() using pthread mutex lock(), resulting in this code:

static void
insert(int key, int value, struct entry **p, struct entry *n)
{

struct entry *e = malloc(sizeof(struct entry));
e->key = key;
e->value = value;
e->next = n;

*p = e;
}

static
void put(int key, int value)
{

int i = key % NBUCKET;
pthread_mutex_lock(&lock);
insert(key, value, &table[i], table[i]);
pthread_mutex_unlock(&lock);

}

static struct entry*
get(int key)
{

struct entry *e = 0;
for (e = table[key % NBUCKET]; e != 0; e = e->next) {

if (e->key == key) break;
}
return e;

}

9

In homework 6, all keys were inserted at the start of execution, before any calls to get(). Ben modifies
the homework to instead call get() and put() in parallel, from different threads. While testing the hash
table on a multicore mobile phone with a different memory model from x86, he notices that once in a while
the struct entry returned by get() contains the wrong value.

9. [7 points]: Explain why parallel execution of get() and put() is failing.

Answer: There is a race condition between get() and put(). The race condition is not harmless
because the compiler or the CPU could reorder loads and stores. In particular, the store of the entry
value may occur after the list insertion despite the program order. In addition, the C specification
suggests this may be undefined behavior, so any failure is possible depending on the behavior of the
compiler.

10. [5 points]: Indicate where in the above code calls to pthread mutex lock() and
pthread mutex unlock() should be added to fix the problem.

Answer: Place the lock before the start of the for loop and the unlock after the end of the for loop.

10

After fixing the code, Ben notices a drop in performance. Alyssa diagnoses the problem as lock contention
and observes that Ben’s code calls get() much more often than put(). She suggests using a different
kind of synchronization primitive called a read-write lock. A read-write lock is a lock that allows multiple
readers to execute the critical section in parallel. However, it forces writers to run the critical section in
serial with respect to both other readers and writers.

Ben looks up the man pages, and finds the following functions are available to support read-write locks:

• pthread rwlock rdlock(): lock a read-write lock object for reading.

• pthread rwlock wrlock(): lock a read-write lock object for writing.

• pthread rwlock unlock(): unlock a read-write lock object.

11. [5 points]: Ben removes all calls to pthread mutex lock() and pthread mutex unlock().
Indicate where in the above code calls to pthread rwlock rdlock(), pthread rwlock wrlock(),
and pthread rwlock unlock() should be added for it to be both correct and more efficient.

Answer: Place the rdlock before the start of the get() for loop and the unlock after the end of
the get() for loop. Place the wrlock before the insert() call in put() and an unlock after the
insert() call in put().

11

Unfortunately, the pthread library on Ben’s mobile phone platform does not include support for read-write
locks. Read-write locks can be implemented using atomic instructions. The compiler provides, among
others, the following portable functions that generate the appropriate atomic instructions on each platform.

• int sync bool compare and swap(int *ptr, int oldval, int newval): Atomically compares the
value of ptr with oldval and replaces oldval with newval if they are equal. Returns true if the compar-
ison was successful.

• int sync fetch and add(int *ptr, int val): Returns the current value of ptr and atomically replaces
it with ptr + val.

Ben’s plan is to represent the state of the read-write lock using an int, with x = 0 indicating unlocked, x < 0
indicating write-locked and x > 0 indicating read-locked.

Ben’s code so far is below. The volatile ... ptr declarations tell the compiler to not cache the data
that ptr points to in a register, and instead execute a memory load instruction every time ptr needs to be
dereferenced.

typedef rwlock_t int;

void pthread_rwlock_rdlock(volatile rwlock_t *ptr)
{

int x;
while (1) {

x = *ptr;
if (x < 0) // is writer holding lock?

continue;
if(__sync_bool_compare_and_swap(ptr, x, x + 1))

break;
}

}

void pthread_rwlock_unlock(volatile rwlock_t *ptr)
{

int x = *ptr;
__sync_fetch_and_add(ptr, x < 0 ? 1 : -1);

}

12

12. [7 points]: Fill in the missing code for pthread rwlock wrlock() below.

Answer:

void pthread_rwlock_wrlock(volatile rwlock_t *ptr)
{

while (1) {
if (__sync_bool_compare_and_swap(ptr, 0, -1))

break;
}

}

13

VII Using Virtual Memory

Normally, xv6 allocates heap pages at the time the brk system call is executed. However, some memory
mappings in the heap are never touched. Recall in homework 4, you were tasked with modifying xv6 to
support lazy page allocation. Consider the following proposed solution to the homework. Page allocation
and insertion into the page table is removed from sys brk, and instead the following code is added to the
trap() handler.

if(tf->trapno == T_PGFLT){
uint va = PGROUNDDOWN(rcr2());
char *mem = kalloc();
if(mem == 0){

exit();
return;

}
memset(mem, 0, PGSIZE);
mappages(proc->pgdir, (char*)va, PGSIZE, v2p(mem), PTE_W|PTE_U);
return;

}

For your reference, xv6 makes use of the following PTE flags values:

#define PTE_P 0x001 // Present
#define PTE_W 0x002 // Writeable
#define PTE_U 0x004 // User

13. [7 points]: Ben traces the changes to the trap handler with gdb and finds during one success-
ful invocation of trap() that kalloc() returns 0x81000000. Moreover, v2p(mem) returns
0x00110000. Recall that a PTE consists of a page number (upper 20 bits) and a set of flag bits
(lower 12 bits). Using one or more of the flag bits above, what is the precise value of the PTE inserted
by mappages()?

Answer: 0x00110007

14

Alice performs a security audit on Ben’s code and discovers some issues. As just one example, the following
simple test program causes the xv6 kernel to panic inside mappages().

int main(void)
{

volatile int *bar = KERNBASE;

*bar = 0xDEADBEEF; //crash happens here
return 0;

}

14. [7 points]: Explain why Ben’s trap() changes are insecure. How would you fix them?

Answer: In the case of Alice’s program, the page fault was caused by lack of permission for an
existing mapping, not by a missing mapping; Ben’s code should only try to add missing mappings.
Perhaps worse, Ben’s code allows user programs to modify the kernel part of the address space; his
code should check that the virtual address is in the user region.

15

Another possible heap optimization might be to remove a page mapping and free the underlying phys-
ical page after the user-level memory allocator is done using it. Ben creates a new system call called
dont need(void *va) to facilitate this interaction. dont need reclaims the heap page located at va.
If va is touched afterward, a new page will be demand faulted at the location. Ben does nothing to invalidate
or flush TLB entries in his system call handler.

15. [7 points]: While testing his kernel changes, Ben observes that occasionally memory is
corrupted in seemingly random locations. Explain why the code is failing.

Answer: If a program calls dont need(va), the kernel will free the physical page va refers to.
That physical page may then be allocated for another use, by the same program (for a different virtual
address) or by a different program. The original program may then try to write to va, expecting that
the kernel will allocate and map a fresh physical page for va. But the stale TLB mapping may cause
the write to modify the original physical page, corrupting whatever data it now holds (since it has
been re-allocated).

16

VIII 6.828

16. [1 points]: What’s the most important thing we could fix about 6.828 to make it better?

End of Quiz I

17

