
Department of Electrical Engineering and Computer Science

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

6.828 Operating System Engineering: Fall 2003

Quiz I Solutions

All problems are open-ended questions. In order to receive credit you must answer the question
as precisely as possible. You have 80 minutes to answer this quiz.

Write your name on this cover sheet AND at the bottom of each page of this booklet.

Some questions may be much harder than others. Read them all through first and attack them in
the order that allows you to make the most progress. If you find a question ambiguous, be sure
to write down any assumptions you make. Be neat. If we can’t understand your answer, we can’t
give you credit!

THIS IS AN OPEN BOOK, OPEN NOTES QUIZ.

1 (xx/19) 2 (xx/15) 3 (xx/25) 4 (xx/20) 5 (xx/15) 6 (xx/6) Total (xx/100)

Name:

6.828 FALL 2003, Quiz 1 Solutions Page 2 of 16

I Calling conventions

In lab 2 you extended printf. Here is the core of printf relevant for this question:

void printk(const char *fmt, va_list ap)
{

register char *p, *q;
register int ch, n;
u_quad_t uq;
int base, lflag, qflag, tmp, width;
char padc;

for (;;) {
padc = ’ ’;
width = 0;
while ((ch = *(u_char *) fmt++) != ’%’) {

if (ch == ’\0’)
return;

cons_putc(ch);
}
lflag = 0;
qflag = 0;

reswitch:
switch (ch = *(u_char *) fmt++) {
case ’d’:

uq = getint(&ap, lflag, qflag);
if ((quad_t) uq < 0) {

cons_putc(’-’);
uq = -(quad_t) uq;

}
base = 10;
goto number;

[... other cases omitted ... not relevant to the question]

number:
p = ksprintn(uq, base, &tmp);
if (width && (width -= tmp) > 0)

while (width--)
cons_putc(padc);

while ((ch = *p--) != ’\0’)
cons_putc(ch);

break;
}

}
}

Name:

6.828 FALL 2003, Quiz 1 Solutions Page 3 of 16

static u_quad_t
getint(va_list *ap, int lflag, int qflag)
{

if (lflag)
return va_arg(*ap, u_long);

else if (qflag)
return va_arg(*ap, u_quad_t);

else
return va_arg(*ap, u_int);

}

int printf(const char *fmt,...)
{

va_list ap;

va_start(ap, fmt);
kprintf(fmt, ap);
va_end(ap);
return 0;

}

1. [10 points]: What values does gcc on the x86 push on the stack for the call:

printf(‘‘the class number is %s and used to be %d \n’’, ‘‘6828’’,
6097)

1. The number 6097, as a 4-byte integer.
2. The address of the (null-terminated) string “6828”, as a 4-byte pointer.
3. The address of the string “the class number ...”, as a 4-byte pointer.

Name:

6.828 FALL 2003, Quiz 1 Solutions Page 4 of 16

2. [4 points]: gcc pushes the arguments in a particular order. What is the order and why?

gcc pushes arguments in reverse order, last argument first. Because the stack grows down
on the x86 (and PDP-11), this means that the first argument (last one pushed) will have the
lowest address in memory, just above the function’s return address. This way, the called
function can find its first argument without knowing exactly how many and what types of
other arguments it was called with. Knowing the location and type of the first argument, the
function can then locate the second argument (if there is one), and so on. The printf()
function depends on this property because it uses its first argument (the format string) to
determine how many and what types of additional arguments it was called with.

3. [5 points]: Explain what va arg does briefly.

The va_arg macro is invoked with an expression of the form va arg(vl, type). The
macro assumes that vl is a pointer variable of type va list, which points to the “cur-
rent” argument in a variable-length list of arguments that was pushed onto the stack as a
result of a C function call. The va_arg macro further assumes that type is a C-language
type name describing the type of this argument. va_arg uses the vl pointer to read the
current argument from the stack and “return” it as the result of the va arg(vl, type) ex-
pression. After reading the current argument, va_arg also increments the vl pointer by
the appropriate number of bytes, typically sizeof(type), to advance vl to point to the
next argument on the stack. As a result, the next invocation of the va_arg macro on the
same vl will read the next argument in the list, and so on.

