Scalable TCP Congestion Control

A thesis presented

by

Robert Tappan Morris

to
The Division of Engineering and Applied Sciences
in partial fullfillment of the requirements
for the degree of
Doctor of Philosophy
in the subject of

Computer Science

Harvard University
Cambridge, Massachusetts

January, 1999

© 1999, Robert Morris. All rights reserved.

iii

Abstract

Routers in IP packet-switched networks signal congestion to senders by discard-
ing packets. Such discards, as a side-effect, are often the key factor determining
the quality of network service perceived by users. For this reason network de-
signers need techniques to explain, predict, and control the packet discard rate.

This thesis explains the discard rate for TCP traffic in terms of the inter-
action between load and capacity. The key insights are that load should be
measured as the number of senders actively competing for a bottleneck link,
and capacity as the total network buffering available to those senders. The the-
sis shows how to predict discard rates using these measures. It also proposes a
new queuing method that can limit the discard rate over a wide range of loads.

iv

Acknowledgements

H. T. Kung took me under his wing at a time when my prospects seemed dark.
Since then I've profited immensely from his wisdom and high standards.

Mike Smith and Alan Chapman inspire me with their quiet excellence.

Trevor Blackwell, Brad Karp, Dong Lin, and Koling Chang have shared
years of ideas, arguments, and good times with me.

Paul Graham, my particular friend, understands how to lead a worthwhile
life; would that I had his insight.

Ingrid Bassett has stayed sweet and sane despite everything.

Finally, my parents still love me.

Contents

1 Introduction

2 Background and Related Work
21 TCP . . . e
2.1.1 Congestion Window
21.2 SlowStart
2.1.3 Congestion Avoidance
2.1.4 Fast Retransmit
2.2 Routers e
2.2.1 Drop-Tail and Random-Drop Routers
222 REDRouters,
2.3 Router Buffer Provisioning
24 Load and Congestion
2.5 Coping with Many Flows

3 Simulation Environment

4 Load and Number of Flows

4.1 Flow Definition
4.2 Detecting Flows
43 Flow Counts

4.3.1 Published Counts.

4.3.2 Counts from Published Traces
4.4 Harvard Trace Details
4.5 Correlationof Lossand Flows
46 Load and AccessLink Rate

5 TCP’s Response to Load
5.1 TCP’sResponsetoLoss
5.1.1 Average Congestion Window Size
5.1.2 Timeouts i e
5.1.3 Average Packetsin Flight
5.2 Drop-Tail and Random Drop Analysis
5.2.1 Drop-Tail and Random Drop Discussion

CONTENTS

5.3 RED Parameter Analysis
Derivation of Relationships
RED Parameter Simulations
Improving the Predictions
Setting RED Parameters
RED Scaling Discussion

5.3.1
5.3.2
5.3.3
5.3.4
9.3.5

6 FPQ: Supporting Large Router Queues
6.1 Bit-Vector Flow Counting
6.2 Choosing the Target Queue Length
6.3 Achieving the Target Queue Length

6.4 Validation
Queue Length

6.4.2 Drop Rate
6.5 Sensitivity to teeqr
6.6 FPQ Discussion

6.4.1

7 Delay Analysis

7.1 Packets-Per-Flow Parameter
7.2 Average Delay Comparison
7.3 Delay Fairness Among Transfer Sizes

7.4 Delay Fairness in General
Cumulative Delay Distribution
7.4.2 Percentile Ratios

74.1

8 Conclusions

vi

31
33
34
38
39
40

41
42
43
45
47
47
47
49
51

52
93
95
57
o8
58
61

64

Chapter 1

Introduction

Buffer space in Internet routers has traditionally been viewed as a way to absorb
transient imbalances between offered load and capacity. Choosing the amount of
buffer memory has been something of a black art: too little risks high loss rates
and low link utilization, too much risks high queuing delay. Current practice
favors limiting buffer space to no more than is required for good utilization.
The result is that routers use loss to control congestion, by discarding packets
when they run out or are in danger of running out of memory. Most Internet
traffic sources respond to loss by decreasing the rate at which they send data,
making loss feedback a reasonable approach to congestion control.

Loss feedback misses an important factor. The TCP protocol that controls
sources’ send rates degrades rapidly if the network cannot store at least a few
packets per active connection. Thus the amount of router buffer space required
for good performance scales with the number of active connections. If, as in
current practice, the buffer space does not scale in this way, the result is highly
variable delay on a scale perceptible by users. Evidence collected from busy
parts of the Internet suggests that this effect might be significant.

The simultaneous requirement of low queuing delay and of large buffer mem-
ories for large numbers of flows poses a problem. This thesis suggests the follow-
ing solution. First, routers should have physical memory in proportion to the
maximum number of flows they are likely to encounter. Second, routers should
enforce a dropping policy aimed at keeping the actual queue size proportional
to the actual number of active flows. This system, referred to here as FPQ
(Flow-Proportional Queuing), automatically chooses a good tradeoff between
queuing delay and loss rate over a wide range of loads. In particular, FPQ
allows a network administrator to set the loss rate to a low constant despite
varying load.

FPQ provides congestion feedback using queuing delay, which it makes pro-
portional to the number of flows. TCP’s window flow control causes it to send
at a rate inversely proportional to the delay. Thus the combination of TCP and
FPQ causes each TCP to send at a rate inversely proportional to the number of
TCPs sharing a link, just as desired. Under heavy load it turns out that FPQ’s

CHAPTER 1. INTRODUCTION 2

delay feedback produces the same overall delay as the timeouts produced by
loss feedback. FPQ, however, produces a fairer distribution of delays than loss
feedback: every transfer sees the same queuing delay in FPQ, whereas loss feed-
back sharply segregates transfers into unluckly ones (which see timeouts) and
lucky ones (which do not).

Part of the reason that FPQ works is that number of active flows is an
important measure of load in TCP networks, and the ability of the network to
store packets is an important measure of capacity. These are non-traditional
measures: bandwidth is typically used for both load and capacity. Much of
this thesis is an exploration of the relationship among number of flows, network
storage, and loss rate. These ideas will prove useful not just in the design of
FPQ, but also in the analysis and tuning of existing router buffering systems.

The remainder of the thesis starts (in the next chapter) with a tutorial on
TCP and router design, along with a review of work in areas related to scalable
TCP congestion control.

Chapter 3 describes the simulation environment used by the rest of the thesis.

Chapter 4 presents evidence about how many flows busy Internet links carry,
evidence about Internet loss rates, and informal support for the view that num-
ber of flows is a good measure of load.

Chapter 5 considers this notion of load more thoroughly, exploring the in-
teractions among number of flows, buffer space, and loss rate. It presents both
simulations and predictive formulae. Particular attention is given to setting the
parameters of the Random Early Detection (RED) queuing algorithm.

Chapter 6 proposes a new packet dropping strategy called FPQ, designed to
help a router adapt its queue length and loss rate to the measured number of
active flows.

Chapter 7 uses simulation to show that FPQ causes the same average delay
as traditional buffering techniques, but significantly lower delay variation.

Chapter 8 summarizes the lessons learned in this thesis.

Chapter 2

Background and Related
Work

This chapter presents the details of TCP and IP router design required to un-
derstand the rest of the thesis. It also reviews current research relevant to
scalable TCP congestion control. Sections 2.1 and 2.2 are for review and are
not intended to be controversial or even interesting. Sections 2.3 through 2.5
touch on areas in which this thesis extends or differs from previous work.

2.1 TCP

The service that an IP network provides is the transport of individual packets
of data. These packets consist of a header and at most a few thousand bytes of
data. The header contains the address of the destination computer (or “host”).
IP networks consist of routers connected by links. The routers contain tables
which allow them to forward each packet from source to destination host, po-
tentially along a path consisting of many routers and links. The network usually
delivers the packet, but may instead discard it, corrupt it, or deliver it to the
wrong host.

Most applications need a higher level of service than this. First, they of-
ten need to exchange more data than will fit in a packet. Second, often want
reliable in-order delivery of data. Third, they usually want to identify which
of many applications running on the destination host the data should be deliv-
ered to. Fourth, a pair of communicating applications may want a notion of a
“connection” suitable for a sustained conversation.

TCP [46] provides these services in a generic way suitable for many applica-
tions. When two applications on different hosts wish to communicate, they each
create a TCP endpoint (or “socket”) and each tell their local TCP software to
create a connection between the sockets. The TCPs on the two host exchange
connection setup packets, called “SYN” packets. When the applications indicate
that the conversation is over, the TCPs exchange “FIN” (or finish) packets.

CHAPTER 2. BACKGROUND AND RELATED WORK 4

During the life of a connection the applications may send each other data.
TCP divides this data into packets small enough for the IP network to transport.
TCP numbers the packets and sends each packet’s number in the packet header.
The receiver uses these numbers to reconstruct the original stream of data in
order. These are called “sequence” numbers.

When a TCP endpoint receives a data packet, it sends an acknowledgment
(or “ACK”) packet back to the sender. The ACK contains the lowest sequence
number that the receiver has not yet received. Suppose, for example, that a
receiver receives packets 1, 2, and 4. On receiving 4, it will return an ACK
containing 3. This tells the sender two things. First, that the receiver has
packets 1 and 2, so the sender need never think about them again. Second, that
the receiver has not received packets 3 and 4, so the sender may need to re-send
them.

After the sender sends a packet to the receiver, it sets a “retransmit timer.”
If the timer goes off before the sender gets an ACK for the packet, the sender
retransmits the packet. The sender sets the timer adaptively, by measuring
the “round trip time” between each packet transmission and the receipt of the
corresponding ACK. In practice, TCPs measure this time with a granularity of
half a second, and use a minimum retransmit timer of one second. If successive
retransmissions of the same packet fail, TCP doubles the retransmission timeout
after each.

2.1.1 Congestion Window

Suppose that a TCP sender waited for an ACK after sending each data packet.
This has the valuable effect of causing the sender to send at a rate that is
related to the network capacity: if the network is fast, the ACKs will come
back quickly and the sender will send quickly; if the network is slow, both
processes will proceed slowly. This prevents the sender from sending faster than
the network capacity. It may also cause the sender to send far slower than the
network capacity. Suppose, for example, that the network can send 1000 packets
per second, but has a round-trip speed-of-light propagation delay of 0.1 second.
Then a single TCP sender can send 10 packets per second, or just 1% of the
network capacity.

To solve this problem, TCP sends a “window” of packets before waiting for
an ACK. In the example above, TCP should set its window to 100 packets,
which would keep the network busy for the 0.1 seconds until the return of the
first ACK. Each time TCP receives an ACK, it sends another data packet. This
procedure tends to maintain a window of packets in flight, and to keep the
network busy. In general the correct window size is the product of available
capacity (or bandwidth) and round-trip propagation delay, or 1000-0.1 packets
in this case. Note that this window is mostly stored on the network links—as
photons moving through fibers, for example—and mostly not as packets buffered
in routers.

A TCP sender actually handles ACKs as follows. Suppose the desired win-
dow size is cwnd. Whenever TCP receives an ACK, it calculates how much

CHAPTER 2. BACKGROUND AND RELATED WORK 5

data is still in flight—that is, how much data has been sent but for which the
sender has received no ACK. Usually the answer will be cwnd less two packets—
TCP receivers traditionally send an ACK for every other data packet. Then the
sender sends enough new packets so that there are again cwnd packets in flight;
usually this means sending two new packets.

While using a small window may cause under-utilization, using windows
larger than necessary also causes problems. Network routers must buffer the
excess packets, causing either excessive delay or buffer overflow and packet loss.
Since the “delay-bandwidth” product may vary by orders of magnitude between
different network paths, TCP cannot reasonably used a single fixed window size.

However, TCP cannot directly determine either factor of the delay-bandwidth
product, so it cannot directly decide an appropriate window. Instead it uses an
adaptive “congestion window” algorithm [24], which effectively searches for the
maximum reasonable window by increasing it until the network starts dropping
packets. The algorithm comes in two parts, called slow start and congestion
avoidance.

2.1.2 Slow Start

TCP maintains a guess at the current reasonable window size, called the slow-
start threshold (or ssthresh). Whenever TCP starts sending after being idle
(or timing out), it would like to send with a window of size ssthresh. It turns
out to be a bad idea to send the entire window in a burst, which might force
a nearby router to buffer the whole window; far better to spread the window
over a round-trip time, so that they are stored in transit on the links. TCP
accomplishes this using this algorithm, called “slow-start:”

1. Initialize the window size, cwnd, to one packet.

2. Whenever an ACK that acknowledges new data arrives (a “positive”
ACK), increase cwnd by one packet.

3. If the resulting cwnd is less than ssthresh, stay in slow-start. Otherwise,
enter congestion avoidance mode, described in the next section.

This doubles cwnd every round-trip time, so that TCP opens its window to
ssthresh in time proportional to log ssthresh instead of all at once.

A typical initial ssthresh, used when a TCP connection is first created, is
64 kilobytes. ssthresh is adjusted after packet loss as described below.

2.1.3 Congestion Avoidance

A TCP in congestion-avoidance mode is searching for a reasonable window size.
The goal is to increase the window slowly in case available network bandwidth
has increased, perhaps because of reduced competition from other connections—
but to detect reductions in bandwidth and reduce the window accordingly. Con-
gestion avoidance works as follows:

CHAPTER 2. BACKGROUND AND RELATED WORK 6

1. cwnd starts out at ssthresh due to slow-start.

