
Department of Electrical Engineering and Computer Science

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

6.828 Fall 2011

Quiz I Solutions

Mean 71 Median 69 Std. dev. 20.2

 0

 2

 4

 6

 8

 10

0 10 20 30 40 50 60 70 80 90 100

1

I General questions

1. [8 points]: Unix’s API is carefully designed so that programs compose easily. As an example,
write and read don’t take an offset as argument, but instead the kernel maintains an offset for each
file descriptor. Give a shell command that illustrates how this unusual API simplifies composing
programs and explain briefly why.

Answer: (echo Your files: ; ls) > out

The ls program does not have to do any work to figure out where in file out to write; it would if
write() took an offset argument.

2. [12 points]: In xv6, wakeup must scan the entire ptable to find the processes that are sleeping
on the specified channel. Ben proposes to change xv6 to use condition variables to avoid this scan.
His condition variables have the following structure:
struct condvar {

struct proc *waiters;
};

For each channel there is a separate condition variable, which holds the list of processes waiting on
that condition variable. Wakeup wakes up only those processes:
void
cv_wakeup(struct condvar *cv)
{

acquire(&ptable.lock);
struct proc *p = cv->waiters;
while (p) {

struct proc *next = p->cv_next;
p->cv_next = 0;
p->state = RUNNABLE;
p = next;

}
cv->waiters = 0;
release(&ptable.lock);

}

(continued on next page)

2

Complete the implementation of cv_sleep. Your implementation should not call sleep.

void
cv_sleep(struct condvar *cv, struct spinlock *lk)
{

if(proc == 0)
panic("sleep");

if(lk == 0)
panic("sleep without lk");

if (lk != &ptable.lock) {
acquire(&ptable.lock);
release(lk);

}

proc->cv_next = cv->waiters;
cv->waiters = proc;
proc->state = SLEEPING;
sched();

if (lk != &ptable.lock) {
release(&ptable.lock);
acquire(lk);

}
}

3. [8 points]: swtch in xv6 doesn’t explicitly save and restore all fields of struct context.
Why is it okay that swtch doesn’t contain any code that saves %eip?

Answer: The call to swtch() saves %eip on the stack, which is constructed in a way such that it
follows the layout of struct context. The return from swtch() restores %eip.

3

II File systems

4. [10 points]: Albert has a computer running xv6. He has written his own application, which
forks many processes, all of which write large files. Every once in a while, Albert’s computer panics
with “bget: no buffers” (line 3946). He thinks to himself that, since buffers are only used for short
periods of time, it would be better for bget() to sleep until a buffer is free. So he changes the panic
at the very end of bget() to:

sleep(&bcache, &bcache.lock); // new code
goto loop; // new code

And adds a wakeup before the release on the last line of brelse():

wakeup(&bcache); // new code
release(&bcache.lock); // existing code

After this change, Albert’s computer occasionally stops working: no panic, but no forward progress
either. He calls procdump() from gdb and sees that every process (other than process 1) is waiting
in his new sleep in bget(); the complete stack for each process is:

Function Line
sleep 2525
bget the new call to sleep
bread 3956
readsb 4282
balloc 4311
bmap 4629
writei 4769
filewrite 5176
sys_write 5285
syscall 3283

Process 1 is sleeping in wait(). Albert’s computer has only one core. Albert is running a modified
version of xv6 with logging disabled: log_write() just calls bwrite(), and begin_trans() and
end_trans() do nothing.

Explain why the processes never wake up from the sleep in bget(). (Hint: look at bmap.)

Answer:
bmap() needs to use two buffers at the same time if it is adding a new block to a large file, one to hold
the file’s indirect block and one (in balloc()) to hold the superblock while allocating a new block.
Suppose there are only 10 slots in the buffer cache, and ten processes (writing ten distinct files) have
each read their file’s indirect block. At that point there is no free buffer into which any of them can
read the superblock, so they will all wait in Albert’s new sleep.

4

5. [10 points]: Albert decides to take a different approach: in order to avoid running out of buffers,
he’ll allocate them with kalloc() as needed. Here’s his new bget() and brelse():

static struct buf*
bget(uint dev, uint sector)
{

struct buf *b;
b = (struct buf *) kalloc();
b->dev = dev;
b->sector = sector;
b->flags = B_BUSY;
b->prev = b->next = b->qnext = 0;
return b;

}

void
brelse(struct buf *b)
{

kfree((void*) b);
}

Again, Albert’s computer has only one core, and has logging disabled.

