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I Context Switch

Homework 8 (user-level threads) uses this structure to hold information about each thread:

struct thread {
int sp; /* curent stack pointer */
char stack[STACK_SIZE]; /* the thread’s stack */
int state; /* FREE, RUNNING, RUNNABLE */

};

Ben Bitdiddle wonders why the sp element of the struct is needed. He plans to delete sp from struct
thread:

struct thread {
char stack[STACK_SIZE]; /* the thread’s stack */
int state; /* FREE, RUNNING, RUNNABLE */

};

He plans to have thread switch() push the %esp register onto the “current” stack and pop it from the
“next” stack. And he plans to modify thread create() appropriately.

1. [5 points]: Explain why Ben will find it difficult or impossible to make this idea work.

Answer: thread switch() must be able to find the correct place in the target thread’s stack to
pop registers from. Without the saved sp in struct thread it won’t know where to look.
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II xv6 Shell, Sleep, and Wakeup

Recall from Homework 2 that the shell uses the wait() system call to wait for each command to exit, at
which point the shell prints another prompt. Look at the implementation of xv6’s wait() system call in
proc.c. Here’s an abbreviated version of the xv6 code (with lots of lines omitted):

wait(void) {
for(;;){

if there is an exited child {
clean it up ...;
return pid; // return the child pid

}

if(this process has no children || proc->killed){
...
return -1; // error

}

// wait for a child to exit.
sleep(proc, ...);

}
}

2. [5 points]: Is it possible for the sleep() to return even if there is no exited child? If yes, how
can that happen?

Answer: kill() might wake up the process.
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Suppose we re-arranged the code in the for loop to first check if the process has children, then sleep, and
then check if there is an exited child:

wait(void) {
for(;;){

if(this process has no children || proc->killed){
...
return -1; // error

}

// wait for a child to exit.
sleep(proc, ...);

if there is an exited child {
clean it up ...;
return pid; // return the child pid

}
}

}

This modification will cause wait() to act incorrectly in some circumstances.

3. [5 points]: Explain what can go wrong as a result of the modification.

Answer: If the process has just one child, and it has already exited (but the parent hasn’t yet waited
for it), the sleep() will wait forever. But wait() should return in that situation.
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III xv6 Locking

Ben Bitdiddle thinks that xv6 kernel threads should be able to yield the CPU while holding locks. To test
whether this works, he places an acquire/yield/release at the beginning of syscall() where it
will be called a lot:

void
syscall(void)
{

int num;

acquire(&test_lock);
yield();
release(&test_lock);

// the rest of syscall()...
}

No other code uses test lock. Ben also deletes the panic calls in sched() (in proc.c), and deletes
the holding() panics in acquire() and release().

Ben boots his modified xv6 on qemu with a single core (CPUS:=1 in the Makefile). xv6 prints init:
starting sh but doesn’t print a shell prompt; it does nothing, as if in a deadlock. When Ben looks at a
backtrace with gdb, he sees the CPU is looping in the acquire() call he added to syscall().

4. [5 points]: Explain a sequence of events in Ben’s modified xv6 that could cause this to happen.

Answer: One process makes a system call, acquires test lock, and yields. A second process
runs, makes a system call, and loops in acquire() waiting for the lock. Interrupts are disabled
by acquire(), so no timer interrupt will occur and thus the first process won’t run and release the
lock. This is a deadlock.

Now Ben tries his modified kernel on a two-core qemu (CPUS:=2). He gets a prompt this time and types a
few commands.

5. [5 points]: Can Ben’s modification cause a deadlock situation with two cores? Or does using a
two-core machine make his modification safe? Explain your answer.

Answer: Yes, the deadlock can still occur, but not with two processes. With two processes and two
CPUs, the CPU that is not looping in acquire with interrupts turned off will eventually take a timer
interrupt and schedule the process that acquired the lock before yielding. This allows the lock-holding
process to release the lock, which prevents deadlock.

With three processes, deadlock can arise if process 1 makes a system call, acquires the lock, and
yields. Then processes 2 and 3 simultaneously make system calls on the two cores, and they both spin
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in acquire with interrupts turned off. Again, process 1 will never run again (because all CPUs have
interrupts disabled) and never release the lock, resulting in deadlock.
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IV JOS Paging (1)

Ben Bitdiddle is finding himself thoroughly confused by page tables and how they work in JOS. He finds
that much of his confusion stems from all the bit fiddling that goes on with the pde t and pte t types.
Ben decides to rewrite the code to make pde t and pte t (defined in inc/memlayout.h) structs with
separate uint32 t fields for the PDE index and the PTE index, as well as individual fields for the per-
mission bits. He changes all the bit manipulation macros so that they instead modify the appropriate struct
fields. Here is Ben’s PTE struct definition; his PDE definition is similar:

struct pte {
uint32_t physical_page_number;
uint32_t available;
uint32_t dirty;
uint32_t accessed;
uint32_t user;
uint32_t writeable;
uint32_t present;

};

Satisfied with this much more readable code, Ben compiles his kernel and tries to run it. It immediately
crashes.

6. [5 points]: Why is it not okay for Ben to modify the pde t and pte t types?

Answer: These types need to match the memory layout the x86 hardware expects for PDEs and PTEs,
otherwise the virtual memory translation performed by the MMU will not work correctly.

