
6.828 FALL 2005, Quiz 1 SOLUTIONS Page 1 of 10

I Processes, stacks, and concurrency

1. [5 points]: Explain briefly one benefit of having one kernel stack per process (as in v6) rather
than a single kernel stack (as in JOS).

Having a per-process stack allows the kernel to release the processor to another process
when a system call needs to wait, for example while reading from the disk.

2. [5 points]: In v6’s getblk, lines 4953 through line 4958 are protected by spl6(). Describe
something that could go wrong if this protection was eliminated.

These lines handle the case where the requested block is not in the buffer cache, and there
are no free buffers in bfreelist in which getblk() can store the block read from
disk. getblk() sets B WANTED to indicate it is waiting for a free buffer, and sleeps on
&bfreelist.

If the spl6() were not there, a disk interrupt might occur after the check on line 4953
but before the sleep on line 4955. The interrupt might call iodone(), which might
call brelse() to put a buffer on the free list. In that case, brelse() would call
wakeup(&bfreelist)and clear B WANTED before the interrupted process called sleep().
As a result the process would not wake up even though there is a free buffer.

3. [5 points]: Two v6 processes call read() at about the same time for different blocks that are
not in the cache. There are many blocks on bfreelist, and no other active processes. As a result,
there are two calls to getblk(), both of which allocate a free buffer in lines 4960 through 4975 at
about the same time. Could the two processes end up taking the same buffer from the free list? If yes,
how could that happen? If no, what prevents that from happening?

No, this could not happen. In V6, context switches between processes executing in the
kernel can occur only during sleep() or just before a process returns to user space. As
long as no interrupt-time code removes a buffer from bfreelist (and none does) there
will no problem.

6.828 FALL 2005, Quiz 1 SOLUTIONS Page 2 of 10

4. [5 points]: Suppose the B BUSY flag were eliminated from the v6 source, so that for example
lines 4941 through 4946 were deleted. Explain a scenario in which incorrect behavior would result.

In vague terms, the B BUSY flag indicates that a process is actively using this buffer, for
example because it is waiting for the result of a disk read to be put there. Eliminating the
flag could result in kernel data structures being put in an inconsistent state.

For example, suppose a process calls read(), and the resulting getblk() call from
bread() does not find the block in the cache. getblk() will put the buffer on the
device’s buffer list with the desired block number and device, but (so far) without correct
contents. Then bread()will call rkstrategy(), which (among other things) sets the
av forw pointer in the struct buf to 0 and then waits for the disk read to complete.
If, meanwhile, another process calls getblk() for the same block number, it will call
notavail() from line 4948, which will crash because av forw is zero.

5. [10 points]: It turns out that savu doesn’t really need to save both r5 and sp, as long as retu
cooperates. Below you’ll see a new version of savu that saves only r5. The retu code below is
copied exactly from the v6 source; please modify it so that it works with the new savu. retu is
called only by swtch (sheet 21) and expand (sheet 22).

/* the new savu: */ /* the new retu: */
_savu: _retu:

bis $340,PS bis $340,PS
mov (sp)+,r1 mov (sp)+,r1
mov (sp),r0 mov (sp),KISA6
/* DELETED: mov sp,(r0)+ */ mov $_u,r0
mov r5,(r0)+ 1:
bic $340,PS /* DELETED: mov (r0)+,sp */
jmp (r1) mov (r0)+,r5

mov r5, sp /* ADDED */
sub $6, sp /* ADDED */
bic $340,PS
jmp (r1)

The sub $6, sp preserves the three registers saved by the csv at the entry to the function
that called savu. They must be preserved since they are callee-saved registers which will be
needed when we return to the function that called the function that called savu.

6.828 FALL 2005, Quiz 1 SOLUTIONS Page 3 of 10

II Address spaces

6. [10 points]: A process calls exec() to run an executable whose first four 16-bit values (in
octal) are 410, 1010, 200, 100. In decimal: 264, 520, 128, 64. Write down the content of the
prototype segmentation registers after the call to estabur() on line 3152 has completed. Please write
the addresses and lengths in decimal.