Albert’s computer seems to work for a while, but eventually panics with “freeing free block” from
bfree() at line 4342.

Explain what is going on.

Answer:
Albert’s new scheme lets multiple processes use the same block at the same time (it has nothing
equivalent to B_BUSY). This allows two processes to allocate the same block or the same inode. If
two processes allocate the same block for different files, xv6 will first notice the problem when both
are deleted: the second delete will free a freed block.

5

III JOS memory layout and traps

Currently, the JOS kernel reserves part of every user environment’s address space for itself. Ben Bitdiddle
(who fights for the user environments) decides to modify his lab 3 implementation so user environments
have control over (nearly) their entire 4GB virtual address space.

6. [8 points]: In regular JOS, where the kernel and user code share the same address space, what
prevents user code from reading or writing sensitive kernel data?

Answer: The page table entries for the kernel portion of the address space do not have the ’U’ bit set,
so the paging hardware disallows access to these pages when the CPU is running user code.

Ben separates the user and kernel address spaces. He constructs the kernel page directory, kern_pgdir,
like usual, but modifies env_setup_vm to create a nearly empty page directory for each new environment
instead of mapping the kernel in to each environment.

Ben’s plan is to switch to kern_pgdir whenever there’s a trap. Unfortunately, the x86 provides no conve-
nient way to switch address spaces when taking a trap. Ben solves this with a trap trampoline. He reserves
a few pages for kernel use at the top of each environment’s address space. He puts all of his trapentry.S
code (TRAPHANDLER declarations and alltraps) on one of these pages so that the CPU can jump to the
trap handler entry point without switching address spaces.

7. [8 points]: Ben also maps the kernel stack in to each user environment. Why is this necessary?

Answer: The CPU needs somewhere to push the trap-time state (EIP, CS, etc)̇ when it takes the
interrupt. This happens before Ben has a chance to switch to the kernel address space, hence the
kernel stack needs to be mapped in to each user environment.

6

Ben modifies alltraps (which runs from the trampoline page) to switch to the kernel page directory before
calling the trap (up to the lcr3, this should be equivalent to the alltraps you wrote):

_alltraps:
pushl %ds # Build trap frame
pushl %es
pushal
movl $GD_KD, %eax # Load kernel segments
movw %ax, %ds
movw %ax, %es
pushl %esp
lcr3 PADDR(kern_pgdir) # NEW: Switch to kernel address space
mov $trap, %eax # Call trap
call *%eax

8. [10 points]: Louis Reasoner thinks doing lcr3 PADDR(kern_pgdir) from alltraps won’t
work because, in Ben’s design, kern_pgdir isn’t accessible in the user environment’s address space.
In fact, it will load the kernel page directory. Why?

Answer: lcr3 takes a physical address so it doesn’t matter what the current address space is.

9. [8 points]: When Ben runs his code, he finds that it executes the lcr3, but fails to execute the
next instruction (it never sets %eax to the address of trap). Why and how can he fix this?

Answer: Ben didn’t map the trampoline page in the kernel address space, so as soon as he switches
to kern_pgdir, the instruction at the EIP will no longer be the mov at the end of alltraps. Ben
can fix this by mapping the trampoline pages at the same location in kern_pgdir.

10. [10 points]: Ben fixes this problem and then discovers that he needs to rewrite sys_cputs
because it can no longer read its string argument directly from the current address space. Describe
how Ben can fix sys_cputs.

Answer: For each page that the argument string spans, sys_cputs needs to translate that page to a
physical address using the user environment’s page directory, and then read from the page that maps
that physical page in the kernel’s address space.

7

IV 6.828

We’d like to hear your opinions about 6.828, so please answer the following questions. (Any answer, except
no answer, will receive full credit.)

11. [2 points]: This year we posted the complete draft of the xv6 commentary at the beginning of
the semester. Did you find the chapters useful? What should we do to improve them?

Answer: Yes, they were very useful. They could use more figures.

12. [2 points]: This year we introduced code reviews. Did you find them useful? What should we
do to improve them?

Answer: Yes. Reading other people’s code was as helpful as getting reviews.

13. [2 points]: What is the best aspect of 6.828?

Answer: Labs.

14. [2 points]: What is the worst aspect of 6.828?

Answer: Bugs. Too much code is given.

End of Quiz
8

