
6.828:	Using	Virtual	
Memory

Adam	Belay
abelay@mit.edu

1

Outline

Cool	things	you	can	do	with	virtual	memory:
• Lazy	page	allocation	(homework)
• Better	performance/efficiency
• E.g.	One	zero-filled	page
• E.g.	Copy-on-write	w/	fork()

• New	features
• E.g.	Memory-mapped	files

• This	lecture	may	generate	final	project	ideas

2

Recap:	Virtual	memory

• Primary	goal:	Isolation	– each	process	has	its	own	
address	space
• But… virtual	memory	provides	a	level	of	indirection	
that	allows	the	kernel	to	do	cool	stuff

vi sh gcc

%CR3

Kernel

3

Homework:	On-demand	page	
allocation
• Problem:	sbrk()	is	old-
fashioned
• Allocates	memory	that	
may	never	be	used

• Modern	OSes	allocate	
memory	lazily
• Insert	physical	pages	
when	they’re	accessed	
instead	of	in	advance

BRK	address

Accessed

Unused

Accessed

4

x86	page	faults

• x86	supports	few	dozen	or	so	exceptions,	one	of	
them	is	T_PGFLT	
• Exceptions	are	controlled	transfers	into	the	kernel
• Information	we	might	need	to	handle	a	page	fault:

1. The	VA	that	caused	the	fault
2. The	type	of	violation	that	caused	the	fault
3. The	EIP	and	CPL	when	the	fault	occurred

5

//PAGEBREAK: 36
// Layout of the trap frame built on the stack by the
// hardware and by trapasm.S, and passed to trap().
struct trapframe {
 // registers as pushed by pusha
 uint edi;
 uint esi;
 uint ebp;
 uint oesp; // useless & ignored
 uint ebx;
 uint edx;
 uint ecx;
 uint eax;

 // rest of trap frame
 ushort gs;
 ushort padding1;
 ushort fs;
 ushort padding2;
 ushort es;
 ushort padding3;
 ushort ds;
 ushort padding4;
 uint trapno;

 // below here defined by x86 hardware
 uint err;
 uint eip;
 ushort cs;
 ushort padding5;
 uint eflags;

 // below here only when crossing rings, such as from user to kernel
 uint esp;
 ushort ss;
 ushort padding6;
};

x86.h [+] 184,0-1 Bot

Pushed	on	stack	by	HW

Pushed	by	SW	trap	handler

Type	of	fault

More	detailed	reason	for	fault

6

Dispatching	traps

• x86	references	a	special	table	called	the	interrupt	
descriptor	table	(IDT)
• IDT	is	an	array	of	function	handlers	for	each	
possible	exception
• Some	exceptions,	like	page	faults	push	additional	
error	codes	on	the	stack,	others	don’t	
• For	all	exceptions,	HW	pushes	EIP,	CS,	EFLAGs,	etc.

7

.globl vector11
vector11:
 pushl $11
 jmp alltraps
.globl vector12
vector12:
 pushl $12
 jmp alltraps
.globl vector13
vector13:
 pushl $13
 jmp alltraps
.globl vector14
vector14:
 pushl $14
 jmp alltraps
.globl vector15
vector15:
 pushl $0
 pushl $15
 jmp alltraps
.globl vector16
vector16:
 pushl $0
 pushl $16
 jmp alltraps
.globl vector17
vector17:
 pushl $17
 jmp alltraps
.globl vector18
vector18:
 pushl $0
 pushl $18
 jmp alltraps
.globl vector19
vector19:
 pushl $0
vectors.S 94,10 3%

• Procedurally	generated	by	
vectors.pl
• One	vector	handler	for	each	
possible	exception,	each	
programmed	into	IDTT_PGFLT

8

#include "mmu.h"

 # vectors.S sends all traps here.
.globl alltraps
alltraps:
 # Build trap frame.
 pushl %ds
 pushl %es
 pushl %fs
 pushl %gs
 pushal

 # Set up data and per-cpu segments.
 movw $(SEG_KDATA<<3), %ax
 movw %ax, %ds
 movw %ax, %es
 movw $(SEG_KCPU<<3), %ax
 movw %ax, %fs
 movw %ax, %gs

 # Call trap(tf), where tf=%esp
 pushl %esp
 call trap
 addl $4, %esp

 # Return falls through to trapret...
.globl trapret
trapret:
 popal
 popl %gs
 popl %fs
 popl %es
 popl %ds
 addl $0x8, %esp # trapno and errcode
 iret
trapasm.S 1,1 All

Construct	SW	portion	of	trap	frame

Enter	kernel	C	code

9

Gathering	information	to	handle	a	
page	fault
1. The	VA	that	caused	the	fault
• movl %cr2,	%ecx,	or	rcr2()	in	xv6

2. The	type	of	violation	that	caused	the	fault
• tf->err	contains	flag	bits
• FEC_PR:	page	fault	caused	by	protection	violation
• FEC_WR:	page	fault	caused	by	a	write
• FEC_U:	page	fault	occurred	while	in	user	mode