16 (USIZE)

PDR PAR

length bits address

PDR PAR

length bits address

PDR PAR

length bits address

PDR PAR

length bits address

PDR PAR

length bits address

PDR PAR

length bits address

PDR PAR

length bits address

PDR PAR

length bits address

0

0

0

0

0

0

1

2

3

4

5

6

7

0

12

8 0

RW|ED

RW

RO

4

5

6

7

2

3

108

00

00

00

00

00

16+3+20−128 = −89

6.828 FALL 2005, Quiz 1 SOLUTIONS Page 4 of 10

7. [5 points]: What is the main benefit of keeping the text area separate from the user and data area?
(Explain briefly)

It allows the kernel to keep the text section read-only, which may catch some accidental
stores to incorrect addresses. It also allows different processes executing the same program
to share the physical memory that holds the program’s instructions.

8. [5 points]: Why is it convenient for the user stack’s physical memory to start just above the user
data? What does the kernel have to do if the user program wishes to use more data memory? (Explain
briefly)

The kernel can describe a process’s physical memory with just two numbers, the start ad-
dress and the length.

If a program needs to grow its stack or data, in general the kernel will need to copy the user
area, data, and stack to a new contiguous region of physical memory that’s large enough to
hold the sum of the new sizes.

6.828 FALL 2005, Quiz 1 SOLUTIONS Page 5 of 10

III JOS

The staff solution for the user-level pgfault in lib/fork.c starts as follows:

static void
pgfault(struct UTrapframe *utf)
{

int r;
void *addr = (void*)utf->utf_fault_va;
uint32_t err = utf->utf_err;

if (debug)
cprintf("fault %08x %08x %d from %08x\n", addr,

%&vpt[VPN(addr)], err & 7, (&addr)[4]);

if ((vpt[VPN(addr)] & (PTE_P|PTE_U|PTE_W|PTE_COW)) != (PTE_P|PTE_U|PTE_COW))
panic("fault at %x with pte %x from %08x, not copy-on-write",

addr, vpt[PPN(addr)], (&addr)[4]);

// rest of the pgfault
.....

}

9. [10 points]: What is vpt? How did the kernel set up an environment’s virtual address space to
make this code fragment work correctly? (Explain briefly)

vpt refers to a region of virtual address space into which the kernel has mapped the current
process’s page table. The kernel sets the page directory entry for the address vpt to point
to the physical address of the page directory itself.

6.828 FALL 2005, Quiz 1 SOLUTIONS Page 6 of 10

The staff solution for kernel-level page fault handler in kern/trap.c contains the following frag-
ment:

page_fault_handler(struct Trapframe *tf)
{

uint32_t fault_va;
struct UTrapframe *utf;

// Read processor’s CR2 register to find the faulting address
fault_va = rcr2();

// some code for earlier labs
....

// lab 4 code
if (curenv->env_pgfault_upcall == 0) {

cprintf("[%08x] user fault va %08x ip %08x\n",
curenv->env_id, fault_va, tf->tf_eip);

print_trapframe(tf);
env_destroy(curenv);

}

// Second if statement:
if (tf->tf_esp >= UXSTACKTOP - PGSIZE &&

tf->tf_esp < UXSTACKTOP) {
utf = (struct UTrapframe*)(tf->tf_esp

- sizeof(struct UTrapframe)
- 4);

} else {
utf = (struct UTrapframe*)(UXSTACKTOP

- sizeof(struct UTrapframe));
}
utf->utf_fault_va = fault_va;
utf->utf_err = tf->tf_err;
utf->utf_regs = tf->tf_regs;
utf->utf_eip = tf->tf_eip;
utf->utf_eflags = tf->tf_eflags;
utf->utf_esp = tf->tf_esp;

tf->tf_esp = (uintptr_t) utf;
tf->tf_eip = (uintptr_t) curenv->env_pgfault_upcall;
page_fault_mode = PFM_NONE;

env_run(curenv);
}

6.828 FALL 2005, Quiz 1 SOLUTIONS Page 7 of 10

10. [10 points]: What is the purpose of the second if statement (labeled “second if statement” in
the code)? (Explain briefly)

The second if detects a page fault in the user fault handler. In that case, the kernel pushes
the new UTrapframe onto the user exception stack, rather than at UXSTACKTOP.