2. After each entire window of positive ACKs arrive, increase cwnd by one
packet.

3. After a timeout (that is, a lost packet), set ssthresh to %’l and enter
slow-start.

This algorithm has the effect of increasing the window by one packet per
round-trip time when there is no loss. The rate at which TCP sends data is
equal to one window per round-trip time, or Cfgd. As long as cwnd is less than
the delay-bandwidth product, increases in cwnd cause increases in send rate,
because rtt is fixed at the round-trip propagation delay. However, once cwnd
exceeds the delay-bandwidth product, routers must buffer the excess packets.
This buffering increases the round-trip time by one packet transmission time
per buffered packet. If we measure rt¢ in units of packet transmission times, we
can see that increases in cwnd leave %i unchanged once cwnd is equal to the
delay-bandwidth product.

At some point the congestion avoidance algorithm will increase cwnd so
much that some router runs out of buffer memory—or perhaps some competing
connection will do so. At that point the router much drop one or more pack-
ets. Once TCP notes the lost packet, it realizes that cwnd was too large and
effectively halves it (by modifying ssthresh and entering slow-start). All other
things being equal, TCP’s window varies up and down by a factor of two over
time.

Two router design considerations spring immediately from these algorithms.
First, a router must provide about one delay-bandwidth of buffering if it wishes
to make sure that a single TCP can sustain a send rate equal to the link band-
width [51]. Otherwise TCP will send at less than the link rate after it cuts its
window in half. Second, TCP will tend to keep router buffers full no matter how
large they are. This means that building routers with huge buffer memories is
an invitation to excessive queuing delay.

2.1.4 Fast Retransmit

TCP traditionally waits at least one second before timing out and re-transmitting
a lost packet. This causes packet loss to have a large impact on efficiency; for
example, a packet loss rate of 5% would prevent TCP from sending faster than
20 packets per second, no matter how fast the network. TCP uses a mechanism
called “fast retransmit” [47] that can recover from a packet loss in a round trip
time instead of a second.

After a packet is lost, the TCP receiver sends ACKs for each of the remaining
packets in the window; each of these ACKs repeats the lost packet’s sequence
number to indicate that the packet wasn’t received. The sender notes these
duplicated ACKs. If it sees three in a row, it retransmits the lost packet, sets
cwnd to half of ssthresh, and enters slow-start.

CHAPTER 2. BACKGROUND AND RELATED WORK 7

Note that this fast-retransmit mechanism only works if the window is four
or more packets.

2.2 Routers

An IP router consists of a number of ports connected to transmission links, a
mechanism to forward each packet from the port it arrives on to the appropriate
output port, and memory at each output port to buffer packets that cannot
be sent immediately. Routers are interesting because they are where speed
mismatches occur. For example, a router may receive packets on a link with
higher capacity than the relevant output link. Or a router, all of whose links
are the same speed, may have multiple input streams converging on the same
output.

In the short run a router can absorb excess traffic by buffering it. This is
not sustainable in the long run; routers are built with finite memory, and even
with infinite memory the queuing delays would grow without bound. Instead,
overloaded routers send feedback to the data sources telling them to slow down.
In practice this feedback takes the form of dropped packets, which interact with
TCP’s congestion window algorithms as described above.

Within this framework two approaches are widely used or accepted: drop-tail
routers and RED routers.

2.2.1 Drop-Tail and Random-Drop Routers

Most current routers use “drop-tail” queuing. Each output port has a single
first-in first-out (FIFO) queue of packets. When a packet arrives on an input, it
is appended to the relevant output’s queue. Each output transmits the packets
from its queue, in order, as fast as it can. Each queue has a limit on the number
of packets allowed, typically from a few dozen to a few hundred. If a packet
arrives and the queue is already at its limit, the router discards (drops) the
arriving packet.

Drop-tail queuing is simple and efficiently implemented, but causes two prob-
lems with TCP traffic. First, when a queue gets full, the router tends to drop
a packet from each connection using the queue [22, 45]. This causes “global
synchronization” of the connections’ window size decreases, leading to under-
utilization.

Second, it turns out that the probability that a drop-tail router drops a
packet (i.e. has a full queue when the packet arrives) is not independent of
which connection the packet is from. TCP’s ACK feedback mechanism causes
repeating patterns or “phase effects” in packet arrivals, which can cause different
connections to experience different loss rates [18].

A variant of drop-tail called random-drop discards a randomly selected
packet from the output queue when a packet arrives and the queue is full. The
arriving packet is queued. This approach helps eliminate phase effects [35, 18],
but does not avoid global synchronization [19].

CHAPTER 2. BACKGROUND AND RELATED WORK 8

2.2.2 RED Routers

A technique called Random Early Detection (RED) [19] eliminates drop-tail’s
global synchronization and phase effects, and treats transient bursts more fairly.
A simplified description of RED’s workings will be helpful in understanding
this thesis. RED (like drop-tail) maintains a single FIFO queue per output
port. It remembers the average queue length g,.4 over recent time. The network
administrator must set three RED parameters: ming,, the minimum acceptable
queue length; mazyy,, the maximum acceptable queue length; and maz,, the
maximum dropping probability. When a packet arrives, one of three things
happen. If gqug < ming,, the router always queues the packet. If gooy >=
max¢h, the router always drops the packet. If ming, < gavg < mawin, the router
drops the packet with probability proportional to the average queue length:

mazy(qavg — Ming,)/(Mmaze, — ming,).

RED computes the average queue length g,,, from the instantaneous queue
length ¢ each time a packet arrives with this filter:

Gavg = (1 - wq)qavg + wqq

The recommended value for w, is 0.002, which averages the queue length over
about 500 packet arrival times.

Since RED drops packets with a probability governed by average queue
length, rather than instantaneous queue length, it tends to drop each packet
with equal probability. This distributes the drops among connections in propor-
tion to their bandwidths. Since RED starts dropping with some low probability
as soon as the average queue length exceeds min,y,, it tends to spread losses out
over time, thus avoiding global synchronization. RED’s averaging also allows
buffering of transient bursts, as long as they are noticeably shorter than the
queue averaging interval.

2.3 Router Buffer Provisioning

How much packet buffer memory should router ports contain? Previous work
suggests two answers. First, one delay-bandwidth product of packet storage.
An abstract justification for this is that it allows for the natural delay at which
the end-systems react to signals from the network [31, 29]. A TCP-specific
justification is that this is the minimum amount of buffering that will ensure
full utilization when a number of TCP connections share a drop-tail router
[51]. With any less than a full delay-bandwidth product of router memory, the
TCPs’ windows would sum to less than a delay-bandwidth product after they
all halve their window sizes. At least one major router vendor [49, 48] uses a
delay-bandwidth product of memory.

Another answer is that buffering is only needed to absorb transient bursts
in traffic [4]. This is true as long as the traffic sources can be persuaded to
send at rates that consistently sum to close to the link bandwidth. RED, with

CHAPTER 2. BACKGROUND AND RELATED WORK 9

its ability to de-synchronize TCP window decreases, should be able to achieve
this. This means that utilization with RED should be relatively insensitive to
parameters such as buffer size [25]. Since large buffer memories contribute to
undesirable queuing delay, the recommended RED buffer size (i.e. mawyy) is
only a few dozen packets [16]. Adding weight to the view that router buffers
should be small are studies of long-range dependent traffic that conclude that
increasing router buffer space is not an effective way to control loss rate [20, 12].

Both of these answers effectively use packet discard as the only mechanism
to control load. As later chapters describe, this can lead to high variation in
user-perceived delay. This thesis suggests using a combination of queuing delay
and discard instead.

2.4 Load and Congestion

Much of this thesis deals with how a TCP network should cope with high load
and congestion. These are vague terms. Intuitively, “load” encompasses legiti-
mate user actions tend to place the network under strain and cause it to behave
badly. Congestion is bad behavior caused by load. This thesis will argue that an
important source or measure of load in TCP networks is the number of simulta-
neously active connections sharing a bottleneck, and that congestion amounts
to loss rates high enough to force TCPs into timeout.

An early definition of congestion in TCP networks focused on a phenomenon
called “congestion collapse” [40]. As the load on the network increased, the
throughput, queuing delay, and loss rate also increased. Increases in loss and
delay caused increases in retransmission rates. These retransmissions themselves
increased loss and delay, as well as consuming bandwidth to no useful purpose.
The result was that after a certain point, increased load caused a precipitous
decrease in useful throughput. Other window-based flow control systems saw
similar phenomena [27].

Congestion collapse was solved for TCP by careful window size [24] and
retransmit timer [28] management. TCP now does a much better job of match-
ing its window size (and send rate) to available network resources and of re-
transmitting only lost packets.

At this point Internet congestion manifests itself in high loss rates. This
loss is not catastrophic, as in the days of congestion collapse. Lost packets do,
however, waste network bandwidth up to the point where they are discarded.
Packet loss rates are hard to characterize globally, but measurements from dif-
ferent times and places are available. Bolot [3] reports loss rates on the order of
9% between France and the US in 1992. Paxson [44] reports a loss rates 2.7%
in late 1994 and 5.2% in late 1995, between a variety of pairs of hosts on the
Internet. Handley [21] reported loss rates on the order of 10% in 1996 from
sites all over the Internet receiving MBone transmissions. Yajnik, Kurose, and
Towsley [52] report losses of about 10% in 1995 and 1996, again from sites all
over the Internet receiving MBone transmissions.

High loss rates decrease TCP’s average window size and thus TCP’s send

CHAPTER 2. BACKGROUND AND RELATED WORK 10

rate [14]. This is all to the good, since high loss rates indicate an excess of traffic.
However, high loss rates also tend to push TCP into retransmit timeouts, with
deleterious effects described in later chapters.

2.5 Coping with Many Flows

The idea that window flow control in general has scaling limits because the
window size cannot fall below one packet has long been known [1]. Villamizar
[51] suggests that this might limit the number of TCP flows a router could
support, and that increasing router memory or decreasing packet size could
help. Eldridge [11] notes that window flow control cannot control the send rate
well on very low-delay networks, and advocates use of rate control instead of
window control; no specific mechanism is presented. In the somewhat different
context of ATM virtual circuit flow control, Kung and Chang [30] describe a
system that uses a small constant amount of switch buffer space per circuit in
order to achieve good scalable performance.

One drawback of drop-tail and RED routers is that they must drop packets
in order to signal congestion, a problem particularly acute with limited buffer
space and large numbers of flows. These packets consume bandwidth on the
way to the place they are dropped, and they also cause increased incidence of
TCP timeouts. An alternate strategy is to explicitly notify senders of conges-
tion, either with a flag in the packet header, or with a special packet. Floyd
[15] presents simulations of a TCP and RED network using explicit congestion
notification (ECN). Floyd observes that ECN reduces timeouts for interactive
flows, and thus provide lower-delay service.

Feng et al. [13] note that ECN cannot prevent routers with limited buffer
memory from dropping packets if the number of flows is very large. As a solution,
they implement Eldridge’s rate-control proposal which allows TCP to send less
than one packet per round trip time. The combination of rate-control and
ECN increases the number of TCPs that can coexist with limited buffer space.
Their rate increase algorithm is multiplicative: every time it sends a packet, it
increases the rate by a fraction of itself. This increase policy turns out to have
no bias towards fairness [7], so that differences in send rates among connections
will be stable. In contrast, TCP’s standard window algorithms use an additive
increase of one packet per round trip time, and do tend towards fairness.

Previous work also exists investigating modifications to routers to allow them
to cope with large numbers of flows. Nagle [41] observes that providing unlimited
buffer space in a FIFO router does not help by itself. The fundamental problem
is that sources that increase their send rates are rewarded with a larger share
of the bandwidth. Nagle proposes a separate queue for each flow, with round-
robin scheduling among the queues. In such an architecture, flows that send
at their fair share or less are rewarded by low delay, and flows that send faster
are penalized by increased delay. The optimum behavior with this kind of fair
queuing is for each flow to buffer just one packet in the router. If flows really
acted like this, routers could be built with unlimited buffer memory, but only

CHAPTER 2. BACKGROUND AND RELATED WORK 11

use it in proportion to the number of active flows.

In an effort to achieve the benefits of Nagle’s fair queuing without the over-
head of maintaining per-connection queues, Lin [34] proposes a fair dropping
strategy called FRED. Packets are stored in a FIFO, but no flow is allowed to
buffer more than a handful of packets. This bounds the unfairness allowed, and
requires only per-flow counting, not queuing. FRED should scale well with the
number of flows because it allows a router to built with a large amount of packet
memory, but only to use it in proportion to the current number of flows.

This thesis makes two contributions in this area. First, it presents analytical
and simulation results about the interaction between number of TCP flows and
buffering; these should help in configuring conventional routers as well as in
understanding their behavior. Second, it proposes the FPQ mechanism, which
provides a good delay/loss/fairness tradeoff with significantly less complexity
than previous systems.

Chapter 3

Simulation Environment

Most of the simulations described in this thesis were performed on a uniform
configuration designed to highlight buffering and flow count issues. As pictured
in Figure 3.1, this configuration involves N TCP senders converging on router
A. Router A must send what data it can across its link to router B, and either
buffer or discard the rest. Thus router A is the bottleneck router, and the link
from A to B is the bottleneck link.

The intent of this configuration is to capture what happens on heavily loaded
links. For example, the link from A to B might be the link from an Internet
Service Provider’s backbone to a customer. Such links usually run slower than
either the backbone or the customer’s LAN, and thus act as bottlenecks.

The simulations use the NS 1.4 simulator [36]. Unless otherwise noted, they
use the parameters given in Figure 3.2.