3. The	EIP	and	CPL	where	the	fault	occurred
• EIP:	tf->eip
• CPL:	(tf->cs &	0x3)	>	0	or	check	for	(tf->err	&	FEC_U)	>	0

10

HW	Solution:	Changes	to	
sys_sbrk()

int
sys_sbrk(void)
{
 int addr;
 int n;

 if(argint(0, &n) < 0)
 return -1;
 addr = proc->sz;
#if 0
 if(growproc(n) < 0)
 return -1;
#endif
 proc->sz += n;
 return addr;
}

sysproc.c 61,0-1 50%

Disable	growproc()	and	only	update	proc->sz

11

HW	Solution:	Changes	to	trap()
void
trap(struct trapframe *tf)
{
 if(tf->trapno == T_SYSCALL){
 if(proc->killed)
 exit();
 proc->tf = tf;
 syscall();
 if(proc->killed)
 exit();
 return;
 }

 if(tf->trapno == T_PGFLT){
 uint va = PGROUNDDOWN(rcr2());
 if (va < proc->sz) {
 char *mem = kalloc();
 if(mem == 0){
 cprintf("out of memory\n");
 exit();
 return;
 }
 memset(mem, 0, PGSIZE);
 cprintf("kernel faulting in page at %x\n", va);
 mappages(proc->pgdir, (char*)va, PGSIZE, v2p(mem), PTE_W|PTE_U);
 return;
 }
 }

trap.c 64,0-1 35%

New	T_PGFLT	handler

12

On-demand	page	
allocation	demo

13

Optimization:	Zero	pages

• Observation:	In	practice,	
some	memory	is	never	
written	to
• All	memory	gets	initialized	
to	zero
• Idea:	Use	just	one zeroed	
page	for	all	zero	mappings
• Copy	the	zero	page	on	
write

BRK	address

R/W

Zero	(Read-only)

R/W

Zero	(Read-only)

Zero	Page

14

Zero	page	support:	Changes	to	
trap()

 if(tf->trapno == T_PGFLT){
 int write = (tf->err & FEC_WR) > 0;
 uint va = PGROUNDDOWN(rcr2());
 if (va < proc->sz){
 if (write){
 char *mem = kalloc();
 if(mem == 0){
 cprintf("out of memory\n");
 exit();
 return;
 }
 memset(mem, 0, PGSIZE);
 cprintf("kernel faulting in read/write page at %x\n", va);
 mappages(proc->pgdir, (char*)va, PGSIZE, v2p(mem), PTE_W|PTE_U);
 }else{
 cprintf("kernel faulting in read-only zero page at %x\n", va);
 mappages(proc->pgdir, (char*)va, PGSIZE, v2p(zero_page), PTE_U);
 }
 return;
 }
 }

trap.c 75,0-1 45%

15

Zeroed	page	allocation	
demo

16

Caveats

• Page	faults	below	user	stack	are	invalid
• Negative	’n’	argument	to	sbrk()	doesn’t	remove	
mappings
• What	about	fork()?

• Real	kernels	are	difficult	to	build,	every	detail	
matters

17

Optimization:	Share	kernel	page	
mappings
• Observation:	Every	page	table	has	identical	kernel	
mappings
• Idea:	Share	kernel	level	2	tables	across	all	page	
tables

vi sh gcc

Kernel

18

Feature:	Stack	guard	pages

• Observation:	Stack	has	a	finite	size
• Push	too	much	data	and	it	could	overflow	into	
adjacent	memory
• Idea:	Install	an	empty	mapping	(PTE_P	cleared)	at	
the	bottom	of	the	stack
• Could	automatically	increase	stack	size	in	page	fault	
handler

19

Optimization:	Copy-on-write	fork()

• Observation:	Fork()	copies	all	pages	in	new	process
• But	often,	exec()	is	called	immediately	after	fork()
• Wasted	copies

• Idea:	modify	fork()	to	mark	pages	copy-on-write
• All	pages	in	both	processes	become	read-only
• On	page	fault,	copy	page	and	mark	R/W
• Extra	PTE	bits	(AVL)	useful	for	indicating	COW	mappings

20

Optimization:	Demand	paging

• Observation:	exec()	loads	entire	object	file	into	
memory
• Expensive,	requires	slow	disk	block	access
• Maybe	not	all	of	the	file	will	be	used

• Idea:	Mark	mapping	as	demand	paged
• On	page	fault,	read	disk	block	and	install	PTE

• Challenge:	What	if	file	is	larger	than	physical	
memory?

21

Feature:	Support	more	virtual	
memory	than	physical	RAM
• Observation:	More	disk	capacity	than	RAM
• Idea:	“Page	in”	and	out	data	between	disk	and	RAM
• Use	page	table	entries	to	detect	when	disk	access	is	
needed
• Use	page	table	to	find	least	recently	used	disk	blocks	to	
write	back

• Works	well	when	working	set	fits	in	RAM

22

Feature:	Memory-mapped	files

• Normally	files	accessed	through	read(),	write(),	and	
lseek()
• Idea:	Use	load	and	store	to	access	file	instead
• New	system	call	mmap()	can	place	file	at	location	in	
memory
• Use	memory	offset	to	select	block	rather	than	seeking

23

Feature:	Distributed	shared	
memory
• Idea:	Use	virtual	memory	to	pretend	that	physical	
memory	is	shared	between	several	machines	on	
the	network

RAM RAM RAM

Distributed	Memory

24

JOS	virtual	memory	
layout

25

Conclusion

• There’s	no	one	way	to	design	an	OS
• Many	OSes	use	virtual	memory
• But	you	don’t	have	to!

• xv6	and	JOS	present	two	examples	of	OS	design
• They	lack	many	features	of	real	OSes
• But	still	quite	complex!

• Our	goal:	Teach	you	ideas	so	you	can	extrapolate

26