Name:

6.828 FALL 2003, Quiz 1 Solutions Page 5 of 16

II Concurrency

Sheets 86 through 87 show the code for a simple device: the paper tape reader.

4. [15 points]: If you delete spl4() on line 8686, can you give a concrete sequence of events that
results in deadlock? (Hint: you don’t have to understand the device deeply to answer this question;
focus on the interaction of sleep and wakeup.)

1. A user process opens the device, causing a call to pcopen() in the kernel.
2. pcopen() sets pc11.pcstate to WAITING (line 8657), then sleeps until an in-

terrupt causes pc11.pcstate to change (lines 8658-8661).
3. A device interrupt causes pcrint() to set pc11.pcstate to READING (line

8724).
4. pcopen()wakes up and returns to the user process.
5. The user process now invokes the read() system call on this device, resulting in a

call to pcread() in the kernel.
6. pcread reaches line 8691 after finding that the input buffer is empty (line 8688) and

pc11.pcstate is not EOF (line 8689).
7. An interrupt occurs before pcread() executes line 8691, causing pcrint() to be

called in the middle of the call to pcread.
8. Since pc11.pcstate is now READING, the if block at line 8726 is taken.
9. At line 8727, pcrint() discovers that the device has reported an error, so it sets

pc11.pcstate to EOF (line 8728) and then calls wakeup (line 8734). This call to
wakeup does nothing, since the (interrupted) call to pcread() has not yet reached
its sleep() call on line 8693, and no other user process is currently reading the
device.

10. pcrint() returns, and pcread() resumes where it left off, at line 8691.
11. pcread() reaches line 8693, where it calls sleep() to wait for more characters

to arrive from the device. But notice that pc11.pcstate is now EOF, because
pcrint() set this condition after pcread() checked for it in line 8689. Because
pc11.pcstate is EOF and not READING, the wakeup(&pc11.pcin) call on
line 8734 can never be reached even if further device interrupts occur, causing the user
process to sleep forever.

Name:

6.828 FALL 2003, Quiz 1 Solutions Page 6 of 16

III Virtual memory

Here is the layout of virtual memory that you set up in lab 2.

/*
* Virtual memory map: Permissions
* kernel/user
*
* 4 Gig --------> +------------------------------+
* | | RW/--
* ˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜
* : . :
* : . :
* : . :
* |˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜| RW/--
* | | RW/--
* | Physical Memory | RW/--
* | | RW/--
* KERNBASE -----> +------------------------------+
* | Kernel Virtual Page Table | RW/-- PDMAP
* VPT,KSTACKTOP--> +------------------------------+ --+
* | Kernel Stack | RW/-- KSTKSIZE |
* | - - - - - - - - - - - - - - -| PDMAP
* | Invalid memory | --/-- |
* ULIM ------> +------------------------------+ --+
* | R/O User VPT | R-/R- PDMAP
* UVPT ----> +------------------------------+
* | R/O PAGES | R-/R- PDMAP
* UPAGES ----> +------------------------------+
* | R/O ENVS | R-/R- PDMAP
* UTOP,UENVS -------> +------------------------------+
* UXSTACKTOP -/ | user exception stack | RW/RW BY2PG
* +------------------------------+
* | Invalid memory | --/-- BY2PG
* USTACKTOP ----> +------------------------------+
* | normal user stack | RW/RW BY2PG
* +------------------------------+
* | |
* | |
* ˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜
* . .
* . .
* . .
* |˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜|
* | |
* UTEXT -------> +------------------------------+
* | | 2 * PDMAP
* 0 ------------> +------------------------------+
*/

Name:

6.828 FALL 2003, Quiz 1 Solutions Page 7 of 16

Attached to the quiz is the i386 vm init that was provided to you. Assume you completed i386 vm init
correctly.

