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I Shell

A solution in the xv6 shell for setting up a pipe for filters commands such as 1s| wc is as follows:

cas

P
i

}

e "|’:
cmd = (struct pipecmdx)cmd;
f(pipe(p) < 0) {

perror ("pipe");
exit (-1);

if (forkl () == 0){
close (1l);
dup(p[11);
close(p[0]);
close(pl[l]);

(

}

if (forkl

}

runcmd (pcmd->1eft) ; // run left side of pipe and exit

() == 0){
close (0);
dup (p[01);
close (pl0]);
close(pl[1l]);
runcmd (pcmd->right); // run right side of pipe and exit

close(pl0]);
close(pl[l]);
wait (&r);
wait (&r);
break;

1. [5 points]: Why does the child process that runs the left-side of the pipe close file descriptor 1
and why does the child process that runs the right-side of the pipe close file descriptor 0?7

Answer: dup must replace stdout for the left-end of the pipe, because that child’s output goes into the
pipe. dup must replace stdin for the right-end of the pipe, because that child gets input from the pipe.



2. [5 points]: It is possible that the child process that runs the left-end of the pipe finishes before
the child process that runs the right-end of the pipe is created. Why is the above implementation still
correct?

Answer: It can only happen if the left-end generates less than a pipe-buffer full of data (since if it
generated more, the write into the pipe would block). In this case, the OS will internally buffer the
data and deliver it to the first read call. The pipe will not be destroyed prematurely because the parent
does not close its file descriptors for the pipe until after both children have been created.

3. [5 points]: Why is it important that the child that runs the left-end closes p [1]?

Answer: The child that runs the right-end of the pipe should receive end-of-file (instead of blocking
forever) if the left-end is done writing and exits.



II  Upcalls

Ben explores the following implementation of the alarm system call in xv6:

int sys_alarm(void)
{

int ticks;

void (*xhandler) ();

if (argint (0, &ticks) < 0)
return -1;
if (argptr(l, (charxx)é&handler, 1) < 0)
return -1;
proc—->alarmticks = ticks;
proc—>alarmhandler = handler;
return 0;

He modifies t rap as follows:

if (proc && (tf->cs & 3) == 3 && proc—>alarmhandler) {
proc—->ticks++;
if (proc->ticks >= proc->alarmticks) {
proc—->ticks = 0;
(xproc—>alarmhandler) () ;

He uses the same code for registering an alarm handler as given in the alarm homework. He tests this
solution with alarmtest:

void periodic();

int
main (int argc, char xargv([])
{
int i;
printf (1, "starting_alarmtest\n");
alarm (10, periodic);
for(i = 0; i < 50%500000; di++) {
if((i++ % 500000) == 0)
write(2, ".", 1);
}

exit ();

void
periodic ()
{

printf (1, "alarm!\n");



When running alarmtest Ben observes that the kernel invokes alarmhandler but he doesn’t observe the
output of alarmtest’s print statement (i.e., “alarm!”) that a correct solution would print. He also observes
that the kernel doesn’t crash and alarmtest terminates. In fact, he can run alarmtest several times.

4. [5 points]: Alice points out that Ben’s solution is very broken, even though it doesn’t crash the
kernel and seems to work mostly, modulo the missing output “alarm!”. Explain briefly what is wrong
with Ben’s solution?

Answer: User code (alarmhandler) runs with kernel privileges. The alarmhandler could invoke
privileged instructions, which user processes shouldn’t be able to do.

5. [S points]: Explain briefly why Ben’s solution works so well? That is why doesn’t Ben observe
a kernel crash, panic, or something else bad? Why can the kernel invoke periodic?

Answer: The user code is mapped in the bottom half of the address space and the kernel in the top
half. The kernel can invoke code that lies in the bottom half, because the user page directory is still
active when running in kernel mode. The system call in periodic works, because xv6 allows the
kernel to be interrupted.

6. [S points]: Why does the print f in periodic print nothing?

Answer: The x86 will not push esp to the stack, because a change in privilege level did not occur.
Thus the kernel sees a garbage value when it looks at proc->t f->esp. This will fail the bounds
check in fetchint.

A second answer was also accepted: if you did not notice that proc—>tf->esp is garbage, and
assumed that the inner trap frame was correct, then proc->tf->esp would have pointed to the
kernel stack. This would also fail the bounds check in fetchint.