Note that Figure 3.2 implies that the average round-trip propagation delay is
100 milliseconds. Since a 10 megabit link can send 2170 packets per second, the
delay-bandwidth product is 217 packets. This means that a single TCP with a
64 kilobyte window can only use about half the link capacity. In addition, each
sender’s link to router A only runs at 10 times its fair share; this means that if

Sender 1 Receiver 1
Sender 2 Receiver 2
Sender N Receiver N

Figure 3.1: Standard simulation configuration. Each of N TCP senders has its
own host and its own link to router A. Router A connects to router B over a
bottleneck link.

12

CHAPTER 3. SIMULATION ENVIRONMENT 13

Packet size 576 bytes

Maximum window 64 kilobytes

TCP timer granularity 0.5 seconds

TCP delayed-ACK timer 0.2 seconds

A to B propagation delay 45 milliseconds

A to B bandwidth 10 megabits/second

Sender i to A propagation delay | random, 0 to 10 milliseconds
Sender i to A bandwidth 10- (10/N) megabits/second
Maximum drop-tail queue length | 217 packets

RED mazp 217 packets

RED ming, 5 packets

RED maz, 2%

Maximum RED queue length no hard limit

Simulation length 500 seconds

Figure 3.2: Summary of simulation parameters.

more than 90% of the senders are timing out or otherwise idle, the remaining
senders won’t be able to use the whole link capacity. In practice this doesn’t
happen.

By default, each TCP sender has an unlimited amount of data to send. This
means that most of the simulations focus on the steady-state behavior of TCP,
rather than its start-up behavior. Some of the simulations use finite length
transfers, which the relevant chapters will describe as they arise.

The simulations include randomness to avoid deterministic phenomena that
would never occur in the real world [2]. The connection start times are randomly
spread over the first 10 seconds of the simulation and the senders’ access link
propagation delays are randomly selected over range of about 10% of the total.

Except for the slight randomization, all connections experience about the
same round-trip time. This avoids unfairness due to TCP’s tendency to use
bandwidth in inverse proportion to the round-trip time.

Except when noted, no transmission errors are simulated. Thus all packet
loss is caused by router A discarding packets in response to congestion. The
simulated drop-tail and random drop routers discard packets when the queue
already contains a full 217 packets. The RED router drops according to the
RED algorithm; there is no hard limit on the amount of buffer memory that
RED can use.

The TCP version used in the simulations is Tahoe [47]. The main difference
between Tahoe and the later Reno is that Tahoe invokes slow start after a fast
retransmit, whereas Reno uses “fast recovery” [46] to continue in congestion
avoidance. Section 5.1 will demonstrate that the behavior of Tahoe and Reno
are similar for the purposes of this work.

Many of the graphs in this thesis have number of flows on the x axis, and
some simulation result (such as loss rate) on the y axis. Each point typically

CHAPTER 3. SIMULATION ENVIRONMENT 14

represents the average of that result over a single 500-second simulation. The
upper bound on the number of flows presented is typically about 1000. This is
not an unreasonable number of flows to expect a 10 megabit link to support,
since it results in the per-flow fair share being somewhat slower than a modem.

Chapter 4

Load and Number of Flows

Much of this thesis revolves around the notion that the number of active flows
competing for a bottleneck is the best measure of load in a TCP network.
“Load” in this context means some kind of stress that users can legitimately
put on a network that may cause the network to behave badly. Stresses that
fit this description include speed of users’ access links, total amounts of data
that users want to send, the number of individual transfers that users wish
to perform, the number of active users, and the number of active flows. This
chapter presents flow count estimates and then informal analyses motivating
the choice of active flow count as the most useful measure of load.

4.1 Flow Definition

The definition of “active flow” that makes sense in this work is an end of a
TCP connection that has packets in flight or is in retransmit timeout. This
corresponds to the number of distinct instances of TCP algorithms that are
placing a load on the network.

Note that the definition includes TCPs in timeout, even though such TCPs
aren’t sending packets. Most timeouts occur because of congestion losses—that
is, they occur because the network has insufficient capacity. Ignoring such flows
would misleadingly understate the load on the network.

This definition of flow works badly for transfers not limited by TCP’s con-
gestion control algorithms. Examples include the user-to-application direction
of interactive applications such as telnet and the X window system. These flows
tend to consist of very short packets, with too little data outstanding to be
controlled by TCP’s window mechanism. Such flows account for no more than
about 8% percent of Internet backbone traffic, and probably much less [50].

This definition also ignores TCP ACK packets, which load network links in
the opposite direction from the corresponding data. Assuming one 40-byte ACK
for each pair of 576-byte packets, the ACK load amounts to less than 4% of the
data load. The effects of congestion on ACKs have been investigated elsewhere

15

CHAPTER 4. LOAD AND NUMBER OF FLOWS 16

[53]. For these reasons this thesis pays no special attention to ACKs.

4.2 Detecting Flows

The most convenient way to count flows on a link is to monitor the packets
flowing over the link. One possibility is to increment the count on seeing a TCP
connection setup (SYN) packet and decrement the count on a TCP finish (FIN)
packet, correcting for retransmitted SYN and FIN packets. This approach has
the defect of counting all TCP connections, not just active connections. Let us
call this technique a SYN/FIN flow count.

One can target active flows more specifically by counting the number of
distinct TCP connection identifiers that appear in the packet headers seen in
each interval. The connection identifier consists of the IP addresses of the two
hosts involved and the port number on each host. This technique ignores idle
connections. However, no choice of interval works perfectly. Intervals less than
one or two seconds will miss TCPs in retransmission timeout. Longer intervals
may consider TCPs that never overlap in time as simultaneous, and may count
mostly-idle TCPs as active. One or two seconds seems a reasonable compromise.
Let us call this technique an active flow count.

An intermediate approach avoids problems with lost SYN/FIN packets, idle
flows that never terminate, and delicate choices of time interval. It records the
times at which each flow first and last sent a packet. Then, for each instant
in time, it totals the number of flows whose first and last times straddle that
instant. Let us call this technique a known flow count. As with the SYN/FIN
flow count, it over-estimates the number of active flows.

Many of the flow counts presented in the following sections are from standard
half-duplex Ethernet, in which there is no inherent idea of packets going in one of
two directions. That is, even if the Ethernet is used primarily as a link between
two routers, the packets in both directions compete for the Ethernet bandwidth.
Most WAN links, however, are full duplex: they have physically separate me-
dia for the two directions between a pair of connected routers. Flow counts
from half-duplex networks should be halved before comparing with counts from
otherwise comparable full-duplex networks.

4.3 Flow Counts

How many simultaneous active flows might one expect on a busy Internet link?
Three sources of information are available, all using the techniques from Sec-
tion 4.2: published measurements, publically available packet traces from which
measurements may be taken, and measurements taken by the author on nearby
networks. The resulting statistics should be viewed as no more than sugges-
tive of conditions on typical Internet links, since they are tiny samples from a
huge system. The statistics reported here also span almost ten years of Internet
evolution, and particularly the era of rapid growth of Web traffic.

CHAPTER 4. LOAD AND NUMBER OF FLOWS 17

4.3.1 Published Counts

Caceres, Danzig, Jamin, and Mitzel [6] published statistics taken from the Uni-
versity of California at Berkeley’s wide-area link in October 1989. These statis-
tics do not include flow counts. They do include a count of about 1000 new
flows per hour, counted with a known flow technique. Assuming flows last an
average of 20 seconds [50], one might guess that the link in question carried
about 5 known flows at any given time.

Claffy, Braun, and Polyzos [9] published active flow counts observed on a
T3 (45 megabit) link from the University of Illinois at Urbana-Champaign to
the NSFNET. These counts were taken on an afternoon in March 1993. They
report median and maximum flow counts for a range of measurement intervals.
For 2 seconds, they report a median of 400 flows and a maximum of 500. For 4
seconds, a median of 500 and a maximum of 600.

Newman, Lyon, and Minshall [42] published statistics taken in September
1995 on an FDDI ring connecting the San Francisco Bay area to the Internet
backbone. They do not include flow counts. They do include a count of about
140 new TCP flows per second. They used a known flow technique, but used
only IP addresses to distinguish flows, not port numbers. Thus their counts are
lower than others. They report an average flow duration of about 50 seconds,
so one might guess that the link carried about 7000 known flows at any given
time.

Thompson, Miller, and Wilder [50] report known flow counts from an OC3
(155 megabit) ATM link in internetMCI’s backbone in September 1997. The
count varied from 80000 at night to a sustained 200000 flows during the day.
These numbers include all flows, of which 75% are TCP. The average flow lasted
about 20 seconds, and included about 20 packets.

4.3.2 Counts from Published Traces

Another source of flow counts is publically available packet trace files. The
traces are usually generated with the UNIX tepdump [26, 37] program, which
makes a record of every packet seen on a local network, including packets not
addressed to the host running tcpdump. The trace files include a copy of each
packet’s header and the time at which the packet was observed. Only packets
containing data contributed to the counts, effectively ignoring ACKs.

Analysis of three such traces revealed the following per-second active flow
counts. The first trace [38], made available by Digital Equipment Corporation,
was collected at 14:00 PST on a day in March 1995 on a 10 megabit Ethernet in
Palo Alto that carried most of DEC’s traffic to the Internet backbone. Packets
from about 130 distinct TCP flows are visible in this trace in each second. The
average flow length was 45 packets and 31 seconds.

The second trace [8] was collected on an FDDI ring at the FIX-West [5]
interchange point in September 1996. It has packets from about 1300 distinct
TCP flows in each second.

The third trace [39] was collected at 14:40 EST on March 13 1997 on a 10

CHAPTER 4. LOAD AND NUMBER OF FLOWS 18

Name Year | Count | Notes

Caceres &c 1989 5 | Known flows. My estimate.

Clafty &c 1993 400 | Active flows, 2 seconds.

Newman &c 1995 7000 | Known flows. My estimate. Host pairs.
DEC Trace 1995 130 | Active flows, 1 second.

FIX-West Trace | 1996 1300 | Active flows, 1 second.
Harvard Trace 1997 200 | Active flows, 1 second.
Harvard Trace 1998 350 | Active flows, 1 second.

Figure 4.1: Summary of flow counts from literature and traces.

megabit Ethernet connecting Harvard’s main campus to the Internet. This trace
has packets from about 200 distinct TCP flows in each second. The average flow
length was 15 packets and 11 seconds. A second trace [23] taken on April 16
1998 at the same point in the network, but after a quadrupling in the speed of
Harvard’s backbone link, showed 350 distinct flows per second during the day.
Figure 4.1 summarizes the flow counts from this and the previous section.

4.4 Harvard Trace Details

Subsequent chapters will use a few flow statistics such as day/night flow count
variation and flow durations. The numbers given below come from the Harvard
1997 and 1998 traces, and are generally comparable to published figures [50].

Figure 4.2 shows active flow count as a function of time of day from the
two Harvard traces mentioned in Section 4.3.2. Each point is the average of
the active flow counts from 60 one-second intervals. The 1997 trace lasted from
about 10am until the same time on the next day. The 1998 trace lasted from
4pm on one day until 4pm on the next. Both are shown wrapped around on the
graph. The first trace was taken at a time when Harvard’s backbone connection
was a 10 megabit link, the second when it was a 45 megabit link. Note that the
number of flows varies by a factor of 3 to 1 from day to night.

Figure 4.3 shows the distributions of three measures of flow size: bytes,
packets, and seconds of duration. These were measured between the first and
last packets of each flow. For bi-directional flows, the direction with more bytes
was used, and the direction with less was ignored. The average number of bytes
was 11600, with median 1700. The average number of packets 22, with median
7. The average duration was 9 seconds, with median 2 seconds.

4.5 Correlation of Loss and Flows

Chapter 5 will present simulation and analytic evidence that the number of si-
multaneous flows directly drives the loss rate on busy TCP networks. Ideally

CHAPTER 4. LOAD AND NUMBER OF FLOWS 19

450

400
350
300

250
200

150

100
50

Number of Active Flows per Second

0 5 10 15 20
Time of Day (EST Hours)

Figure 4.2: Number of active TCP flows in each second, averaged over one-
minute intervals. Upper points are from the Harvard April 1998 trace; lower
points are from the Harvard March 1997 trace. Note the near-doubling of traffic
over a year, and the change from day to night.

experimental evidence could be used to support this idea, perhaps by simulta-
neously observing router buffer overflows at a bottleneck router along with flow
counts. Each of these numbers are available for a few points on the Internet,
but not both. The best one can do is examine packet traces.

One can estimate the number of lost packets in a trace by observing the se-
quence numbers of successive TCP packets from each flow. Doing this correctly
is hard [44, 43], since packets may appear out of order for reasons other than
loss. The loss estimates in this section are counts of gaps in sequence numbers,
corrected for the gap caused by a timeout retransmission, and also corrected for
pairs of out-of-order packets. This technique assumes that ACKs and data pack-
ets following the same path experience the same loss rate. It assumes that each
contiguous gap in the sequence number space corresponds to one lost packet;
this probably leads to an under-estimation of the loss rate. Another cause of
under-estimation is the possibility that entire windows of packets may be lost,
resulting in no visible sequence number gaps.

Figure 4.4 is essentially a scatter plot of the numbers of incoming flows and
incoming loss rates for each one-second interval of the Harvard March 1997
trace. Instead of plotting each point, the points corresponding to each number
of flows are summarized as a median and a bar from the 25th to 75th percentile
of loss rate. The right-hand end of the x axis is the 95th percentile of number
of active flows. The graph indicates a clear connection between number of flows
and loss rate.

