
6.828: Operating System Engineering

Interrupt and Exception
Handling on the x86

(Lecture 8)

x86 Interrupt Vectors

 0 Divide Error
 2 Non-Maskable Interrupt
 3 Breakpoint Exception
 6 Invalid Opcode
 11 Segment Not Present
 12 Stack-Segment Fault
 13 General Protection Fault

 14 Page Fault
 18 Machine Check
 32-255 User Defined Interrupts

- Every Exception/Interrupt type is assigned a number:
- its vector

- When an interrupt occurs, the vector determines what code is
invoked to handle the interrupt.

- JOS example: vector 14 → page fault handler
 vector 32 → clock handler → scheduler

Sources: Hardware Interrupts

x86 CPU
PIC

8259A

INTR

NMI

Hardware Interrupt Types:
Non-Maskable Interrupt

- Never ignored

INTR Maskable
- Ignored when IF is 0

PIC: Programmable Interrupt Controller (8259A)
- Has 16 wires to devices (IRQ0 – IRQ15)

- Can be programmed to map IRQ0-15 → vector number

- Vector number is signaled over INTR line.

- In JOS/lab4:
vector ← (IRQ# + OFFSET)

Sources: Software-generated Interrupts

Programmed Interrupts
- x86 provides INT instruction.
- Invokes the interrupt handler for vector N (0-255)
- JOS: we use 'INT 0x30' for system calls

Software Exceptions
- Processor detects an error condition while executing

 an instruction.
- Ex: divl %eax, %eax

- Divide by zero if EAX = 0
- Ex: movl %ebx, (%eax)

- Page fault or seg violation if EAX is un-mapped
 virtual address.

- Ex: jmp $BAD_JMP
- General Protection Fault (jmp'd out of CS)

Enabling / Disabling Interrupts

Maskable Hardware Interrupts
- Clearing the IF flag inhibits processing hardware

 interrupts delivered on the INTR line.

- Use the STI (set interrupt enable flag) and CLI (clear
 interrupt enable flag) instructions.

- IF affected by: interrupt/task gates, POPF, and IRET.

Non-Maskable Interrupt
- Invoked by NMI line from PIC.

- Always Handled immediately.

- Handler for interrupt vector 2 invoked.

- No other interrupts can execute until NMI is done.

IDT: Interrupt Descriptor Table

IDT:
 - Table of 256 8-byte entries (similar to the GDT).
 - In JOS: Each specifies a protected entry-point into the kernel.
 - Located anywhere in memory.

IDTR register:
 - Stores current IDT.

lidt instruction:
 - Loads IDTR with address and size
 of the IDT.
 - Takes in a linear address.

IDT Entries

Selector Segment Selector for dest. code segment
Offset Offset to procedure entry point
P Segment Present Flag
DPL Descriptor Privilege Level
D Size of gate: 1 = 32 bits; 0 = 16 bits
[bit 40] 0 = interrupt gate; 1 = trap gate

JOS: Interrupts and Address Spaces

- JOS approach tries to minimize segmentation usage
- so ignore segmentation issues with interrupts

Priority Level Switch
- CPL is low two bits of CS (11=kernel, 00=user)
- Loading new CS for handler can change CPL.
- JOS interrupt handlers run with kernel CPL.

Addressing Switch
- No address space switch when handler invoked.
- Paging is not changed.
- However in: Kernel VA regions now accessible

Stack Switch (User » Kernel)
 - stack switched to a kernel stack before handler is invoked.

TSS: Task State Segment

- Specialized Segment for hardware
 supported multi-tasking
 (we don't use this x86 feature)

- TSS Resides in memory

- TSS descriptor goes into GDT
 (size and linear address of the TSS)

 - ltr(GD_TSS) loads descriptor

- In JOS's TSS:
 - SS0:ESP0 kernel stack used
 by interrupt handlers.

 - All other TSS fields ignored

Exception Entry Mechanism

User»Kernel

(New State)

SS:ESP TSS ss0:esp0
CS:EIP (from IDT)
EFLAGS:
 interrupt gates: clear IF

Kernel»Kernel

(New State)

SS unchanged
ESP (new frame pushed)
CS:EIP (from IDT)

JOS Trap Frame

(inc/trap.h)

struct Trapframe {
...
u_int tf_trapno;
/* below here defined by x86 hardware */
u_int tf_err;
u_int tf_eip;
u_short tf_cs;
u_int : 0;
u_int tf_eflags;
/* below only when crossing rings(e.g. user to kernel) */
u_int tf_esp;
u_short tf_ss;
u_int : 0;

};

Exception Return Mechanism

iret: interrupt return instruction
 (top of stack should point to old EIP)

Where do we return?
- Hardware Interrupts
 old CS:EIP points past last completed instruction.
- Traps (INT 30, ...)
 old CS:EIP points past instruction causing exception
- Faults (page fault, GPF, ...)
 old CS:EIP points to instruction causing exception
- Aborts (hardware errors, bad system table vals...)
 uncertain CS:EIP, serious problems, CPU confused

Example: Page Fault Exceptions

Why?
x86 Page Translation Mechanism encountered an error
translating a linear address into a physical address.

Error Code
special error code format:

CR2 register
Linear Address that
generated the exception.

Saved CS:EIP
Point to the instruction that generated the exception

