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Abstract
Wide-area distributed applications often reinvent the
wheel for their storage needs, each incorporating its own
special-purpose storage manager to cope with distribu-
tion, intermittent failures, limited bandwidth, and high la-
tencies. This paper argues that a distributed file system
could provide a reusable solution to these problems by
coupling a standard interface with a design suited to wide-
area distribution. For concreteness, this paper presents
such a file system, called WheelFS, which allows appli-
cations to control consistency through the use of seman-
tic cues, and minimizes communication costs by adhering
to the slogan read globally, write locally. WheelFS could
simplify distributed experiments, CDNs, and Grid appli-
cations.

1 Introduction
Distributed applications commonly require the shar-
ing of storage between their components. Today’s
systems rely on specialized storage and data trans-
fer mechanisms: some cooperative web caches use
DHT techniques to replicate data, PlanetLab experi-
ments use scp to centrally collect results, and Grid
applications have customized file systems that posi-
tion data close to computation. This paper argues that
it is possible and desirable to build a distributed file
system that can serve as the storage component for
many wide-area applications.
Designers of distributed applications could sim-

plify their lives by delegating many storage concerns
to a distributed file system. A single filesystem name
space visible from all nodes would save each applica-
tion from having to provide its own naming and data
lookup scheme. Similarly useful would be infrastruc-
ture support for fault-tolerance, efficient wide-area
data location and transfer, and control over consis-
tency and failure semantics.
Are there storage requirements that are common
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across many distributed applications? Can these re-
quirements be met by a single general-purpose file
system design? We believe the answer is yes, but that
existing distributed file systems, such as AFS [31],
NFS [30], and SFS [22], are not sufficient. Our expe-
rience with SFS on the PlanetLab and RON testbeds
suggests two reasons.
First, most popular distributed file systems stress

transparency: a remote file should behave just like
one on a local-disk file system. This forces the file
system to implement expensive strict consistency se-
mantics, as well as to try hard (via long timeouts) to
mask temporary server failures. Many wide-area ap-
plications don’t need these semantics; for example,
a cooperative web cache would rather re-fetch from
the origin server than wait for the file system to find
the latest copy of a cached page.
Second, widely-used distributed file systems typi-

cally store entire subtrees (or the whole file system)
at a single site. This property is awkward when out-
put generated at one site is input at another; sending
data through a central server creates a needless bot-
tleneck. Centralization is also a problem for applica-
tions that are distributed to increase availability.
The need for a global file system has been artic-

ulated for PlanetLab (Section 3 of [3]) and GENI
(see the distributed services document on the GENI
web site [15]), and experience with Grids also sug-
gests that such a file system would be valuable [19].
Though it operates at a cluster level, Google’s
GFS [16] suggests that a shared distributed stor-
age infrastructure can benefit many different appli-
cations.
This paper presents the design of WheelFS,

a global file system with convenient location-
independent names that gives applications control
over data placement, failure behavior, and con-
sistency. WheelFS incorporates the following new
ideas. First, it augments the POSIX interface with
semantic cues that allow applications to select de-
sired behavior in the presence of failures or inconsis-
tent updates. Second, it implements a policy of writ-



ing locally and reading globally, so that outputs can
be written quickly and inputs can be fetched directly
from the copy that is nearest on the Internet. Finally,
the design relaxes certain POSIX semantics in a way
that we believe will harm few practical applications
yet allow the system to provide good performance. It
is not intended to store users’ home directories, due
to these weakened semantics and a focus on perfor-
mance and flexibility rather than durability; instead,
we intend WheelFS to function as the storage com-
ponent of large-scale distributed applications, allow-
ing users to concentrate on their application’s details
and semantics, rather than data storage issues.

2 Design Sketch
WheelFS uses resources on many wide-area nodes
to present users with a single data store, accessible
from any of the nodes. It presents the same tree of
directories and files to all nodes. WheelFS exports a
standard POSIX interface (so that existing programs
will work), with some extensions and modifications.