CHAPTER 4. LOAD AND NUMBER OF FLOWS

20

1
March 1997 —— March 1997 —— |
] —
08 - 0.8 T
2 2
g o0s g o6 g
[« 8 o HJi
(] [
= =1
k< 0.4 8 0.4
g f z]
=1 3
O (s}
0.2 0.2
. Al
0 2000 4000 6000 8000 10000 12000 14000 0 5 10 15 20 25
Flow Size (Bytes) Flow Size (Packets)
1
/JA.M?/:
I
0.8
2
o
[
S 0.6
e
[
=
kS 0.4
=3
5 /
=3
(]
0.2
0
0 5 10 15 20 25 30

Flow Duration (Seconds)

30

Figure 4.3: Cumulative distributions of bytes, packets, and seconds of duration

for flows from the Harvard March 1997 trace.

CHAPTER 4. LOAD AND NUMBER OF FLOWS 21

0.08

0.07

0.06

0.05

0.04

0.03

Packet Loss Rate

0.02 l
0.01 % m T
oL T

0 20 40 60 80 100 120 140
Number of TCP Flows

Figure 4.4: Loss rates observed when different numbers of flows were active.
Each bar indicates 25th percentile, median, and 75th percentile loss rates for
all the one-second intervals with a particular number of flows. From the March
1997 Harvard trace.

Flow count could be correlated with loss but not cause the loss. The most
likely way this could happen is if flow count and bandwidth used were correlated,
and increases in bandwidth caused increases in loss. For example, each flow
might correspond to one modem’s worth of bandwidth, and each flow might
send at a constant bit rate. To test this possibility, Figure 4.5 shows loss as a
function of bandwidth used in a style similar to that of Figure 4.4. The average
bandwidth used is 23% of the link rate, with standard deviation of 10%. The
right hand end of the x axis is the 95th percentile of utilization. This particular
trace exhibits a stronger correlation between flow count and loss than between
bandwidth and loss.

These two graphs suggest that number of flows is the more important con-
tributor to loss, and thus the more interesting measure of load.

4.6 Load and Access Link Rate

Suppose network users could control the amount of bandwidth they required.
This might be relevant measure of load, since it might affect the network loss
rate. Variation in desired bandwidth could happen in a number of ways, the
most obvious being changes in the speeds of users’ access links. For example,
users might upgrade from modems to cable modem links. What can we say
about whether such changes might matter more than changes in the number of

CHAPTER 4. LOAD AND NUMBER OF FLOWS 22

0.08

0.07

0.06

0.05

0.04

0.03

Packet Loss Rate

0.02

0.01 [
0

0 005 01 0.15 0.2 0.25 0.3 0.35 04
Fraction of Link Utilized

Figure 4.5: Loss rates observed when different amounts of link bandwidth were
used. Each bar indicates 25th percentile, median, and 75th percentile loss rates
for all the one-second intervals when particular amounts of bandwidth were
used. From the March 1997 Harvard trace.

flows?

Figure 4.6 shows simulated loss rate as a function of user access link speed.
The simulation involves 300 users, each with one active TCP flow and a separate
access link. The simulation configuration involved the standard simulation con-
figuration: a bottleneck link of 10 megabits, a round-trip propagation delay of
100 ms, and RED with a max, of 217. Each user’s fair share of the bottleneck
is 33 kilobits/second.

If each user can send no faster than his fair share, no loss can occur. As
access link speed increases above one fair share, the loss rate also increases. The
loss rates quickly level off as TCP’s window algorithms start to be the limiting
factor. At this point the loss rate depends mostly on the number of flows,
as detailed in Chapter 5. This implies that access link speed is an important
measure of load only in networks with capacities close to the sum of the access
link speeds. In the past such configurations have not been economical; much
more common have been networks whose internal capacity is a modest multiple
of the speeds of the fastest single access links.

In conclusion, this chapter has informally argued that number of flows is a
good measure of TCP network load, and has presented a set of useful flow statis-
tics. The next chapter will provide a more rigorous analysis of the relationship
between number of flows and loss rate.

CHAPTER 4. LOAD AND NUMBER OF FLOWS 23

0.06

0.05

0.04
0.03 /
0.02

||
|

Packet Loss Rate

0 50 100 150 200 250 300
Per-Flow B/W Limit (Kilo Bits/Second)

Figure 4.6: Loss rate as a function of users’ individual access link rates. Each
user has one flow that uses one access link. The bottleneck is a 10 megabit link,
the two-way propagation time is 100 ms, and there are 217 router packet buffers.
The x-axis shows each user’s link rate. Each user’s fair share is 33 kbits/second.
Note that the access link rate has a modest effect on the loss rate except in a
narrow region around the fair share.

Chapter 5

TCP’s Response to Load

This chapter explains how TCP networks respond to changing numbers of flows.
Half of the story is TCP’s response to the packet drop rate imposed by the
network. The other half is the way in which the number of flows interact with
TCP and router algorithms to determine the drop rate.

The method in this chapter is to derive formulas based solely on TCP and
router algorithms, and to compare them with simulations. Since the formulas
and simulations are independent, they can be used to verify each other. The
formulas are helpful not just in predicting TCP and router behavior, but also
in configuring routers; the chapter contains quantitative recommendations for
setting RED parameters.

Most of the results in this thesis use the Tahoe [47] version of TCP, as
described in Section 2.1. Many Internet hosts use the more recent Reno TCP,
which incorporates the “fast recovery” algorithm [46]. Fast recovery allows
TCP to use congestion avoidance after a fast retransmit, while Tahoe uses slow
start. Section 5.1 will plot simulation results for both versions’ response to
packet loss. The responses turn out to be nearly identical, since there is little
difference between slow start and congestion avoidance when the window size is
small. For this reason, subsequent sections will use only the simpler Tahoe.

The analyses in this chapter assume that TCP’s behavior is dominated by
the congestion window mechanism and single timeouts. The results are not
accurate when TCP spends a significant amount of time in retransmit timer
backoff. Simulation suggests that the fraction of time that TCP spends in
backoff is roughly equal to the loss rate. This means that the results in this
chapter are not likely to be accurate for loss rates larger than 5 or 10 percent.
The main error that results from a high loss rate is that larger than expected
numbers of TCPs are idle, and do not contribute to queue length or loss rate.
Thus the formulas in this chapter will tend to over-estimate queue length and
loss rate when the load is very high.

The initial result, Equation 5.1, is taken from existing work [14]. The re-
mainder of the chapter is original.

24

CHAPTER 5. TCP’S RESPONSE TO LOAD 25

5.1 TCP’s Response to Loss

Since packet loss is the primary way that the network communicates congestion
information to TCP, it’s important to understand TCP’s response to packet loss.
Of most interest is the number of packets that TCP keeps in flight in response
to a given loss rate, as this number governs the bandwidth and buffer space that
TCP uses. We can estimate this number by first estimating the average size of
the congestion window as a function of the loss rate, and then estimating the
fraction of time TCP spends sending rather than pausing in timeout.

5.1.1 Average Congestion Window Size

Suppose that the fraction of packets that the network drops is [, and that the
network spaces these losses evenly. TCP’s congestion window will go through
a repeating pattern, experiencing a loss at some size wyp,,, cutting back to
Wmaz /2, and growing back to w4, again. The window grows by about 1 packet
every two windows (it would be 1 packet per window without the “delayed ACK”
mechanism). Thus TCP will send about w,,,; windows of packets before the
window has grown from w,4,/2 t0 Wne,. The average window size is about
3 Wmaz, S0 the window will grow from wi,qs /2 10 Wpa, after sending about
2w?, ., packets. We also know from the loss rate that the number of packets

TCP sends during this cycle is 1/1. Solving this equation yields wpey = %.
The average window size is then %wmam, or
0.87
Wavg ~ W (51)

The point here is that the average congestion window size is determined
almost solely by the loss rate. This observation is implicit in [24] and was ex-
plicitly published in a different form in [14]. Figure 5.1 compares this predicted
value with the observed value of the sender’s congestion window variable in
simulations.

Equation 5.1 over-estimates the number of packets in flight in three ways.
First, TCP implementations send only whole packets, which means they trun-
cate non-integer congestion window sizes. This results in an average error of one
half packet when the window size is two or more. Second, delayed ACK effec-
tively reduces the number of packets in flight by an average of one half packet.

These two errors can be corrected by subtracting one from Equation 5.1, yielding
0.87

The third discrepancy, due to timeouts, requires more work to fix.

5.1.2 Timeouts

If TCP always kept one congestion window of packets in flight, the discussion
above would be enough. However, a high loss rate or an unlucky loss pattern

CHAPTER 5. TCP’S RESPONSE TO LOAD 26

25
‘ Predicted —
tahoe -
20 reno. oo

15

Mean Cwnd

10

0

0 0.010.02 0.03 0.04 0.050.06 0.07 0.08 0.09 0.1
Loss Rate

Figure 5.1: Average TCP congestion window as a function of loss rate. From
simulations with a single TCP and a uniform probability of each packet being
dropped.

may cause TCP to fall into retransmission timeout, causing to stop sending for
a second or more. To a first approximation, if TCP Tahoe is to avoid timeouts,
losses cannot be spaced less than 13 packets apart: three to generate enough
duplicate ACKs to trigger fast retransmit, and another ten to allow slow-start
to increase enough that fast retransmit will work for the next loss. The fraction
of losses followed by another loss within 13 packets is roughly 1 — (1 —1)!3, so
the timeout rate o measured in timeouts per packet is

orI(1-(1=-0%) (5.3)

The fraction of time TCP is likely to spend timing out, given an average window
size w, a round trip time r, and assuming a timeout interval of one second, is

1

z—l_i_&

0 (5.4)

These equations only work for window sizes greater than four, since a smaller
window may not be able to recover from even a single lost packet. They are not
accurate for very large windows, either, since such windows make it easier to
recover from losses. In addition, the precise value of 13 was chosen somewhat
empirically. Figures 5.2 and 5.3 compare the predictions with TCP simulations.

A word of caution: these timeout results assume uniform distribution of
losses. Bursty losses, coupled with TCP’s tendency to send bursts of packets,
mean that the losses may be concentrated in a small number of TCPs, forcing

CHAPTER 5. TCP’S RESPONSE TO LOAD

Timeouts per Packet

Figure 5.2: Timeouts per Packet (0) as a Function of Loss Rate.

Fraction of Time in Timeout

0.12

0.1

0.08

0.06

0.04

0.02

0

0.8

0.6

0.4

0.2

0

Predicted —
tahoe -
reno =
d 2
//
0 0.010.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

Loss Rate

0

tahoe

no

ed —

)

0 0.010.020.030.04 0.050.06 0.07 0.080.09 0.1
Loss Rate

27

Figure 5.3: Fraction of Time in Timeout (O) as a Function of Loss Rate. RTT

= 100ms.

CHAPTER 5. TCP’S RESPONSE TO LOAD 28

25
‘ Predicted —
‘ tahoe -

20 | reno. oo
E !
2
[
£ 15
[2)
)
X
@
o 10
c
)
(]
=

5 s

\\‘,;>>}
0

0 0.010.02 0.03 0.04 0.050.06 0.07 0.08 0.09 0.1
Loss Rate

Figure 5.4: Packets in flight as a function of loss rate. RT'T = 100ms.

them into timeout. The more bursty the losses, the more timeouts will occur,
even if the average loss rate stays the same. Drop-tail gateways tend to produce
bursts of loss, whereas one of RED’s goals is to spread drops evenly over time.

5.1.3 Average Packets in Flight

Recall that our goal was to find how many packets TCP will keep in flight as a
function of the loss rate imposed by the network. Equation 5.1 tells us TCP’s
window size when it is sending, and Equation 5.4 tells us how much of the time
TCP is sending. From them we can predict the average number of packets in
flight:

(1 — O)wgug (5.5)

Figure 5.4 shows the number of packets TCP keeps in flight derived from
simulations. These numbers came from a simulated 10 megabit network with a
round trip time of 100 milliseconds.

5.2 Drop-Tail and Random Drop Analysis

The basic analysis of a single TCP’s response to loss forms one part of a model
for the behavior of multiple TCPs sharing a bottleneck. The other key part is the
bottleneck router’s packet discard policy. This section considers the drop-tail
and random-drop policies, which turn out to have similar behavior. Section 5.3
makes a similar analysis for RED. The overall goal is an understanding of the
relationship between number of flows and router buffer space.

CHAPTER 5. TCP’S RESPONSE TO LOAD 29

Drop-Tail ——
500 . Random-Dx
[- dom D
£ 400 |
[@)]
c
()
-
3 300
()
>
o
3 200
()
=
100
0

0 20 40 60 80 100 120 140
Number of TCP Connections

Figure 5.5: Average queue length as a function of number of flows, drop-tail
and random drop. From simulations with 500 packet buffers.

Consider n TCPs competing for a 10 megabit bottleneck link, fed by a
drop-tail or random drop router with 500 packet buffers, and a 10 millisecond
round trip time. Since TCP will expand its window until the router runs out of
buffers, we expect the router’s queue to be mostly full; the simulation results in
Figure 5.5 show this to be correct.

The average queue length in Figure 5.5 for random drop is longer than for
drop-tail. Drop-tail forces more TCPs into timeout than random-drop, mostly
due to the higher drop rate it imposes (see below), but also because it tends
to concentrate each episode of loss in a few unlucky TCPs rather than over
all TCPs with packets queued. Figure 5.6 compares fraction of time spent in
timeout for drop-tail and random drop. With fewer TCPs active at any given
moment, a drop-tail router tends to have a shorter queue.