Ben has taken 6.858 (Computer Security), and finds it suspicious that pgdir walk allocates new PDEs
with all permissions set (PTE W|PTE U). He worries that this would mean that all pages will be writeable
by user processes.

7. [5 points]: Why is this not the case?

Answer: The permissions are the intersection of the permissions in the PTE and the PDE, so JOS
gets a chance to further limit user permissions when it sets up each PTE.
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Ben is having unexpected issues with lab 3. His load icode contains the following code

elf = (struct Elf *)binary;
ph = (struct Proghdr *) ((uint8_t *) elf + elf->e_phoff);
eph = ph + elf->e_phnum;
for (; ph < eph; ph++) {

if (ph->p_type != ELF_PROG_LOAD) continue;
region_alloc(e, (void *) ph->p_va, ph->p_memsz);
memcpy((void *) ph->p_va, binary + ph->p_offset, ph->p_filesz);
memset((void *) ph->p_va + ph->p_filesz, 0, ph->p_memsz-ph->p_filesz);

}

Ben has carefully traced through his code, and finds that a triple fault occurs in memcpy, despite the write
going to the address that was just allocated with region alloc.

8. [5 points]: Why is Ben’s call to memcpy not doing what he expects? Assume that his
implementation of region alloc is correct.

Answer: load icode() is run by process A to set up process B’s memory. Thus it initially runs
with process A’s page table. region alloc() adds a PTE to B’s page table, but in the above code,
the memcpy() is run with A’s memory mapping. It will therefore write to whatever physical page
ph->p va points to in A, or fault (as in Ben’s case) if that page is not mapped in A. One way to fix
this is for the code to use lcr3() to load B’s page table just before for loop.
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V JOS Paging (2)

Ben has a bug in his JOS Lab 3. He boots his kernel and runs a userspace process with the following code
at the start:

_start:
800020: cmpl $USTACKTOP, %esp
800026: jne args_exist
800028: pushl $0
80002a: pushl $0

args_exist:
80002c: call libmain
800031: jmp 800031

Ben gets a page fault in his program, with the trap-frame looking like this:

TRAP frame at 0xf01c0000
edi 0x00000000
esi 0x00000000
ebp 0x00000000
oesp 0xefffffdc
ebx 0x00000000
edx 0x00000000
ecx 0x00000000
eax 0x00000000
es 0x----0023
ds 0x----0023
trap 0x0000000e Page Fault
cr2 0xeebfdffc
err 0x00000006 [user, write, not-present]
eip 0x00800028
cs 0x----001b
flag 0x00000046
esp 0xeebfe000
ss 0x----0023

9. [5 points]:

What is Ben’s bug? What evidence supports your answer?

Answer: In this case, the page-fault error code indicates that an attempted write failed when trying
to execute the push instruction (which the eip points to). The push instruction writes a value on the
stack, which corresponds to the write operation that faults. This suggests that Ben didn’t set up the
user stack mappings correctly. As further confirmation, the cr2 value (the faulting address) is close to
the esp value.
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VI Booting

Ben wants to set a break-point inside kern/entry.s because he is unsure if his bootloader is loading and
jumping into the kernel correctly. He opens up obj/kern/kernel.asm and sees the address of entry is f010000c,
so he sets a breakpoint at 0xf010000c right when GDB starts. However, the breakpoint never hits and Ben
is stumped.

10. [5 points]: Why doesn’t the breakpoint at 0xf010000c ever trigger?

Answer: The processor executes this instruction before paging is enabled (specifically at address
0x10000c), and uses a physical address, so gdb never observes an %eip equal to f010000c.
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VII Xv6 file system

Xv6 lays out the file system on disk as follows:

inodelog bmap datasuper

1 2 32 58 593

log

header

Block 1 contains the super block. Blocks 2 through 31 contain the log header and the log. Blocks 32
through 57 contain inodes. Block 58 contains the bitmap of free blocks. Blocks 59 through the end of the
disk contain data blocks.

Ben modifies the function bwrite in bio.c to print the block number of each block written. He boots
xv6 with a fresh fs.img and types in the command echo > x. This command creates the file x but does
not write anything into x. This command produces the following trace:

$ echo > x
write 3
write 4
write 2
write 34
write 59
write 2
$

11. [5 points]: Briefly explain what block 59 contains in the above trace.

Answer: The root directory, with the new entry for “x”.

12. [5 points]: Briefly explain what block 4 contains in the above trace.

Answer: A logged copy of block 59.
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13. [5 points]: Consider the first 3 writes in the trace. Could the correctness of the xv6 file system
be violated if the disk driver sent the writes to the disk hardware in the following order? (Briefly
explain your answer)

write 4
write 2
write 3

Answer: Block 2 contains the log header, whose length field indicates whether the transaction has
committed (is complete). When block 2 is written, it indicates to a future post-crash recovery that
block 3 should be replayed to block 34, and block 4 should be replayed to block 59. If a crash
happens after 4 and 2 are written, but before 3 has a chance to be written, recovery will still replay
block 3 to block 59. However, since block 3 wasn’t written to the disk before the crash, the replay
will copy some garbage (whatever happened to be in block 3 from the previous transaction) to block
34 (which contains i-nodes). This garbage will cause xv6 to crash later on, or yield incorrect results
from future file system operations.

End of Quiz I
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