2.1 Basic design
A WheelFS file system appears as a tree of named
directories and files. Internally, each file and direc-
tory has a unique numeric ID. Each participating
node also has a node ID. Nodes determine responsi-
bility using consistent hashing [18]: the node whose
ID most closely follows a file or directory ID is re-
sponsible for that file or directory. Every node keeps
a copy of the whole set of nodes for fast consistent
hashing. These lists are kept consistent on all nodes
by a Paxos-replicated [21] “configuration service” to
ensure that all nodes agree on the mapping of IDs
to responsible nodes. The system goes through a se-
quence of numbered “epochs” and responsibility for
each file/directory has a linear history of one respon-
sible node per epoch.
The responsible node holds the authoritative copy

of the relevant data, processes updates, and (for files)
maintains a list of nodes believed to have cached
copies. The next few nodes in ID space act as repli-
cas. The responsible node for a file or directory could
change if a node joins or leaves the system, and ad-
ditional replicas may then need to be created.
Files are versioned. A new version only becomes

visible when the writing application calls close().
These semantics, inspired by AFS [31], help with ef-

ficiency and consistency. A file’s responsible node
knows the latest version number.
WheelFS will trust the participating node admin-

istrators (for example, it will not encrypt cached or
replicated data). However, each file/directory will
have an access control list (ACL) specifying the
users who can read and write the file and change
the ACL. We expect user (or application) identi-
ties in WheelFS to span all nodes. Identity should
be supplied by the larger environment (e.g. Planet-
Lab [6], Globus [2], or Condor [23]), since the op-
erating system and remote invocation mechanisms
need to know about identity as well.

2.2 Semantic cues and failure recovery
WheelFS allows an application to provide explicit se-
mantic cues that inform WheelFS’s handling of con-
current updates (consistency) and failures. Semantic
cues address the problem that no fixed semantics can
provide acceptable performance and correctness to
all applications. We envision the set of cues shown
in Table 1. The exact set, and their exact meaning,
requires further research.
Some cues are permanently attached to a file

or directory when an application creates it. Oth-
ers apply to a specific application reference to
a file or directory (a file descriptor or work-
ing directory). For compatibility, applications will
specify semantic cues in path names. For exam-
ple, /wfs/rtm/.anyversion/data refers to
/wfs/rtm/data with cue AnyVersion. Multiple
cues may be specified.
For each Strict file and directory (and even Lax

ones after failures heal) there will be at most one
responsible node that maintains consistency by se-
rializing updates. When the node responsible for a
file/directory fails, the new responsible node must
find a copy of the relevant data. WheelFS uses
primary/backup replication for this: the responsible
node sends every update to its two successors. After
a failure, the new responsible node can find the data
at one of those successors; in the common case, the
node will have been a successor of the failed node.
If both successors are also dead, the new respon-
sible node must by default delay operations on the
file/directory until one of them revives. This is one
situation where the WriteOnce, AnyVersion, and
Lax cues can allow progress despite failures.



WriteMany: (file, default) New versions of this file may be created.
WriteOnce: (file) Only one version of this file may be created. This cue allows WheelFS to know that any cached copy
of the file is up to date; it need not check with the responsible node to find the latest version number.
LatestVersion: (file reference, default)When opening a file, instructs WheelFS to check with the file’s responsible node
to ensure that it finds the latest version.
AnyVersion: (file reference)When opening a file, instructs WheelFS to use the first version it can find. Allows WheelFS
to avoid checking with the file’s responsible node to find the latest version number.
BestVersion: (file reference)When opening a file, instructs WheelFS to use the highest version found within the time limit
specified by theMaxTime cue (see below).
Strict: (file or directory, default) Instructs WheelFS to ensure that new file versions and directory modifications occur one
at a time in a serial order. However, these operations cannot proceed if the responsible node cannot be contacted.
Lax: (file or directory) Allows WheelFS to let multiple nodes act as a given file or directory’s responsible node in certain
failure cases such as network partition. The result may be that the same version number is given to two different file ver-
sions, or that directory operations proceed without seeing the most recent modifications. When the failures heal, WheelFS
will resolve conflicting operations arbitrarily but deterministically. Useful when the application knows it will never try to
create the same file name from two different nodes.
MaxTime=T: (file or directory reference, default T is infinite) Specifies the maximum total wall-clock time any one
operation is allowed to consume. If an operation (such as open()) hasn’t completed in time, the operation will return an
error or (with BestVersion) the highest numbered version found.