5. [10 points]: What entries (rows) in the page directory have been filled in after i386 vm init
has completed? What addresses do they map and where do they point? In other words, fill out this
table as much as possible:

Entry Base Virtual Address Points to (logically):
1023 0xffc00000 Page table for top 4MB of phys mem
1022 0xff800000 .
. . .
. . .
. . .
. . .
960 KERNBASE (0xf0000000) Page table for low 4MB of phys mem
959 VPT (0xefc00000) Page directory (kernel-only, R/W)
958 ULIM (0xef800000) Page table mapping kernel stack
957 UVPT (0xef400000) Page directory (kernel/user, R-O)
956 UPAGES (0xef000000) Page table mapping "pages" array
955 UTOP,UENVS (0xeec00000) Page table mapping "envs" array
954 . Nothing mapped
. . .
. . .
. . .
. . .
. . .
. . .
. . .
. . .
. . .
. . .
. . .
. . .
. . .
2 0x00800000 .
1 0x00400000 .
0 0x00000000 Nothing mapped

Name:

6.828 FALL 2003, Quiz 1 Solutions Page 8 of 16

6. [5 points]:

Here is a section of the course staff solution to Lab 2’s i386 vm init. This section sets up the
UPAGES mapping.

//
// Make ’pages’ point to an array of size ’npage’ of ’struct Page’.
// You must allocate this array yourself.
// Map this array read-only by the user at virtual address UPAGES
// (ie. perm = PTE_U | PTE_P)
// Permissions:
// - pages -- kernel RW, user NONE
// - the image mapped at UPAGES -- kernel R, user R
// Your code goes here:
n = npage*sizeof(struct Page);
pages = alloc(n, BY2PG, 1);
boot_map_segment(pgdir, UPAGES, n, PADDR(pages), PTE_U);

A common mistake is to add the line:

boot_map_segment(pgdir, (u_int)pages, n, PADDR(pages), PTE_W);

This line is unnecessary, because the mapping already exists. Why does the mapping already exist?
Explain exactly which other code has already provided the mapping. You may find it useful to refer
to the i386 vm init attached to this quiz.

The alloc() function, used to allocate the pages array, always returns a kernel virtual
address in the region from KERNBASE to 2

32
−1 in which physical memory is directly and

contiguously mapped into the kernel’s address space. You already established a mapping
for this entire region of the kernel virtual address space, in the immediately preceding
section of i386 vm init(), under this comment:

//
// Map all of physical memory at KERNBASE.
// Ie. the VA range [KERNBASE, 2ˆ32 - 1] should map to
// the PA range [0, 2ˆ32 - 1 - KERNBASE]
// We might not have that many(ie. 2ˆ32 - 1 - KERNBASE)
// bytes of physical memory. But we just set up the mapping anyway.
// Permissions: kernel RW, user NONE

Name:

6.828 FALL 2003, Quiz 1 Solutions Page 9 of 16

7. [5 points]:

In Lab 3, env.c creates the user-level address space for an environment. If the code that created the
address space was buggy and did not set up a mapping for the area starting at KERNBASE, when
would this bug manifest itself? What specific instruction would cause the bug to “take effect” (triple-
fault the processor)? (Note: you can answer this question without having completed lab 3.)

When the kernel attempts to switch to the new environment, env run()will call lcr3()
to load the new environment’s page directory into the processor’s page directory base reg-
ister (PDBR/CR3) and flush the TLB. Since the kernel’s code itself resides in the virtual
address range from KERNBASE to 2

32
− 1, when the processor tries to execute the next

instruction immediately after the “move to CR3” instruction, it will take a page fault be-
cause that virtual address is no longer mapped. In order to handle this fault, the processor
attempts to push the old CS, EIP, and EFLAGS on the stack—but since the kernel stack is
also in this virtual address region starting at KERNBASE, these memory accesses will also
fail, causing a triple fault.

8. [5 points]: On the x86, we make the kernel’s Page structures accessible to the user environments
(in the form of the mapping at UPAGES). What specific mechanism (i.e., what register, memory
address, or bit thereof) is used to keep the user environments from changing the Page structures?

The mapping of the pages array at virtual address UPAGES includes the permission bit
PTE U, allowing code running in user mode access to this mapping. This mapping does
not include the permission bit PTE W, however, which ensures that this mapping cannot be
used to write to the pages array (by code running in either user or kernel mode).

Name:

6.828 FALL 2003, Quiz 1 Solutions Page 10 of 16

IV System calls

9. [5 points]: Draw the kernel stack after v6’s icode called its first instruction and the kernel just
entered trap in trap.c (sheet 26).