6.828 FALL 2005, Quiz 1 SOLUTIONS Page 8 of 10

IV File systems

11. [5 points]: The file system can be viewed as graph with i-nodes as nodes and directory entries
as links. Using link can a program create cycles in the v6 i-node graph? If so, show a sequence of
commands that creates a cycle. If not, how does v6 prevent cycles? (Explain briefly)

V6 prevents cycles by disallowing links to directories, except for the superuser. The super-
user can create a cycle with the following commands:

mkdir foo
chdir foo
link ../foo bar

12. [5 points]: Suppose that because of kernel bug a v6 process were able to get a file descriptor
that referred to a free i-node (that is, i mode is zero). Explain briefly why this would be undesirable,
giving an explicit example of a bad outcome.

Suppose process A has such a file descriptor. If process B then creates a new file and is
allocated that i-node, then A will be able to read B’s data. That would be bad. If both
processes wrote to the file, that would also be bad.

6.828 FALL 2005, Quiz 1 SOLUTIONS Page 9 of 10

13. [10 points]: Explain how a v6 process can acquire a file descriptor that references a free i-node.
Your explanation is not allowed to involve crashes, reboots, or any other external source of file system
corruption. It must only involve ordinary file-oriented system calls, such as creat, open, close,
and unlink. This question is difficult. Look at lines 7663 through 7664.

Two processes are required to exploit the bug. Suppose one process calls open("a",
0) for a file that exists at the time of the call. open() calls namei(), and namei()
calls iget() on line 7664 to fetch a’s i-node from the disk. If iget() blocks waiting
for the disk, then the other process could run and call unlink("a"). Then iget()
in the first process will fetch a free i-node; since there’s no check for that error, open()
would then return a file descriptor to that i-node.

The following code provides evidence of the bug.

/*
* exercise bug at line 7663/7664 of v6 namei.

* Robert Morris <rtm@csail.mit.edu>

* http://pdos.csail.mit.edu/6.828/2005/inode-thing.c

*
* first, mkdir d

*
* one process keeps creating d/a over and over, writing "d/a" into it.

* the other process keeps deleting d/a and creating a different file,

* containing "d/XXXX" (for some number XXXX).

* so if the first process ever reads d/a but sees anything other than

* "d/a" in the file, the bug occured.

*
* I think this output is evidence of the problem:

* # cc x.c

* # ./a.out

* starting

* read d/a failed, ret 0, errno 0

* done

*/

extern errno;
char junk[20*512];

cr(s)
char *s;

{
int fd, n;

fd = creat(s, 0666);
if(fd < 0){

printf("creat %s failed\n", s);
exit(1);

}
if(write(fd, s, strlen(s)) != strlen(s)){

printf("small write %s failed\n", s);
exit(1);

}
close(fd);

}

main()
{

int pid, fd, n, i;
char name[10];

for(i = 0; i < 1000; i++){

6.828 FALL 2005, Quiz 1 SOLUTIONS Page 10 of 10

name[0] = ’d’;
name[1] = ’/’;
name[2] = ’0’ + (i / 1000) % 10;
name[3] = ’0’ + (i / 100) % 10;
name[4] = ’0’ + (i / 10) % 10;
name[5] = ’0’ + (i / 1) % 10;
name[6] = ’\0’;
unlink(name);

}

printf("starting\n");

pid = fork();
if(pid < 0){

perror("fork");
exit(1);

}

if(pid == 0){
while(1){
cr("d/a");

fd = open("d/a", 2);
if(fd >= 0){

errno = 0;
n = read(fd, junk, sizeof(junk));
if(n < 3){

printf("read d/a failed, ret %d, errno %d\n",
n, errno);

sleep(2);
errno = 0;
if((n = write(fd, "deadbeef\n", 9)) < 0){
printf("write haha to bad d/a, ret %d, errno %d\n",

n, errno);
}
exit(1);

}
if(junk[2] != ’a’){

printf("read %d, did not start with a\n", n);
exit(1);

}
close(fd);

}
}

} else {
for(i = 0; i < 1000; i++){
unlink("d/a");

name[0] = ’d’;
name[1] = ’/’;
name[2] = ’0’ + (i / 1000) % 10;
name[3] = ’0’ + (i / 100) % 10;
name[4] = ’0’ + (i / 10) % 10;
name[5] = ’0’ + (i / 1) % 10;
name[6] = ’\0’;
cr(name);

}
printf("done\n");
kill(pid, 9);

}
}