Table 1: Semantic cues.

2.3 Write locally / Read globally

WheelFS adopts a policy of initially storing written
data on or near the writing node, to get disk or LAN
throughput for output, and of searching for nearby
cached copies when reading. This policy effectively
results in lazy as-needed transfers, and is likely to
perform well for many workloads such as intermedi-
ate result files in Grid computations.

When an application creates a new file, WheelFS
picks a semi-random new file ID that will cause the
application’s node to be the file’s responsible server.
WheelFS will buffer writes to the file until the appli-
cation calls close(), at which point it will create
the first version of the file locally. This local transfer
will be efficient for large files, though for small files
the expense may be dominated by communicating
with the directory server. Creating a new version of
an existing file whose responsible server is far away
will not be as efficient, so applications should store
output in unique new files where possible.

In order to open and read the latest version of a file,
the application’s node first translates the path name
by iteratively looking up each path component in the
relevant directory to find the next ID, and using con-
sistent hashing to turn the ID into the IP address of
the node responsible for the next directory in the path
name. This process ends with the application node

contacting the node responsible for the file’s ID, ask-
ing it for the latest version number and a list of IP
addresses of nodes believed to be caching or repli-
cating the file. If WheelFS finds more than one copy
of the latest version, it fetches different pieces of the
file from different copies using a BitTorrent-inspired
algorithm and caches it locally on disk to assist other
nodes. This mechanism will make reading popular
files efficient, as when a distributed computation first
starts.

3 Example Application
WheelFS is designed to make it easier to construct
and run distributed applications. As an example, this
section presents a simplified application design for
a cooperative web cache: a web proxy (similar to
CoralCDN [14]) that serves each requested page
from a cache in WheelFS when possible, and oth-
erwise fetches the page from the origin server.
WheelFS provides a good platform for a coop-

erative cache system because the application can
use location-independent file names to find copies
of web pages stored by other nodes. We use DNS
redirection [14] to forward each client’s request to
a random node in our system. The node’s inetd
server will start the script shown in Figure 1 upon
each incoming connection. First, the script parses
the incoming HTTP request to extract the URL and



#!/bin/sh
# extracts URL from HTTP GET request
URL=‘awk ’$1 ˜/GET/ { print $2 }’‘
# turn URL to file name (e.g. abc.com/foo/bar.html becomes 9/f/9fxxxxxx)
FILE=‘echo $URL | sha1sum | sed "s/\(.\)\(.\)/\1\/\2\/\1\2/"‘
FILE_RD=/wfs/cwc/.maxtime=5,bestversion/${FILE}
FILE_WR=/wfs/cwc/.writemany,lax/${FILE}
if [ -f $FILE_RD ]; then

EXPIRE_DATE=‘head -n 100 $FILE_RD | awk ’$1 ˜/Expires:/ {print $2}’‘
if notexpired $EXPIRE_DATE ‘date‘; then
cat $FILE_RD; exit

else
DATE=‘head -n 100 $FILE_RD | grep Date: | cut -f 2- -d " "‘

fi
else

mkdir -p ‘dirname $FILE_WR‘
fi
wget --header="If-Modified-Since: $DATE" --save-headers -T 2 -O $FILE_WR $URL
cat $FILE_RD

Figure 1: A simplified implementation of a cooperativeweb cache atopWheelFS. We omit the details of comparing
two dates using a fake command notexpired.

translates it to a file name in WheelFS. For exam-
ple, the URL http://abc.com/foo/bar.html

will become /wfs/cwc/9/f/9fxxxxxx where
9fxxxxxx is the content hash of the URL. If
the file exists, the script opens it with cue Max-
Time=5,BestVersion, attempting to retrieve the lat-
est version of the file when there is no failure and
using any cached copy otherwise. Lastly, the script
checks if the web page has expired according to
the saved HTTP header. If any step fails, the script
fetches the requested URL from the original web site
and saves it in WheelFS.
The cooperative web cache benefits from