Old PSW
Old PC
Old r0

PS in trap
Old r1

User SP
PS & 037 = error code (dev)

Address of line 0785

Name:

6.828 FALL 2003, Quiz 1 Solutions Page 11 of 16

10. [10 points]: What are the values of the arguments to trap? (Fill out the following table.)

dev 6 - the low 4 bits of the PSW the processor loads
from the trap vector defined at line 0518.

sp 0 - the "top" of the user stack, and the top of
virtual address space - i.e., 2ˆ16 wrapped to 0.

r1 irrelevant

nps 030346 - PM=user, CM=kernel, spl7, dev=6

r0 irrelevant

pc 2 - just after syscall instruction in icode

ps 170000 - PM=user, CM=user

11. [5 points]: Briefly describe the point of the statement on line 3188.

Sets the saved user-mode PC to zero in order to begin execution of the newly loaded pro-
gram at virtual address zero.

Name:

6.828 FALL 2003, Quiz 1 Solutions Page 12 of 16

V Thread switching

A process in UNIX v6 switches to another process using retu, which is called on line 2228.

12. [10 points]: Annotate every line of assembly of retu (reproduced from sheet 07). What does
the statement do and why?

_retu:
bis $340, PS # Disable interrupts (set SPL=7 in PSW) to

prevent interference while switching stacks.

mov (sp)+, r1 # Pop return address of retu’s caller
off of old stack, save in r1

mov (sp), KISA6 # Switch kernel’s u-area (page 6) mapping to
the _new_ process’s u-area (including stack)

mov $_u, r0 # Load address of bottom of u-area (struct user)
into r0

1:
mov (r0)+, sp # Load new process’s saved sp (r6) from u_rsav[0]

mov (r0)+, r5 # Load new process’s saved r5 from u_rsav[1]

bic $340, PS # Re-enable interrupts

jmp (r1) # Return to the code that called retu,
except executing on the new process’s stack!

13. [5 points]: What does the stack pointer point to at line 2229 in the first call to swtch, after the
kernel booted?

The stack pointer points into process 1’s kernel stack at this point, specifically at the stack
frame established by newproc() and saved by the savu() call on line 1889. The call
from main() to newproc() on line 1627 originally set up this stack frame in the context
of process 0, but then newproc() copied process 0’s kernel stack (lines 1897-1916) in
order to initialize process 1’s kernel stack. It is this snapshot of process 0’s kernel stack
that the first call to swtch() switches to.

Name:

6.828 FALL 2003, Quiz 1 Solutions Page 13 of 16

VI Feedback

Since 6.828 is a new subject, we would appreciate receiving some feedback on how we are doing so that we
can make corrections. (Any answer, except no answer, will receive full credit!)

14. [2 points]: What is the best aspect of 6.828?

15. [2 points]: What is the worst aspect of 6.828?

16. [2 points]: If there is one thing that you would like to see changed in 6.828, what would it be?

End of Quiz I

Name:

6.828 FALL 2003, Quiz 1 Solutions Page 14 of 16

Here is i386 vm init from Lab 2.

// Set up a two-level page table:
// boot_pgdir is its virtual address of the root
// boot_cr3 is the physical adresss of the root
// Then turn on paging. Then effectively turn off segmentation.
// (i.e., the segment base addrs are set to zero).
//
// This function only sets up the kernel part of the address space
// (ie. addresses >= UTOP). The user part of the address space
// will be setup later.
//
// From UTOP to ULIM, the user is allowed to read but not write.
// Above ULIM the user cannot read (or write).
void
i386_vm_init(void)
{

Pde *pgdir;
u_int cr0, n;

panic("i386_vm_init: This function is not finished\n");

//
// create initial page directory.
pgdir = alloc(BY2PG, BY2PG, 1);
boot_pgdir = pgdir;
boot_cr3 = PADDR(pgdir);

//
// Recursively insert PD in itself as a page table, to form
// a virtual page table at virtual address VPT.
// (For now, you don’t have understand the greater purpose of the
// following two lines.)