The drop-tail loss rate can be predicted by multiplying Equation 5.2 by n
to yield ¢, the total buffer space used by n flows at loss rate [:

(25

Solving for [as a function of n and ¢:

0.76n2
o (5.6)

Random drop differs from this model because it deletes packets from the
middle of the queue rather than the end. The TCPs see losses and cut their

CHAPTER 5. TCP’S RESPONSE TO LOAD 30

0.35

' Drop-Tail ——

0.3 Random Drop. -

0.25

0.15

|
0.2 ’
|
|

Fraction of Time in Timeout

_/

0.1
]

0.05 \/ L/ »»»»»

0 20 40 60 80 100 120 140
Number of TCP Connections

Figure 5.6: Fraction of time in timeout as a function of number of flows, drop-tail
and random drop. 500 packet buffers.

windows half a window earlier than with drop-tail, causing the average conges-
tion window to be half a packet smaller. As a result the loss and queue length
formulas for random drop are:

q:n(L;;_l.5>

0.76n>
I= (1.5n + g)? (5.7)
Figure 5.7 shows the simulated loss rate as n varies for the example config-
uration, along with Equations 5.6 and 5.7 for ¢ = 500. The predictions stop
being accurate as the number of flows approaches 100; at that point too few
packet buffers are available to support fast retransmit, so significant numbers
of flows fall into timeout.

5.2.1 Drop-Tail and Random Drop Discussion

Drop-tail and random drop scale similarly with the number of flows. Equa-
tions 5.6 and 5.7 imply that loss rate is proportional to n? when n is substantially
less than ¢. If n is large compared to ¢, the predicted loss rate approaches some
constant as n grows; the real loss rate is less than predicted due to timeouts.
The main difference between the two policies is that random drop effectively
sends back congestion notification earlier by dropping from the middle of the
queue, resulting in a lower loss rate. Figures 5.8 and 5.9 illustrate this with

CHAPTER 5. TCP’S RESPONSE TO LOAD 31

0.045 0.045
Simulated Drop-Tail —— Simulated Random Drop ——
0.04 Predicted = 0.04 Predicted -
0.035 g 0.035
0.03 A 0.03
2 2
g 0.025 & 0.025
o Q.
S 002 S 002
a a
0.015 i 0.015
0.01 0.01
0.005 0.005
0 20 40 60 80 100 120 140 0 20 40 60 80 100 120 140
Number of TCP Connections Number of TCP Connections

Figure 5.7: Drop rate as a function of number of flows, drop-tail and random
drop. 500 packet buffers.

plots of queue length over time for drop tail and random drop simulations.
Careful inspection shows that periods of time during which the queue is full
(and dropping packets) are longer in the drop-tail simulation. In this respect,
random drop acts somewhat like drop-front [32].

A drop tail or random drop router designed to support up to n flows must
have about 5n packet buffers. Since the queue is likely to be full even with
few flows, such a router effectively exhibits best case loss rate and worst case
delay. The only way to control delay is to decrease the buffer space. The loss
rate, however, is inversely proportional to the square of the buffer space. This
tradeoff makes drop tail and random drop unattractive when n is large.

As pointed out in [19], drop tail and random drop routers share a tendency
to synchronize the congestion window cycles of the TCPs using them. That is,
when the queue fills up, such routers drop packets from many flows at about the
same time, causing them all to decrease their windows. Figure 5.9 illustrates the
impact of this synchronization on router queue length. The oscillation visible
in Figure 5.9 is the reason why the FPQ system presented in Chapter 6 does
not use random drop to control the queue length. It is also the reason why
drop-tail routers should be equipped with at least one delay-bandwidth product
of buffering — otherwise the router may run out of buffered packets to send
after all the TCPs halve their windows, causing the link to go idle. Finally,
one of RED’s primary goals is to prevent TCP synchronization and consequent
under-utilization.

5.3 RED Parameter Analysis

While the structure of RED is well motivated [19], little has been published
regarding rules for setting RED parameters. Using number of flows as a load
metric, we can derive the relationships between load, parameters, and perfor-
mance, and confirm them with simulations. These rules should be useful when
configuring RED equipment for known levels of load. They will also point the

CHAPTER 5. TCP’S RESPONSE TO LOAD

500

w1/

300

350 \v

250

200

Queue Length (Packets)

150
100

50

100

105

110
Time (Seconds)

115

120

32

Figure 5.8: Queue length over time for a single drop tail simulation with 30
competing flows. Note the oscillation in queue length caused by synchronized

window decreases.

500

ARARN

450
w | |

/

350

300

/
/

|
ARV
VN

250

v

200
150

Queue Length (Packets)

100

50

100

105

110
Time (Seconds)

115

120

Figure 5.9: Queue length over time for a single random drop simulation with 30
competing flows. Note that the queue stays full for less time than in Figure 5.8.

CHAPTER 5. TCP’S RESPONSE TO LOAD 33

way to a buffering system that automatically adapts to load, described in Chap-
ter 6.

The RED parameters most subject to tuning are maz, and max,. maz,
is the highest average queue length (g,y4) the router will tolerate; the router
drops all incoming packets when q,,, exceeds maz,. maz, controls the drop
rate when g4, is less than mazyy,, in approximately this relationship:

[= 2-mazy - Gavg (5.8)
Maxep

Existing suggestions for setting maz, have ranged from 0.02 [19] to 0.10 [17],
with an implication that maz, should be related either to the actual network
loss rate or to the desired network loss rate. Even less advice is available for
setting maxyy,, mostly by way of examples in which it has values around a few
dozen.

RED’s most valuable advantage over drop-tail is its ability to discard ran-
domly chosen packets, rather than just the packets that happen to arrive when
the queue is full. The random choice avoids unfair phase effects [18] and bias
against bursty traffic. The ability to drop before the queue is full avoids syn-
chronization of TCP window decreases and consequent low utilization. In order
to achieve these benefits, a RED router must maintain the following:

e Keep gquy noticeably below maz, and the physical memory size. This
allows RED to space packet discards out evenly, avoiding drop-tail-like
forced drops, TCP window synchronization, and low utilization. A con-
trolled queue size also avoids high delay.

o Keep gqyy non-zero so that link bandwidth isn’t wasted.

With appropriate parameter choices RED can achieve these goals automat-
ically, by varying the drop rate in proportion to the queue length. But how
should one set the parameters?

5.3.1 Derivation of Relationships

We can approximate how the load and the parameters affect RED’s queue length
and discard rate as follows.

Equation 5.1 approximates how many packets one TCP keeps in flight given
the loss rate. We can find how many packets N TCPs will jointly keep in flight

at a given loss rate thus:
_ 0.87TN

Vi
We will assume that most of the b packets that the TCPs keep in flight will

be buffered in RED’s queue, so that b = ¢,,y. We can solve Equation 5.8 to
find what queue length would be required to produce a given loss rate:

b (5.9)

l-maxy,
= — 1
2max, (5.10)

CHAPTER 5. TCP’S RESPONSE TO LOAD 34

373 273

l o< N2/3 l < maz, l o maxyy~
box N2/3 bocma:cp_l/3 b x mazy,'/?

Figure 5.10: Dependence of RED drop rate I and buffer use b on number of
flows N and RED parameters maz, and mazp.

Assuming an equilibrium between Equations 5.10 and 5.9 is reached, it must

look like this:
l-maxy, 0.87TN

= 5.11
2maz, Vi (5:-11)
We can solve for the equilibrium loss rate I:
2/3 2/3
j = LAN"maz,™° (5.12)

maxy2/3
Substituting back into Equation 5.10 we can find the equilibrium queue size:

TN2/3 1/3
b— 0.7 mMaxip (5.13)

1/3
mazx,'/

While these equations ignore a number of details, they show the order of
magnitude relationships. Figure 5.10 summarizes.

The most critical lesson from Figure 5.10 is that the loss rate is much easier
to control than the queue length. For example, we can keep [constant despite
a doubling of N by halving maz,. However, the end result will be a doubling
in the average queue length. Keeping control of the queue length is important:
most routers have physical limits on buffer memory, and RED abruptly increases
the loss rate to 100% when the queue exceeds mawxyy,.

5.3.2 RED Parameter Simulations

Equations 5.12 and 5.13 ignore four important details:

e RED abruptly raises the discard probability to 100% when the average
queue length exceeds maz,y,. This causes RED queues to be shorter than
predicted by the equations, especially under heavy load.

e The network effectively stores one delay-bandwidth product of packets
on the wire. The equations assume these packets are stored in the RED
queue, so they over-estimate queue length and drop rate, especially when
the delay-bandwidth product is large compared to max;y,.

e Figure 5.1 shows that Equation 5.1 over-estimates the congestion window
size, in that case by 20%. This causes Equation 5.13 to over-estimate
queue length, and Equation 5.12 to over-estimate the loss rate.

CHAPTER 5. TCP’S RESPONSE TO LOAD 35

0.1 1000
Simulated — Simulated —
0.09 i - PL
0.08 P2..: T 800 o a
[5]
0.07 g
2 0.06 =1 600
& e
o 005 9 |
2 o |
a 0.04 3 400
0.03 &
c
0.02 3 200
=
0.01 -~
oY 0
0 50 100 150 200 250 300 0 50 100 150 200 250 300
Number of Flows Number of Flows

Figure 5.11: Drop rate and queue length as a function of number of flows.
maz, = 500, maz, = 0.02.

e The equations don’t account for timeouts. TCPs in timeout don’t con-
tribute to queue length, so the equations over-estimate queue length and
consequently loss rate. This effect is most noticeable with high loss rate.
The effect is amplified by small round trip times, which increase the pro-
portion of time spent in timeout.

This over-estimation of queue length and drop rate is apparent in Fig-
ures 5.11 through 5.13. These graphs show the results of simulations varying
just one parameter at a time. The base simulation configuration involves 100
flows competing for a 10 megabit bottleneck. The round trip propagation time
is 10 milliseconds. The default max;, is 500 576-byte packets, and the default
mazp is 0.02. Each graph includes simulation results labeled Simulated, predic-
tions from Formulas 5.12 and 5.13 labeled P1, and predictions labeled P2 which
the next section will explain.

All but two of the graphs conform roughly to the relationships in Figure 5.10.
The queue length in Figure 5.11 abruptly stops rising because it reaches maxyp,,
at about 200 flows. More puzzling, the predicted drop rate as a function of
max, in Figure 5.12 seems to bear little resemblance to the simulation. Most of
the error stems from timeouts, which the predictions don’t model. Figure 5.15
shows the average fraction of time a TCP spent timing out in the simulations.
For example, when maz, = 0.08, half the TCPs were in timeout at any given
time; this effectively means there were half as many flows as expected, with a
correspondingly lower drop rate and queue length.

Increasing max, or decreasing max, both have the effect of decreasing
queue length and increasing the loss rate. This has a double influence on the
fraction of time spend in timeout. First, the higher drop rate increases the
probability that TCP will encounter two drops close enough together to force
a timeout. Second, the smaller queue decreases the round trip time, increasing
the ratio of time spent in timeout to time spent transmitting. These effects
conspire to blunt the effectiveness mazx, at controlling drop rate.

CHAPTER 5. TCP’S RESPONSE TO LOAD

0.1
0.09
0.08
0.07
0.06
0.05

Drop Rate

0.04
0.03
0.02
0.01

Sinfulatel
P

P

0.02 0.04 0.06 0.08
RED maxp Parameter

0.1

0.12

Mean Queue Length (Packets)

Figure 5.12: Drop rate and queue length
mazyy, = 500.

0.1
0.09
0.08
0.07
0.06
0.05
0.04
0.03
0.02
0.01

Drop Rate

Simulated
P1
P2 -

200 400 600 800 1000 1200 1400

RED maxth Parameter

Mean Queue Length (Packets)

1000

800

600

400

200

36

Simulated —
=

P

0.02

0.04 0.06 0.
RED maxp Parameter

08 0.1 0.12

as a function of maz,. 100 flows,

1000

800

600

Simulated —
Pl
[}
—
/
200 400 600 800 1000 1200 1400

RED maxth Parameter

Figure 5.13: Drop rate and queue length as a function of mazy,. 100 flows,
maz, = 0.02.

CHAPTER 5. TCP’S RESPONSE TO LOAD

Fraction of Time in Timeout

0.8

0.6

0.4

0.2

50

100 150 200
Number of Flows

250

300

37

Figure 5.14: Fraction of time in timeout as a function of number of flows.
max¢, = 500, max, = 0.02.

Fraction of Time in Timeout

0.8

0.6

0.4

0.2

0.02

0.04 0.06 0.08
RED maxp Parameter

0.1

0.12

Figure 5.15: Fraction of time in timeout as a function of maz,. 100 flows,

max, = 500.

CHAPTER 5. TCP’S RESPONSE TO LOAD 38

0.8

0.6

0.4

Fraction of Time in Timeout

0.2

\

—

0 200 400 600 800 1000 1200 1400
RED maxth Parameter

Figure 5.16: Fraction of time in timeout as a function of maz,. 100 flows,
maz, = 0.02.

5.3.3 Improving the Predictions

The previous section noted a number of ways in which its predictions of RED
performance were flawed. The predictions can be improved to account for pack-
ets stored on the wire and the fact that some TCPs are timing out. The cost,
however, is that the resulting equations have to be solved numerically. This
limits their intuitive appeal, but they still have use in verifying the simulations,
in evaluating the explanation of the errors in the last section’s predictions, and
perhaps in configuring networks.

The first improvement is to make use of Equation 5.4 to predict the fraction
of time spent in timeout:

This yields a version of Equation 5.5 which we’ll call pif, for average packets in
flight:
_ 087

v
pif(l,r) = (1= O, r,w))w(l)

For convenience we’ll turn Equation 5.10 into the function redg:

w(l)

l-mazyy,
redq(l, max,, maz,) = ———
2maz,

CHAPTER 5. TCP’S RESPONSE TO LOAD 39

Observing that the number of packets kept in flight by the n TCPs must equal
the queue length plus the packets stored on the link, we get this equality:

redq(l, mazp, mazxp) + (pps - 1) =n-pif(l,r) (5.14)

pps is the bottleneck rate in packets per second, and r is the round trip time;
these are 2170 and 0.01 respectively for the simulations on the previous section.

The P2 curves in Figures 5.11 through 5.13 come from numerical solutions
of Equation 5.14 for I. These curves are all closer to the simulations than the
P1 curves because they correct for timeouts and packets stored on the link.

5.3.4 Setting RED Parameters

The preceding sections show that RED’s performance depends on the inter-
action between the number of flows and the RED parameter settings. Given
a known flow count, a network administrator needs to know how to set the
RED parameters to achieve a good tradeoff among utilization, delay, and TCP
timeout probability.

To avoid excess timeouts an ideal router for TCP should allow somewhat
more than four packets of buffering per flow. RED cannot do this in general,
because it doesn’t provide a linear relationship between flow count and average
buffer size. It can, however, be tuned to operate well for a range of flow counts.
For example, Figure 5.11 shows a router that works well for between 10 and
40 flows, providing 6 and 4 buffers per flow respectively. Outside that range it
either buffers more packets than necessary or imposes an uncomfortably high
loss rate.

Figure 5.13 implies that max, can be used to tune a RED router for a
target number of flows. For the 100 flows simulated, a maxy, of 1000 yields
about four packets of buffering per flow.

On the other hand, max, has a narrow useful range. In the example situ-
ation, values below about 1% cause the queue to stay close to maz;, risking
episodes of 100% loss. Values above about 2% cause TCP to spend a substantial
amount of time in timeout.

These considerations suggest the following procedure for selecting RED pa-
rameters. First, measure the typical number n of simultaneously active TCP
flows. Second, choose a maximum desirable loss rate [; this should probably be
less than 3% to allow TCP a window of four packets. Third, choose a maz;p
somewhat larger than the number of packets that n TCPs will keep in flight
with a loss rate of I:

maxy, = 3/2-n-pif(l,r)

At this point the choice of max, is limited to a value which will keep the queue
somewhat less than full:
= -1
mazp = o

Few users of routers have free choice of maxyy, since router buffer memory
is often physically limited. In such cases the best one can do is pick a maz,

CHAPTER 5. TCP’S RESPONSE TO LOAD 40

which will cause the queue to be somewhat less than full, given the known n
and max,. We can get a reasonable guess at this by equating Equation 5.13
to 3maay, and solving for mazy:

5.3.5 RED Scaling Discussion

RED’s main strength is that, given a known load, it can be tuned for high
utilization and low queuing delay. It could still be improved:

o A given set of RED parameters work well only across a limited range of
numbers of flows. This means that network administrators must manually
tune RED parameters to get good performance.

¢ RED tempts network administrators to optimize for high utilization alone.
For example, increasing maz, in response to higher load should increase
utilization by decreasing TCP window synchronization. While some rec-
ommend this approach [17, 13], Figure 5.15 shows that its cost is is a high
level of TCP timeouts.

One could imagine a manufacturer equipping a RED router with a large
maxy, in an effort to make the router’s performance scale gracefully with large
numbers of flows. For example, a 10 megabit router port should be able to han-
dle 300 33-kilobit modem flows without any queuing at all. Since the Internet
has been remarkably unforgiving about under-estimates of its growth rate, our
manufacturer might want to ensure good behavior with up to an order of mag-
nitude more than 300 flows. Support for 3000 flows implies a mazxy, of 15000
packets. The same 10-megabit port might also be used on a LAN with only a
few flows. Equation 5.13 implies that with 20 flows, for example, the router’s
queue length would be about 500 packets. This is a quarter second of queuing
delay, intolerably high for many interactive LAN users.

Note that the above example is not in the apparent spirit of RED parameter
tuning [17]. In practice RED implementations seem to tend to the opposite
extreme: small maxy,, low queuing delay, and (presumably) many timeouts,
but with a high maz, to keep utilization high. The point is that RED presents
the network administrator with an uncomfortable choice between queuing delay
and TCP timeouts.

This suggests a router buffering system that automatically adapts to the
number of flows, with the simultaneous goals of limiting timeouts, limiting queue
length, and maintaining high utilization. Chapter 6 proposes just such a system.

Chapter 6

FPQ: Supporting Large
Router Queues

The implication of the existence of large numbers of flows and TCP’s behavior
with small windows is that routers should have large buffer memories. A rea-
sonable target is five packets per flow for the maximum number of flows that a
router might ever have to support. Assuming 14 kbit/second modem flows, this
works out to one packet of buffering per 2800 bits/second of link bandwidth. The
common current, practice of providing one delay-bandwidth product of buffering
works out to one packet per 46080 bits/second of link bandwidth, assuming a
round-trip propagation delay of 0.1 seconds and a packet size of 576 bytes. Pro-
visioning buffers based on flow count would require 16 times as much memory
as current practice. The result should be dramatically decreased loss rate, but
the cost might be excessive queuing delay.

If the number of flows a router would have to handle were fixed and pre-
dictable at the factory, routers could be shipped with parameters set to achieve
a reasonable tradeoff between loss rate and queuing delay. However, a router
manufacturer must expect any particular model of router to be used in situa-
tions ranging from connecting LANs with a few dozen flows to ISP /ISP peering
with tens of thousands of flows. A queuing configuration appropriate for a LAN
will impose a high loss rate on an ISP /ISP connection; a good ISP /ISP queuing
configuration will impose excessive queuing delay in a LAN. An ideal router
would automatically adapt its queuing configuration to the load.

What should an adaptive queuing scheme look like? Ideally, it would

e provide five packets of buffering per active flow,
e preserve the simplicity of FIFO queuing,

e preserve RED’s resistance to phase effects and TCP window synchroniza-
tion, and

e require no manual tuning.

41

CHAPTER 6. FPQ: SUPPORTING LARGE ROUTER QUEUES 42

This problem divides naturally into three parts. First, a mechanism to count
active flows. Second, a choice of target queue length and drop rate based on the
flow count. Third, a mechanism to enforce the targets on a FIFO queue while
avoiding the global synchronization and phase effects mentioned in Section 2.2.1.
The rest of this chapter describes a queue management system that fits these
requirements. For convenience we will call it FPQ, for Flow-Proportional Queu-
ing.

6.1 Bit-Vector Flow Counting

One way to count TCP connections might be to have the router participate
in an explicit connection setup/teardown protocol. This could be a separate
protocol, as in ATM [10] networks, or an additional use of TCP’s existing setup
(SYN) and teardown (FIN) protocol. One reason this would not work well is
that a flow’s path through the network may change: the path taken by the setup
packets may not the same as that taken by the data packets. Another problem
is that many connections are idle some of the time, and only active connections
are of interest here.

A better counting scheme would observe all packets rather than just setup
and teardown packets, count a connection active if it had sent packets recently,
and not count it if idle. The router must remember if it has already counted
a flow as active, so that if more packets arrive on that flow, the router doesn’t
count the flow again. How much state does this require? One option is to
remember the identity of each currently active flow, perhaps using IP addresses
and port numbers. The router could hash the identity of each packet to index
into a table of the identities of flows already included in the count.

Even the above mechanism is more complex than required. The counting
mechanism does not need to be precise, and does not need to support any
operation other than deciding if a flow has already been counted. For example,
it does not need to be able to recover the actual identities of counted flows.
Thus it should be sufficient to store just one bit of state per flow.

A router can count flows with just one bit of state per flow as follows. Create
a vector of vy, bits called v. The index for v is the hash of a packet identifier.
Maintain the count of bits set in v in a variable c. When a packet arrives and
the bit in v for its identifier isn’t set, set it and increment ¢. Clear bits out of
the table incrementally, so that every bit is cleared, and ¢ decremented if the
bit was set, after the passage of t.jcqr seconds.

This scheme under-counts due to hash collisions. If packets from f distinct
flows have caused bits in v to be set, and the hash function is uniform, the
probability of a bit in v being zero is

(Umaw - 1) !
Umaz

CHAPTER 6. FPQ: SUPPORTING LARGE ROUTER QUEUES 43
Thus the expected count ¢ of one bits in v is
_ f
€= Vpmas (1 _ (M))
’UmU/Z

Solving for f yields a formula that converts a count of one bits into an expected
number of flows:

i (1 52)
f= @ (6.1)

The router can apply Equation 6.1 to the count of bits at the expense of some
CPU time or clever approximating. It turns out that f and ¢ are within 10% of
each other as long as v,,,4, is at least five times as large as f, so the computation
could be eliminated at some expense in memory.

Figure 6.1 contains pseudo-code for this flow counting algorithm. The input
is a stream of data packets, and the output is an estimate f of the current
number of active flows.

The algorithm has only two tunable parameters. v,,4, should be set to the
maximum number of flows expected at the router. The only penalty to setting
it too high is the expense of incrementally clearing it. Setting v,,q, too low
gradually reduces the accuracy of f.

telear controls how fast the algorithm forgets about old flows. It should be
higher than the maximum round trip time in the network including queuing
delay. Setting tceqr too low will cause the algorithm to be unstable. Setting
tcleqr 100 high will increase the number of idle or terminated connections counted
in f, which will allow too much buffer space to be used in the router.

The hash function h(p) should be uniform to ensure that Equation 6.1 fully
corrects for hash collisions.

6.2 Choosing the Target Queue Length

Once equipped with the current count of flows, f, a FPQ router must choose a
target queue length ¢, drop rate [, and per-flow congestion window size w. This
is really one decision: ¢ is w - f, and w and [are related by Equation 5.2.

With only one TCP flow, a router can only achieve high throughput by
allowing the flow to buffer an entire delay-bandwidth product of packets. This
causes the TCP’s window to be two delay-bandwidth products just before the
router drops a packet. Thus after the drop the TCP’s window will be just large
enough to use the entire link bandwidth.

More generally, the number of buffers that a small number f of flows requires
for full utilization depends on the delay-bandwidth product r (measured in

packets) as follows:
T

q

CHAPTER 6. FPQ: SUPPORTING LARGE ROUTER QUEUES 44

Initialization:
(0..Vmee — 1) < 0
c+0
f+0
tiast < current time
as each packet p arrives
h « h(p)
ifv(h) =0
v(h) « 1
c+—c+1
t «+ current time
Nelear < Umaxz oy
if Neclear > 0
tiast <
for i < 0 t0 Nejeqr — 1
r < random 0.V — 1)
ifo(ry=1
v(r) =0
c+—c—1
f < Equation 6.1

tetear

Variables:
v(i) Vector of vy, bits. v(7) indicates if a packet from a flow with hash 4

has arrived in the last t.j.q, seconds.

c Count of one bits in v.

f Current estimated flow count.

tiast Time at which bits in v were last cleared.

r Randomly selected index of a bit to clear in v.
Constants:

Umaz Oize of v in bits; should be larger than the number of expected flows.
teiear Interval in seconds over which to clear all of v.
h(p) Hashes a packet’s flow identifying fields to a value between 0 and v,,44-

Figure 6.1: Flow-counting pseudo-code.

CHAPTER 6. FPQ: SUPPORTING LARGE ROUTER QUEUES 45

r
¢ = max (Qf——l’5f>

2
| = min 3787 ,0.016
Tt

Figure 6.2: FPQ target queue length and loss rate as a function of number f of
flows and round trip time r in packets.

The crucial observation for this is that RED spreads out the window decreases
over time, so that only one TCP cuts its window at a time. For full utilization,
we want the buffer space to equal the amount that one TCP will cut its window.
The average window size is %, so each TCP cuts its window by T;—fq packets

at a time. Thus we want
r+q

2f

Solving for ¢ yields Equation 6.2. The corresponding loss rate [can be derived

from Equation 5.2:
2
l_< 0.87)
T\ ot
7 +1

With more than a few flows the main considerations in choosing w, ¢, and
! are minimizing queuing delay and preventing TCP from falling into timeout.
The target average window size should be somewhat larger than four so that
TCP’s fast retransmit works. We use 5, a choice justified in Section 7.1. Fig-
ure 5.1 indicates that a loss rate of about 1.6% will produce an average window
of 5. The router’s target queue size should be 5f and its target loss rate should
be 1.6%.

A loss rate of 1.6% is neither wonderfully low nor disastrously high. Fig-
ure 5.2 indicates that well under one percent of packets will incur timeouts with
a loss rate of 1.6%, so the typical web transfer will complete without interrup-
tion.

Figure 6.2 summarizes the target ¢ and [for both cases. Figure 6.3 shows
the target queue length as a function of f for a network with a delay bandwidth
product of 217 packets.

6.3 Achieving the Target Queue Length

Once the flow counting mechanism determines a target queue length ¢ and drop
rate [, the router must enforce them. As described above, ¢ = w - f, where f is
the current flow count and w is the desired per-TCP window size.

One possibility is a dropping scheme with a direct queue limit, such as drop-
tail or random drop. Even without dropping or window size changes, however,

CHAPTER 6. FPQ: SUPPORTING LARGE ROUTER QUEUES 46

250
z
©
¥ l
© 200
o
=
>
S 150
-
q) \
>
g
3 100 \
B
o
s 50
o
o
LL
0

0O 5 10 15 20 25 30 35 40 45 50
Number of TCP Connections

Figure 6.3: FPQ target queue length as a function of number of active flows.
RTT of 217 packets.

queue lengths in a TCP network tend to oscillate. A fixed queue limit would
clip the peaks from queue length cycles. These drops themselves contribute to
oscillation by forcing the affected TCPs to reduce their windows. Further, they
force the actual average queue length to be shorter than the maximum by an
amount difficult to predict. Thus a simple maximum queue length does not
work well to achieve a target average queue length.

A better scheme would use average queue length to decide when to drop.
However, it turns out that the idea of a maximum queue length is not appro-
priate, even with averaging. The desired effect is that all the active TCPs use a
particular average congestion window size. The best way to do that is to impose
a steady loss rate, as in Equation 5.1. Dropping only when the queue exceeds
some limit will cause the loss rate to oscillate. With some cleverness the drop
rate could be made to vary around the desired average, but the maximum queue
length mechanism seems to have no advantage to offset its complex behavior.

The ideal scheme would drop packets based on average queue length ga.g
as follows. Recall that the previous section described how to choose a target
queue length ¢ and loss rate | based on a target window size w and counted
number of flows f. When g4, equals g, impose the loss rate I. This should
cause each TCP to use an average window of w. Vary the loss rate around [in
proportion to the difference between g,,, and g. The combination of averaging
and a predictive model for drop rate should keep the queue length steady at the
desired target.

This dropping mechanism fits into a RED framework: set RED’s maz, to
1/2, maxp, to q, and ming, to a small value such as five. In this context RED’s

CHAPTER 6. FPQ: SUPPORTING LARGE ROUTER QUEUES 47
mazx, = 27’ =1, maxy, = 2q, ming, = 5

Figure 6.4: RED parameters as set by FPQ, based on f from Figure 6.1 and [
and q from Figure 6.2.

policy of dropping 100% of packets when gq,, exceeds maxs, isn’t desirable.
Two other issues might also cause trouble. First, the relationship between loss
rate and window size isn’t linear, so RED’s linear queue length to drop rate
function isn’t quite what FPQ needs. Second, RED averages the queue length
over some number of packets. This number probably needs to be longer than
any possible queue length in order to provide enough damping, so it may need
to be orders of magnitude larger than in existing RED configurations.

Proportionally higher values of max¢, and maz, allow FPQ to use RED
without interference from RED’s 100% drop policy. Figure 6.4 shows the RED
settings used by FPQ in the rest of this work.

6.4 Validation

This section presents simulation results validating FPQ’s ability to maintain
the desired queue size and drop rate under a range of loads. The simulation
configuration is a 10 megabit bottleneck link. The network has a 100ms round
trip propagation delay. The FPQ algorithm is as described in Figures 6.1, 6.2,
and 6.4, with parameters vy, = 5000 and t.eqr = 4 seconds. The goal is to
support up to 1400 flows: a 10 megabit link has enough bandwidth to support
700 14.4 kilobit modem flows, and the extra factor of two is to handle inevitable
overload.

6.4.1 Queue Length

Figure 6.5 shows how the router’s queue length varies with the number of flows.
Figure 6.6 displays packets buffered per flow, derived by dividing the queue
length by the number of flows. FPQ comes quite close to achieving its target
of five packets per flow across a wide range of numbers of flows. The queue
length is slightly lower than FPQ’s target because of packets stored in flight in
the network links. A per-flow packet count that includes packets in flight, as in
the left graph in Figure 6.6, comes closer to the target.

6.4.2 Drop Rate

Hand-in-hand with FPQ’s low queuing delay is the loss rate it must impose to
keep the queue short. The main problem with packet loss at the levels involved
here is timeouts. Figure 6.7 shows that FPQ imposes well under one timeout
per hundred packets.

CHAPTER 6. FPQ: SUPPORTING LARGE ROUTER QUEUES 48

7000 1000
@ m 900
i 6000 é Tari
5 ¥ 800 -
© ©
o 5000 a 700
£ £
2 4000 2 60
é i 500
3 3000 =1
(g; ;:; 400
© 2000 o 300
g g 200
o 9]
z 1000 < 100t
0 0
0 200 400 600 800 1000 1200 1400 20 40 60 80 100 120 140 160 180 200
Number of TCP Connections Number of TCP Connections

Figure 6.5: Average queue length (with detail) as a function of number of flows.
RTT of 217 packets.

30 30
FPQ — FPQ
25 25
3 20 H 20
(T8 w
o 1]
a 15 a 15
12} 12]
3] 15
3 S
g 10 g 10
5 5
0 0
0 200 400 600 800 1000 1200 1400 0 200 400 600 800 1000 1200 1400
Number of TCP Connections Number of TCP Connections

Figure 6.6: Average packets stored per flow as a function of the number of flows.
The left graph includes both router buffering and the 217 packets stored on the
links. The right graph includes only router buffering. RTT of 217 packets.

0.03 0.005
FPQ 0.0045 FPQ

0.025 0.004
@ - o

< — X< 0.0035
s 0.02 S
o4 S

o | o 0003
3 5]

o 0.015 o 0.0025
© 2

g 3 0.002
o [

3 oo £ 00015
=

0.005 0.001

0.0005

0 0

0 200 400 600 800 1000 1200 1400 0 200 400 600 800 1000 1200 1400
Number of TCP Connections Number of TCP Connections

Figure 6.7: Drop rate and timeouts per packet as functions of the number of
flows.

CHAPTER 6. FPQ: SUPPORTING LARGE ROUTER QUEUES 49

700

600 hy] A

- T L
AN A
Bl A
s o YV

Time (Seconds)

Figure 6.8: Queue length over time from a simulation with 300 flows and t.jeq, =
0.05 seconds.

6.5 Sensitivity to . e

A potential problem with FPQ is that tceqr, the flow counting interval, might
be set too low. A low tgeqr might cause FPQ to undercount flows in time-
out and flows with low send rates. This section describes the consequences of
misconfiguration and explores the range of t.eq,- values.

Figure 6.8 shows a primary symptom of excessively low values of t.jeq: queue
length oscillation. The graph plots queue length over time in a simulation with
300 flows and t.jeqr equal to 0.05 seconds. Packets from at most about 100 flows
can arrive at the router in 0.05 seconds, so FPQ will never count more than 100
flows or allow more than about 500 packets of buffering. This is far short of the
1500 packets required by 300 flows. In this configuration, FPQ acts like a RED
router with mawy, set too low or maz, too high. That is, FPQ drops bursts
of packets, causing the TCPs to synchronize their windows and create queue
length oscillations. The oscillations seen in Figure 6.8 disappear once tqeqr is
greater than about 0.2 seconds.

Even if t.eqr is large enough to avoid oscillation, it might be so small as to
cause FPQ to substantially under-count flows, provide too few buffers, and thus
force TCPs into timeout. Figure 6.9 presents the effect of t.¢q On the accuracy
of FPQ’s flow counts. Each point is the number of flows counted by FPQ,
averaged over the life of a simulation with 300 flows. Values of t.j¢q, much below
the round trip time (on the order of half a second) or the minimum retransmit
timeout (one second) work badly: they cause FPQ to count substantially fewer
than 300 flows. Figure 6.10 shows the packet discard rate and the per-packet

CHAPTER 6. FPQ: SUPPORTING LARGE ROUTER QUEUES 50

300

250

]
3
5
3 200
O /
7]
3 150
LL
< %
g 100
g
<
50
0

0 1 2 3 4 5 6 7
Clearing Interval (Seconds)

Figure 6.9: Effect of varying t.jeq on FPQ’s ability to count flows. The correct
answer is 300 flows.

timeout probability from the same simulations. Increasing t.jeqr much beyond
a few seconds has little effect.

It might be the case that the patterns of traffic in a real network could cause
FPQ to over-count short flows or under-count low bandwidth flows. Flows that
last much less than t..,, are a problem because FPQ will allocate buffer space
for them for a whole t..q,- interval, increasing queuing delay needlessly. Such
flows are not the common case on WANs: most TCP flows, even most Web
flows, last more than 10 seconds [50]. Low bandwidth flows that send less than
one packet per toeqr interval are less of a problem. FPQ will under-count them,
but they don’t need as much buffer space as a greedy flow. In any event, Claffy
et al. [9] show that changing the counting interval has a relatively small effect
on the flow count in real Internet traffic.

Another troublesome possibility is a sustained rapid increase in the number
of flows. This should not cause errors in the FPQ flow count, since FPQ counts
new flows as soon as they send their first packet. But it might break implicit
assumptions about the fraction of counted flows that are genuinely active. This
kind of problem is probably best addressed by raising number of packets that
FPQ allocates per flow; see Section 7.1 for more discussion.

The most important aspect of ... is that its value isn’t critical as long
as it is more than a few seconds. Perhaps it will need to be tuned for best
performance, but it can also safely be left at some default value.

CHAPTER 6. FPQ: SUPPORTING LARGE ROUTER QUEUES 51

0.05 0.01
0.045 0.009
0.04 0.008
0.035 £ o007
©
% 0.03 o 0.006
g g \
o 0.025 Q 0.005
o £ \
a 0.02 3 0.004
] 8 \
0.015 £ o003
0.01 0.002
0.005 0.001
0 0
0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7
Clearing Interval (Seconds) Clearing Interval (Seconds)

Figure 6.10: Discard rate and timeouts per packet as functions of FPQ’s tceqr
parameter. From simulations with 300 flows. The target discard rate is 0.016.

6.6 FPQ Discussion

The basic motivation for FPQ is that the best tradeoff between queuing delay
and TCP performance depends on the number of active flows. Counting flows
requires router state, but FPQ’s bit-vector mechanism requires an attractively
low quantity of per-flow state: one bit. FPQ uses RED to enforce its target
queue length and drop rate because of RED’s ability to avoid oscillation.

FPQ takes an unusual view of loss rate and buffering. FPQ isn’t forced to
drop packets as a reaction to overload or incipient overload. Instead it always
drops packets at a steady rate calculated to make TCP use an appropriate
window size. FPQ only varies the loss rate to the extent that its model of
TCP’s reaction to loss is not correct, or at the margins of extremely high or low
load.

Similarly, a FPQ router expects a persistently long queue: just long enough
to let each TCP flow avoid timeouts, and thus as short and low-delay as is
reasonable. Since FPQ causes the queuing delay to vary in proportion to the
number of flows, and TCP sends at a rate inversely proportional to the queuing
delay, FPQ effectively uses the queuing delay to force each TCP to send at its
fair-share bandwidth. This approach differs from dropping policies aimed at
keeping the queue no longer than is required for high utilization.

While FPQ caters primarily to networks with very large numbers of flows,
it should also reduce delay on high-speed links with few flows. Such links are
often provisioned with a delay bandwidth product of buffering so that a single
flow can use the entire link. Equation 6.2 shows that this is more buffering than
required when there is more than one flow. By combining flow counting with
RED’s de-synchronization, FPQ can cut the queuing delay substantially below
one round trip time without decreasing utilization.

Chapter 7

Delay Analysis

The main performance goal of FPQ, along with TCP, is to give users fair and
efficient access to the network. For networks like the Internet that are dominated
by short interactive transfers, a reasonable performance metric is the total delay
incurred by a TCP transferring a short file. The optimum delay is easy to
calculate and compare against, the delay distribution captures fairness, and
users experience delay more directly than metrics such as bandwidth.

This chapter compares FPQ’s delay performance against that of the drop
approach; that is, it compares the queuing delays caused by FPQ with the time-
out delays caused by the drop approach. FPQ’s average performance is shown
to be the same as that of the drop approach. FPQ, however, produces sub-
stantially less variation in delay than the drop approach. In other words, FPQ
improves the fairness and predictability of network service. This improvement
is the central point of FPQ.

As the basis for comparison is the delay incurred by finite-length trans-
fers, we need a model for TCP transfer lengths. Since this chapter compares
FPQ against existing buffering practice, rather than against a particular net-
work scenario, the model need be no more elaborate than required to effect
the comparison. Measurements on the Internet [50] suggest that the average
TCP transfer length is about 20 packets. The fact that transfer lengths are
distributed around this average will turn out to matter; we use an exponential
distribution to approximate the observation [6] that most transfers are shorter
than average but most bytes come from longer-than-average transfers.

Some of this chapter’s sections compare FPQ against a traditional router
configuration: RED buffering with one delay-bandwidth product of buffer mem-
ory. This comparison does not reflect on the RED algorithm, but on typical
choices for RED parameters. In fact, direct comparison of RED and FPQ may
not be meaningful, since RED’s performance depends on parameter settings.
Published work on RED has explicitly left proper parameter settings for fu-
ture work, and this thesis is part of that future. Such RED guidelines as exist
[19, 17, 51] implicitly assume small numbers of flows, and this thesis is aimed
at reconsidering that assumption. Thus the RED results in this chapter should

52

CHAPTER 7. DELAY ANALYSIS 93

1 e
— PPF=1
PPF=3 ——
i PPE=5 -
> O° PPF=7
E
@
S 0.6
a8
3]
2
k) 0.4
=)
E
o]
O
0.2
oLt
0 5 10 15 20

Per-Transfer Delay (Seconds)

Figure 7.1: Cumulative per-transfer delay distribution, 500 flows performing
20-packet transfers. Shows effect on fairness of different choices of FPQ packets
per flow. The goal is for every transfer to take 4.6 seconds.

not be taken as reflecting on RED so much as on the way in which it is used. To
emphasize this point, we refer to the RED configuration used in many of this
chapter’s simulations as RED217, after the fact that its maz,y, is 217 packets.