WheelFS’s relaxed consistency semantics. The
application can use a cached copy as long as it has
not yet expired, and can give up quickly if there
are failures. Copies of the application on different
nodes may sometimes write the same file name
simultaneously; the Lax cue allows this to result
in versions with the same number or files with the
same name if there are failures. Since any copy of
the fetched page is adequate, WheelFS’s conflict
resolution strategy of eventually picking one version
arbitrarily is sufficient.
One reason for the script’s simplicity is that

it inherits one of CoralCDN’s main performance-
optimizing techniques from WheelFS: reading from
the closest cached copy. Both CoralCDN and our ap-

plication write downloaded copies of web pages lo-
cally. Our system incurs at most 3 round-trips to look
up directory entries in a file’s pathname while Coral-
CDN requires at most O(log n) round-trips, though
the average number of such round-trips will decrease
through caching in both systems. WheelFS contacts
a file’s responsible node to obtain a list of candidate
nodes with cached files in order to pick a closest copy
to avoid swamping any single node, while CoralCDN
uses a more scalable multi-hop lookup protocol to
find a nearby cached page. Part of our future work is
to investigate how much performance and scalabil-
ity the system actually achieves in the real world as
compared to CoralCDN. Figure 1 is only a prototype
as opposed to a complete final system since it does
not yet address other important issues like cache re-
source allocation and security policies [34,35]. How-
ever, it does demonstrate how WheelFS can dramat-
ically simplify the distributed storage management
aspect of such cooperative cache systems.

4 Related Work
WheelFS adopts the idea of a configuration ser-
vice from Rosebud [29] and Chubby [8], distributed
directories from xFS [4], Ceph [36], Farsite [1,
12], and GFS [16], on-disk caches and whole-
file operations from AFS [31], consistent hashing
from CFS [11], cooperative reading from Shark [5],



OceanStore/Pond [28], Coblitz [25], and BitTor-
rent [10], trading performance versus consistency
from JetFile [17] and TACT [38], replication tech-
niques from DHTs [9], finding the closest copy from
cooperative Web caches [14, 34], and proximity pre-
diction from location services [24].
Central-server file systems that store and serve

files from a single location [4,16,22,30,31,36] create
an unnecessary bottleneck when there is interaction
among client hosts.
Symmetric file systems increase performance and

availability by storing files on many hosts, often
writing files locally and fetching data directly from
peers [1, 5, 11, 12, 17, 28]. Particularly close to
WheelFS are JetFile and Farsite. JetFile [17] is de-
signed for the wide area, stores data on all hosts,
provides a POSIX interface, trades some consistency
for performance, uses file versioning, but relies on
IP multicast. Farsite [12] is designed for a high-
bandwidth, low-latency network. This assumption
allows Farsite to provide strong semantics and exact
POSIX compatibility with good performance. Farsite
handles Byzantine failures, while WheelFS does not.
Storage systems for computational Grids [2, 7,

13, 20, 26, 27, 32, 33, 37] federate single-site storage
servers, with a job’s scheduler moving data among
sites to keep it close to the computations. IBP [26]
and GridFTP [2] are low-level mechanisms for stag-
ing files, but don’t provide the convenience of a file
system. LegionFS [37] provides a file system inter-
face built on a object store.
Compared to previous files systems, WheelFS’s

main technical advantages are its semantic cues, in-
expensive (though weak) default consistency, write-
local read-global data movement, and BitTorrent-
style cooperative reading, These differences reflect
that WheelFS is designed as a reusable component
for large-scale distributed applications.

5 Discussion
This paper has argued that a file system designed
for distributed applications and experiments running
across the Internet would simplify the systems’ in-
frastructure, and presented the design of such a file
system, WheelFS. The design has many open ques-
tions that will need to be explored. For example,
WheelFS cannot easily handle cross-directory re-
names atomically; it is not clear if this would be

significant problem for real applications. Nodes may
need a way to offload storage burden if they are low
on disk space. Files may become unreferenced if all
replicas of a directory are lost due to permanent fail-
ures; perhaps a repair program will be needed. While
the system is not intended for long-term durability,
some attention may be needed to ensure it is durable
enough for typical distributed applications. The se-
mantic cues and default behaviors listed above are a
starting point; experience will guide us towards the
most useful design.
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