IIT Using virtual memory

In xv6, each process maps the kernel into its address space using setupkvm:

// Set up kernel part of a page table.
pde_tx*
setupkvm (void)
{
pde_t xpgdir;
struct kmap =xk;

if((pgdir = (pde_tx)kalloc()) == 0)

return 0;
memset (pgdir, 0, PGSIZE);
if (p2v (PHYSTOP) > (wvoidx)DEVSPACE)

panic ("PHYSTOP _too_high");
for (k = kmap; k < &kmap[NELEM (kmap)]; k++)

if (mappages (pgdir, k->virt, k->phys_end - k->phys_start,

(uint) k—->phys_start, k->perm) < 0)
return O;

return pgdir;

Alyssa wants to modify setupkvm so that user processes share the x86 page tables for kernel mappings (i.e.,
the kernel part of the address space) and still work correctly. She modifies setupkvm as follows (changes
are marked with “New code”):

// Set up kernel part of a page table.
pde_tx*
setupkvm (void)
{
pde_t xpgdir;
struct kmap =xk;

if ((pgdir = (pde_t=*)kalloc()) == 0)
return O;

memset (pgdir, 0, PGSIZE);

if (kpgdir) { // New code (note that kpgdir is set by kvmalloc)
return copykpgdir (pgdir); // New code

} // New code

if (p2v (PHYSTOP) > (wvoidx)DEVSPACE)
panic ("PHYSTOP_too_high");
for (k = kmap; k < &kmap[NELEM (kmap)]1; k++)
if (mappages (pgdir, k->virt, k->phys_end - k->phys_start,
(uint) k—->phys_start, k->perm) < 0)
return 0;
return pgdir;



7. [5 points]: Complete the function copykpgdir:

copykpgdir (pde_t *pgdir)
{

return pgdir;

}

Answer:

copykpgdir (pde_t *pgdir)
{

int i;
for (i = PDX(KERNBASE); 1 < NPDENTRIES; i++) {
pgdir([i] = kpgdir[il];

}

return pgdir;



IV The dreaded UVPT

Ben Bitdiddle made a terrible mistake in his solution to lab 2, and has accidentally set the PTE_w and PTE_U
bits in every single page directory entry and page table entry. In a futile attempt at debugging, he writes the
following user program:

void

umain (int argc, char *xargv)

{

// Pointer to the page directory entry for UVPT
uint32_t *addr = (uint32_t *) 0x?2?2?272?272?7;

// Physical address of the page directory
uint32_t x = PTE_ADDR (xaddr) ;

Ben chooses addr such that it points to the page directory entry for UVPT (regardless of the layout of
physical memory). Therefore x contains the physical address of the user program’s page directory.

Recall that the UVPT region begins at virtual address 0xe£400000.

8. [5 points]: What is the value of addr?

Answer: Oxef7bdef4 = UVPT + (UVPT >> 10) + (UVPT >> 20). The page directory page
serves as the page directory, page table, and physical page.

Upon further reflection, Ben realizes that the page directory entry for UVPT should not have the PTE_Ww bit
set. He attempts to clear it with the following code:
void
umain (int argc, char xxargv)
{
// Pointer to the page directory entry for UVPT
uint32_t xaddr = (uint32_t %) 0x??2?22?2?2?27?;

// Physical address of the page directory
uint32_t x = PTE_ADDR (*addr);

// Clear all of the permission bits
*addr = x;

// Set permissions to read only, user
xaddr |= PTE_P | PTE_U;

Ben is very confused to find that the last line of code triggers a page fault, even though the second to last
line works fine.



9. [S points]: Why does the page fault occur?

Answer: When we set raddr = x, we immediately clear the PTE_P bit of the page directory entry

for UVPT. On the next line, we attempt to write to a virtual address which is no longer marked as
present!

Alyssa P. Hacker points out that the page fault can be avoided by using a different virtual address to access
the page directory entry for UVPT. She mumbles something about the physical memory map at virtual
address 0x£0000000, and makes the following addition to Ben’s code:

void
umain (int argc, char *xargv)

{

// Pointer to the page directory entry for UVPT
uint32_t *xaddr = (uint32_t *) 0x??2?2?2?27?2?7?;

// Physical address of the page directory
uint32_t x = PTE_ADDR (*addr) ;

// Avoid potential page fault
uint32_t offset = 0x?2?2?27?2?2?2727?

........ 7

addr = (uint32_t *) (x + offset);

// Clear all of the permission bits
raddr = x;

// Set permissions to read only, user
xaddr |= PTE_P | PTE_U;

10. [5 points]: For what value of of fset will this code work as intended?

Answer: The page directory is located at physical address x, so the page directory entry for UVPT is
located at physical address x + Oxef4. To convert this physical address to a virtual address, we just
add 0x£0000000. Therefore the final offset is 0x£0000e £4.



V The stack and calling conventions

The calling convention determines how arguments are passed, which registers get saved, and how values are
returned when a function is called. JOS uses the standard C calling convention, which is called cdecl. cdecl
defines eax, ecx, edx as caller saved and all other registers as callee saved.