// Permissions: kernel RW, user NONE
pgdir[PDX(VPT)] = PADDR(pgdir)|PTE_W|PTE_P;

// same for UVPT
// Permissions: kernel R, user R
pgdir[PDX(UVPT)] = PADDR(pgdir)|PTE_U|PTE_P;

//
// Map the kernel stack (symbol name "bootstack"):
// [KSTACKTOP-PDMAP, KSTACKTOP) -- the complete VA range of the stack
// * [KSTACKTOP-KSTKSIZE, KSTACKTOP) -- backed by physical memory
// * [KSTACKTOP-PDMAP, KSTACKTOP-KSTKSIZE) -- not backed => faults
// Permissions: kernel RW, user NONE
// Your code goes here:

//
// Map all of physical memory at KERNBASE.
// Ie. the VA range [KERNBASE, 2ˆ32 - 1] should map to
// the PA range [0, 2ˆ32 - 1 - KERNBASE]

Name:

6.828 FALL 2003, Quiz 1 Solutions Page 15 of 16

// We might not have that many(ie. 2ˆ32 - 1 - KERNBASE)
// bytes of physical memory. But we just set up the mapping anyway.
// Permissions: kernel RW, user NONE
// Your code goes here:

//
// Make ’pages’ point to an array of size ’npage’ of ’struct Page’.
// You must allocate this array yourself.
// Map this array read-only by the user at virtual address UPAGES
// (ie. perm = PTE_U | PTE_P)
// Permissions:
// - pages -- kernel RW, user NONE
// - the image mapped at UPAGES -- kernel R, user R
// Your code goes here:

//
// Make ’envs’ point to an array of size ’NENV’ of ’struct Env’.
// You must allocate this array yourself.
// Map this array read-only by the user at virtual address UENVS
// (ie. perm = PTE_U | PTE_P)
// Permissions:
// - envs itself -- kernel RW, user NONE
// - the image of envs mapped at UENVS -- kernel R, user R
// Your code goes here:

check_boot_pgdir();

//
// On x86, segmentation maps a VA to a LA (linear addr) and
// paging maps the LA to a PA. I.e. VA => LA => PA. If paging is
// turned off the LA is used as the PA. Note: there is no way to
// turn off segmentation. The closest thing is to set the base
// address to 0, so the VA => LA mapping is the identity.

// Current mapping: VA KERNBASE+x => PA x.
// (segmentation base=-KERNBASE and paging is off)

// From here on down we must maintain this VA KERNBASE + x => PA x
// mapping, even though we are turning on paging and reconfiguring
// segmentation.

// Map VA 0:4MB same as VA KERNBASE, i.e. to PA 0:4MB.
// (Limits our kernel to <4MB)
pgdir[0] = pgdir[PDX(KERNBASE)];

// Install page table.
lcr3(boot_cr3);

// Turn on paging.
cr0 = rcr0();
cr0 |= CR0_PE|CR0_PG|CR0_AM|CR0_WP|CR0_NE|CR0_TS|CR0_EM|CR0_MP;
cr0 &= ˜(CR0_TS|CR0_EM);
lcr0(cr0);

Name:

6.828 FALL 2003, Quiz 1 Solutions Page 16 of 16

// Current mapping: KERNBASE+x => x => x.
// (x < 4MB so uses paging pgdir[0])

// Reload all segment registers.
asm volatile("lgdt _gdt_pd+2");
asm volatile("movw %%ax,%%gs" :: "a" (GD_UD|3));
asm volatile("movw %%ax,%%fs" :: "a" (GD_UD|3));
asm volatile("movw %%ax,%%es" :: "a" (GD_KD));
asm volatile("movw %%ax,%%ds" :: "a" (GD_KD));
asm volatile("movw %%ax,%%ss" :: "a" (GD_KD));
asm volatile("ljmp %0,$1f\n 1:\n" :: "i" (GD_KT)); // reload cs
asm volatile("lldt %0" :: "m" (0));

// Final mapping: KERNBASE+x => KERNBASE+x => x.

// This mapping was only used after paging was turned on but
// before the segment registers were reloaded.
pgdir[0] = 0;

// Flush the TLB for good measure, to kill the pgdir[0] mapping.
lcr3(boot_cr3);

}

Name:

