
6.828:	Virtual	Memory	
for	User	Programs

Adam	Belay	<abelay@mit.edu>



Plan	for	today

• Previously:	Discussed	using	virtual	memory	tricks	to	
optimize	the	kernel
• mmap()	homework	assignment
• This	lecture	is	about	virtual	memory	for	user	
programs:
• Concurrent	garbage	collection
• Concurrent	checkpointing
• Generational	garbage	collection
• Persistent	stores
• Data-compression	paging
• Heap	overflow	detection



What	primitives	do	we	need?

• Trap:	handle	page-fault	traps	in	usermode
• Prot1:	decrease	the	accessibility	of	a	page
• ProtN:	decrease	the	accessibility	of	N	pages
• Unprot:	increase	the	accessibility	of	a	page
• Dirty:	returns	a	list	of	dirtied	pages	since	previous	
call
• Map2:	map	the	same	physical	page	at	two	different	
virtual	addresses,	at	different	levels	of	protection,	
in	the	same	address	space



What	about	UNIX?

• Processes	manage	virtual	memory	through	higher-
level	abstractions
• An	address	space	consists	of	a	non-overlapping	list	
of	Virtual	Memory	Areas	(VMAs)	and	a	page	table
• Each	VMA	is	a	contiguous	range	of	virtual	
addresses	that	shares	the	same	permissions	and	is	
backed	by	the	same	object	(e.g.	a	file	or	
anonymous	memory)
• VMAs	help	the	kernel	decide	how	to	handle	page	
faults



Unix:	mmap()

• Maps	memory	into	the	address	space
• Many	flags	and	options

• Example:	mapping	a	file
mmap(NULL, len, PROT_READ | PROT_WRITE, 
MAP_PRIVATE, fd, offset);

• Example:	mapping	anonymous	memory
mmap(NULL, len, PROT_READ | PROT_WRITE, 
MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);



Unix:	mprotect()

• Changes	the	permissions	of	a	mapping
• PROT_READ,	PROT_WRITE,	and	PROT_EXEC

• Example:	make	mapping	read-only
mprotect(addr, len, PROT_READ);

• Example:	make	mapping	trap	on	any	access
mprotect(addr, len, PROT_NONE);



Unix:	munmap()

• Removes	a	mapping

• Example:
munmap(addr, len);



Unix:	sigaction()

• Configures	a	signal	handler

• Example:	get	signals	for	memory	access	violations
act.sa_sigaction = handle_sigsegv;
act.sa_flags = SA_SIGINFO;
sigemptyset(&act.sa_mask);
sigaction(SIGSEGV, &act, NULL);



Unix:	Modern	implementations	
are	very	complex
e.g.	Additional	Linux	VM	system	calls:
1. Madvise()
2. Mincore()
3. Mremap()
4. Msync()
5. Mlock()
6. Mbind()
7. Shmat()
8. Sbrk()



Can	we	support	the	Appel	and	Li	
Primitives	in	UNIX?
• Trap:	sigaction()	and	SIGSEGV
• Prot1:	mprotect()
• ProtN:	mprotect()
• Unprot:	mprotect()
• Dirty:	No!	But	workaround	exists.
• Map2:	Not	directly.	On	modern	UNIX	there	are	ways,	
but	not	straightforward…

• All	of	these	ops	are	more	expensive	than	simple	page	
table	updates	like	in	JOS
• Why?



Homework:	mmap.c



Use	Case:	Concurrent	GC

Baker’s	Algorithm
• A	copying	(moving)	garbage	collector
• Divide	heap	into	two	regions:	from-space	and	to-
space
• At	the	start	of	collection,	all	objects	are	in	the	from-
space
• Start	with	roots	(e.g.	registers	and	stack),	copy	
reachable	objects	to	the	to-space
• A	pointer	is	forwarded	by	making	it	point	to	the	to-
space	copy	of	an	old	object



Baker’s	Algorithm

From-Space

To-Space

Root



Baker’s	Algorithm

From-Space

To-Space

Root



Baker’s	Algorithm

From-Space

To-Space

Root



Baker’s	Algorithm

From-Space

To-Space

Root



Baker’s	Algorithm

From-Space

To-Space

Root

Discarded



Concurrency	is	difficult

1. Extra	overhead	for	each	pointer	dereference
• Does	the	pointer	reside	in	the	from-space?	If	so,	it	has	to	
be	copied	to	the	to-space.
• Requires	test	and	branch	for	every	dereference!

2. Difficult	to	run	GC	and	program	at	same	time
• Race	conditions	between	collector	tracing	heap	and	
program	threads
• Could	get	two	copies	of	the	same	object!



Solution:	Use	virtual	memory!

From-Space

To-Space

Root Scanned
R	&	W	access

Unscanned
Fault	on	access

VA



Solution:	Use	virtual	memory

• No	mutator instruction	overhead!
• Instead	take	a	page	fault	whenever	program	accesses	an	
object	in	the	unscanned region
• If	a	fault	happens,	have	the	GC	immediately	scan	just	
that	page	and	“visit” all	of	its	references,	then	UNPROT
• At	most	one	fault	per	page!	Compiler	changes	not	
needed!

• Fully	concurrent
• A	background	GC	thread	can	UNPROT	pages	after	
scanning
• Only	synchronization	needed	is	for	which	thread	is	
scanning	which	page



Use	Case:	Generational	GC

• Observation:	Most	objects	die	young
• Idea:	Maintain	separate	regions	for	young	and	old	
objects
• Plan:	Collect	young	objects	independently	and	
more	often
• Performance	impact:	Avoids	tracing	overhead	of	
old	generation



Generational	GC

Young	Generation

Old	Generation

Promotion



Challenge:	How	to	find	live	
objects	in	young	gen?
• Easy	part:	Start	with	roots	like	registers,	stack,	and	
global	pointers
• Hard	part:	What	if	an	old	gen	object	points	to	a	
young	gen	object?
• We	can’t	trace	the	old	gen	or	no	speedup!



Challenge:	How	to	quickly	find	live	
objects	in	young	gen?

Young	Generation

Old	Generation

• Old	gen	may	have	references	to	young	gen!



Solution:	Use	virtual	memory!

Young	Generation

Old	Generation

• Paging	HW	tracks	which	pages	were	modified	(DIRTY)

Dirty Dirty



Use	Case:	Concurrent	
checkpointing
• Checkpointing:	Save	the	state	of	a	running	process	
to	disk,	so,	in	the	event	of	a	failure,	it	can	be	
restored
• Normally,	need	to	pause	execution	to	save	process	
memory
• Instead,	mark	entire	address	space	read-only	
(PROTN),	make	pages	writable	after	state	is	saved	
(UNPROT).	Use	concurrent	program	execution	to	
prioritize	which	pages	to	save	first	(TRAP).



Should	we	use	virtual	memory?

• Most	of	these	use	cases	could	have	been	
implemented	by	adding	additional	instructions	
instead	(e.g.	adding	read	barriers	to	mutator
threads).
• Are	virtual	memory	hacks	worth	it?
• Pro:	Avoids	complex	compiler	changes
• Pro:	CPU	provides	specialized	and	optimized	logic	just	
for	VM	operations
• Con:	Requires	the	right	OS	support.	OS	overhead	can	
easily	squander	any	benefits.
• Con:	Paging	hardware	may	not	always	map	well	to	
problem	domain	(e.g.	are	pages	too	large?)



What’s	changed	between	1991	
and	2017?
• Switching	address	spaces	is	now	almost	free	because	of	
tagged	TLBs
• But	feature	not	exposed	by	any	kernels…
• Do	we	need	MAP2?

• Extended	addressibility doesn’t	matter
• 2^52	bytes	of	virtual	address	space	now	possible

• Persistent	stores	could	matter
• But	for	memory	bytes,	not	disk	blocks

• New	virtual	memory	GC	tricks	still	being	proposed
• E.g.	“Simple,	Fast	and	Safe	Manual	Memory	Management”	at	
PLDI	2017

• Dune	safely	exposes	raw	access	to	paging	hardware



Conclusion

• Virtual	memory	is	useful	for	applications,	not	just	
kernels
• But	most	kernels	can’t	expose	the	raw	hardware	
performance	of	paging,	too	much	abstraction
• Tradeoff	between	adding	extra	instructions	and	
using	virtual	memory,	often	both	are	possible	
solutions