Consider the function below, which uses cdecl. (As usual, we use AT&T assembly syntax.)

prologue:

0: push %ebp

4: mov %esp, sebp
8: push $ebx

C: sub $0x04, $esp
body:

10: lea -0x08 (%ebp) , $ebx
14: push sebx

18: call 3c

1C: mov (%ebx) , seax
epilogue:

20: add $0x8, $esp

11. [5 points]: This listing is incomplete. The prologue and body are provided, but some of the
epilogue is missing. Complete the epilogue so that it restores the stack to its initial state and then

returns.

Answer:

24: pop ebx

28: mov ebp, esp
2C: pop ebp

30: ret

or

24: pop ebx

28: pop ebp

2C: ret

10



VI Kill, sleep, and file systems

Ben observes that in many sleep loops in xv6 test for proc—>killed, except in a few places. For example,
the sleep loop in iderw doesn’t check for if a process has been killed while sleeping. Ben modifies the
loop in iderw to check for proc->killed and to return out of iderw if set (the changes are marked by
comments):

void
iderw (struct buf «*b)
{
struct buf xx*pp;
int isread = ! (b->flags & B_VALID);

if (! (b->flags & B_BUSY))
panic("iderw: _buf_not_busy");

if ((b->flags & (B_VALID|B_DIRTY)) == B_VALID)
panic("iderw:_nothing_to_do");

if(b->dev != 0 && 'havediskl)
panic("iderw: _ide_disk_1_not_present");

acquire (&idelock);

// Append b to idequeue.

b->gnext = 0;

for (pp=&idequeue; *pp; pp=& (xpp)->gnext) {
}

*pp = b;

// Start disk if necessary.

if (idequeue == D)

idestart (b);

// Wait for request to finish.

while ( (b->flags & (B_VALID|B_DIRTY)) != B_VALID) {
if (proc->killed) { // Code added
goto done; // Code added
} // Code added

sleep (b, &idelock);

done:
release (&idelock) ;
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12. [5 points]: s this change safe (i.e., will xv6 continue to function correctly)? (Briefly explain
if so or if not so.)

Answer: No. Ben is wrong, because bread may receive a buffer without the B_VALID bit set. A
process that calls bread, which invokes iderw, may be killed before the disk interrupt is delivered,
and thus return out of iderw without a valid buffer. Since such a buffer could contain arbitrary data,
functions such as ialloc may corrupt the file system or panic because the data indicates that there
are no free inodes (even though there may be free inodes on disk).

Interestingly, there is no problem for bwrite, which is used only by the logging system. All writes
are performed inside of a transaction, executed in order, and all will complete or none of them. The
file system won’t get into an inconsistent state.
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VII Processor exceptions

Ben Bitdiddle wants to optimize JOS performance. He determines that system call overhead (generating a
processor exception via int $T_SYSCALL, executing the system call stub in IDT [T_SYSCALL], executing
trap (), and finally dispatching the corresponding system call) is unacceptable. He plans to avoid it by
loading the system call service code directly into user environments, enabling the user environment to call
the system call service code (e.g., sys_cputs) directly without any interaction between the environment
and the kernel.

13. [5 points]: What is one major downfall of Ben’s design?

Answer: User environments must be given access to all kernel data, thus there is no isolation between
user environments.

14. [5 points]: x86 processors will automatically switch stacks when a user environment invokes,
directly or indirectly, an exception handler with a higher privilege level. Suppose the x86 didn’t switch
stacks when handling an exception generated while executing a user environment — what specifically
could go wrong?

Answer: The state of the stack is arbitrary, thus the processor may fail to push important things like
the IP, CS, SS, etc.
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VIII 6.828

We’d like to hear your opinions about 6.828, so please answer the following questions. (Any answer, except
no answer, will receive full credit.)

15. [2 points]: This year we posted an improved draft of the xv6 commentary at the beginning of
the semester. Did you find the chapters useful? What should we do to improve them?

Answer: Most students who read the xv6 book found it useful. Those who didn’t know about it
agreed that such a thing would have been very useful.

16. [2 points]: Did you find code reviews useful? What should we do to improve them?

Answer: Code reviews should be assigned sooner, and guidelines regarding the content of the reviews
should be provided. Some students still have not received one or both of their code reviews for lab 2.

17. [1 points]: We slowed the pace of the 6.828 labs a bit through a combination of hacking days,
spreading the labs, and having more lectures directly focused on the labs. How was the pace this year?
Too slow? Still too fast? About right?

Answer: Most students thought the pace was about right, with equal numbers saying “too fast” and
“too slow”.

End of Quiz I
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