7.1 Packets-Per-Flow Parameter

FPQ’s main tunable parameter is the number of packets per flow (PPF). A low
value will provoke TCP timeouts, causing users unfair variations in delay. A
high value will encourage unnecessary queuing delay. Varying PPF allows one
to choose a tradeoff between delay and fairness.

We use simulation to find the delay involved in transferring a short file with
different choices of packet buffers per flow. Each TCP connection transfers a file
of 20 576-byte packets, waits for the acknowledgment for the last packet, resets
the TCP state to that of a new connection, and starts another 20-packet trans-
fer. 500 such connections share an otherwise standard simulation environment.
Figure 7.1 shows the cumulative distribution of per-transfer delays for various
different choices of FPQ packets per flow.

The optimum result would be for each transfer to take 4.6 seconds, the
amount of time required to send 20 576-byte packets at one 500th of the 10
megabit link bandwidth. The transfers actually segregate into two types: trans-
fers with no timeouts, and transfers with one or more timeouts. The transfers
with no timeouts have lower than expected delay because they use the band-

CHAPTER 7. DELAY ANALYSIS 54

PPF | Loss Rate | Avg Queue | Median Delay | Avg Delay | Std Dev Delay
1 7.3% 270 3.5 4.6 3.5
3 2.4% 890 3.7 4.6 1.9
5 0.9% 1120 4.2 4.6 1.3
7 0.4% 1210 4.5 4.6 0.9

Figure 7.2: Effects of varying FPQ packets per flow. 500 flows and 20-packet
transfers. Delays are in seconds.

width left idle by the transfers in timeout. For example, Figure 7.1 shows that
with 3 packets per flow, about 65% of transfers complete without a timeout.
Increasing the number of packets per flow increases the proportion of transfers
that complete without timeouts, and thus makes the system fairer.

Figure 7.2 shows statistics from the same simulations as Figure 7.1. Chang-
ing PPF does not affect average transfer delay, since this is a function only
of link bandwidth and transfer size. Increased PPF increases the median de-
lay because a higher fraction of the transfers actively compete for bandwidth
rather than pause in time-out. This increase cannot be considered a defect
because it reflects a fairer allocation of an unchanged average. On the other
hand, increased PPF decreases the variation in transfer delay by decreasing the
incidence of timeouts. This decrease is the main point of FPQ.

In the preceding discussion, the increase in queuing delay caused by increased
PPF has no effect on average transfer delay because it merely shifts queued
packets from the end systems to the router. This apparent lack of negative
effects from increasing PPF is misleading. When transfers have different lengths,
increased queuing delay hurts shorter transfers and helps longer transfers. We
can see this effect by simulating transfers with exponentially distributed lengths
averaging 20 packets, rather than lengths of exactly 20. Figure 7.3 shows the
average and standard deviation of transfer delay for transfers of fewer than 20
packets separately from those of 20 or more packets. Each point’s Y value is
a delay statistic (in seconds) from a simulation with PPF indicated by the X
value. Transfers that are too short to keep PPF packets in flight have delays
dominated by queuing time, and so experience higher delay when PPF increases.
Longer transfers are more sensitive to timeouts, and so experience lower delay
when PPF increases. Both kinds experience less variation with increased PPF.

The reason why a PPF of about 5 works well is that TCP’s fast retrans-
mit mechanism depends on keeping at least four packets in flight. Variants of
TCP that can recover with smaller windows [33] would require correspondingly
smaller PPFs.

PPF may have to be adjusted based on experience of what fraction of flows
have packets in flight at any given time. The value 5 suggested above is con-
servative: it assumes that all flows are greedy and need buffering. If significant
numbers of flows are low bandwidth or very short, a lower PPF could safely be
used. On the other hand, PPF must include some headroom for unexpected

CHAPTER 7. DELAY ANALYSIS 95

10 10
Short — Short —
Long —— - Lang ——
(%)
2 8) 8
= R e N 3
QT e D
Q | e e
g)
[2) 6 > 6
z 3
© [a}
e 4 5 4
=) [N S S
© — D
o _ o)
< 2 b=} 2 R R
(7] I
0 0
0 2 4 6 8 10 0 2 4 6 8 10
Packets Per Flow Packets Per Flow

Figure 7.3: Per-transfer delay average and standard deviation for short and
long transfers. 500 flows performing transfers with exponential distribution
averaging 20 packets. Increased PPF improves average delay for long flows but
hurts average delay for short flows.

increases in average flow bandwidth or length.

7.2 Average Delay Comparison

Before comparing the fairness of FPQ and the drop approach, we need to make
sure FPQ provides the same average performance as the drop approach. FPQ
could only fail in this by reducing the total useful throughput in the network,
thus making the average transfer experience higher total delay. This is mostly
likely to happen because of a high loss rate. It might also happen in conjunction
with a number of flows small enough that their window sizes don’t sum to the
network’s delay-bandwidth product. Similarly it might happen with transfers
short enough to limit the per-flow window size.

To explore these possibilities we simulate a network with transfers that av-
erage 20 packets, with exponential distribution. The average transfer takes six
windows (assuming delayed ACK) and has an average window size of about 3
packets. With 576-byte packets and a 100ms round trip propagation delay, the
average flow sends no faster than 140000 bits per second. Thus it takes at least
70 flows to saturate a 10 megabit link. Figure 7.4 shows the total throughput
used in this configuration as the number of flows increases. Neither FPQ and
RED217 prevent the TCP flows from using all the bandwidth they can. In
particular, FPQ provides the same average throughput as RED217.

Average per-transfer delay is a function only of average transfer size, total
useful throughput, and number of flows. Since FPQ and RED217 provide the
same useful throughput, we should expect them to provide the same average
per-transfer delay. They do: Figure 7.5 presents the average per-transfer delay
as a function of number of flows for the same simulation configuration as the
previous paragraph. FPQ and RED217 do not differ in this respect.

The mechanisms by which FPQ and RED217 produce delays are not the

CHAPTER 7. DELAY ANALYSIS 96

le+07
RED217 —
FPQ ——
8e+06
6e+06

4e+06 /
2e+06 /

0 50 100 150 200 250
Number of TCP Connections

Total Useful Throughput (bits/second)

0

Figure 7.4: Useful throughput as a function of number of flows. Transfer lengths
exponentially distributed with an average of 20 576-byte packets. RTT is 100ms.

20
RED217 ——
F DQ ,,,,,,,,
w
= 15
o
o
()
9
§ 10
[a)] /
g
¢ _—
o 5
z
//
0

0 200 400 600 800 1000
Number of TCP Connections

Figure 7.5: Average per-transfer delay as a function of number of flows.

CHAPTER 7. DELAY ANALYSIS 57

2500 0.12
— RED217 — RED217 —
2 FPQ - FPQ
£ 2000 01
IS
< £ o008
= © 8
E o
g 1500 s
= 5 006
) o
g 1000 £
(o4 < 0.04
°© o
g
g 0.02
Z R D NN N R A NN NI NS MR-

S B -
. 0
0 200 400 600 800 1000 0 200 400 600 800 1000
Number of TCP Connections Number of TCP Connections

Figure 7.6: Average queue length and drop rate as functions of number of flows.

same. Figure 7.6 compares queue length and drop rate for FPQ and RED217.
Clearly FPQ produces delay with queuing, while RED217 produces delay by
loss-induced timeouts. For example, with 600 flows FPQ maintains a queuing
delay of about 0.74 seconds, for a total round trip time of 0.84 seconds. The
average 20-packet flow takes six windows, for a total per-transfer delay of slightly
over 5 seconds, just as simulated in Figure 7.5.

In the RED217 simulation with 600 flows, the average 20-packet flow can
expect just under two packet losses. Since the average window size with such
short transfers is quite small, each packet loss is likely to incur a timeout. Each
timeout turns out to last about 2 seconds, rather than the 1.5 seconds typical of
long transfers, since the initial timeout is 3 seconds. Thus the typical transfer
can expect to spend about 4 seconds in timeout. Because the timeouts reduce
the window size to one and take the connection out of slow start, each transfer
is likely to use an average window size of roughly two packets. With a round
trip time totaling 0.2 seconds (0.1 of propagation delay, 0.1 of queuing), it takes
about 2 seconds of RTTs to transfer 20 packets. The total is 6 seconds, again
close to the actual simulated value in Figure 7.5.

In general, then, FPQ and RED217 produce similar average per-transfer
delays, one with queuing delay, the other with timeouts. However, because
they produce this delay with different mechanisms, the distribution of delays
produced by the two systems is not the same.

7.3 Delay Fairness Among Transfer Sizes

As Section 7.1 explains, the long queues favored by FPQ tend to increase delays
for short transfers and decrease them for long transfers. Figure 7.7 compares
FPQ and RED217 delays for short and long transfers as the number of flows
increases. The simulation scenario is the same as in the previous section. FPQ
reacts to increased number of flows by increasing the queue length, which hurts
shorter transfers. RED217 reacts by increasing the loss rate, which primarily

CHAPTER 7. DELAY ANALYSIS 58

20 20
RED217 (short) — RED217 (long) —
FPQ (short) - FPQ (long) -
o w
2 15 2 15
o o
1= o
) Q
(23 @
FET) F T
[[
o [a]
() [}
g g
0 200 400 600 800 1000 0 200 400 600 800 1000
Number of TCP Connections Number of TCP Connections

Figure 7.7: Average per-transfer delay as a function of number of flows. Transfer
lengths exponentially distributed with average of 20 packets. Left graph shows
just transfers of fewer than 20 packets, right graph shows just transfers with 20
or more packets.

hurts transfers long enough to have window sizes limited by loss.

Figure 7.8 shows the relationship between transfer size and transfer delay
for a single simulation with 661 connections. Again, FPQ has a bias in favor of
longer connections when compared to RED217.

This bias against short transfers arises from TCP itself; FPQ increases it but
does not create it. Short transfers limit the window size. Small windows prevent
full utilization with long RTTs and prevent TCP’s fast retransmit mechanism
from working.

7.4 Delay Fairness in General

This section attempts to characterize the improved fairness that FPQ provides
in comparison to the drop approach. A fair system should cause identical users’
network transfers to complete in the same amount of time. The extent to
which identical users experience varied completion times is a basic measure of
unfairness. Within this basic framework we present a number of comparisons
of FPQ with RED217.

7.4.1 Cumulative Delay Distribution

Figure 7.9 presents the cumulative distribution of per-transfer delays. The sim-
ulated network configuration involved 661 connections, each making repeated
transfers of exponentially distributed length and average size of 20 576-byte
packets. Each graph includes only the transfers of a particular size, to make the
delays comparable. The vertical line on each graph marked Perfect represents
amount of time it should take to send a transfer in a perfectly fair system: the
transfer size divided by 1/661 of 10000000 bits per second.

CHAPTER 7. DELAY ANALYSIS 99

20 —
REPE%F/ —
Q ,,,,,,,,

0)

g 15

o

[S]

[} .
- f/\/\\‘/
o) 10 e

[} P

a o

(O] /

o -

@ P

g 5

<

0 10 20 30 40 50 60 70 80
Transfer Size (Packets)

Figure 7.8: Average delay for transfers of each size. From a single simulation
with 661 flows, transfer sizes exponentially distributed with an average of 20
packets.

Examine the graph for 20-packet transfers. With FPQ, about 80% of trans-
fers take almost exactly the fair 5.4 seconds. These transfers are all delayed
the same amount since they encounter the same queuing delay (averaging 1580
packets). The other 20% of transfers encounter one or more timeouts. This
makes sense since the loss rate is about 1%, so the probability of a 20-packet
transfer encountering one or more losses is (1 — 0.99%°) = 0.18.

The 20-packet RED217 transfers in Figure 7.9, however, mostly have either
significantly above- or below-fair delays. The large majority of transfers suffer
one or more timeout delays, since the loss rate is 9%. We expect (1 —0.912%) =
15% of transfers to suffer no loss, and indeed somewhat more than this fraction
complete in 2 seconds. This is roughly the minimum time in which TCP can
send 20 packets with a round trip time of 0.2 seconds.

The 10- and 40-packet graphs have similar explanations. RED217’s delay
variation is lower with shorter than with longer transfers, because shorter trans-
fers have a smaller probability of encountering a timeout. FPQ provides low
variation even for the longer transfers. Note that FPQ’s median delay is higher
than perfect for short transfers and lower than perfect for long transfers, and
that RED217 demonstrates an opposite tendency; this is the effect mentioned
in Section 7.3.

FPQ, then, provides less delay variation than RED217. Much of the rea-
son for this is that FPQ has an explicit mechanism (the queuing delay) that
makes most transfers experience equal delays. RED217’s reliance on dropping,
however, tends to produce both transfers with no timeouts (and low delay)

CHAPTER 7. DELAY ANALYSIS 60

1 1
RED217 —
FPQ -~

0.8 Perfect 0.8

A)
AEN 1]

10 15 20 0 5 10 15 20

Cumulative Probability
Cumulative Probability

0 5
Per-Transfer Delay (Seconds) for 10-packet Transfers Per-Transfer Delay (Seconds) for 20-packet Transfers
1
0.8
z
o
[
S 0.6
a
[
=
s} 0.4
=3
£
=3
(]
0.2
0
0 5 10 15 20

Per-Transfer Delay (Seconds) for 40-packet Transfers

Figure 7.9: Cumulative per-transfer delay distributions from a simulation with
661 flows. Each flow performs repeated transfers with exponentially distributed
length and average 20 packets. Each graph includes the transfers of just one
size: 10, 20, or 40 packets. The FPQ delays are clustered more tightly than
those of RED217.

CHAPTER 7. DELAY ANALYSIS 61

20 20
RED217 — REDZ)J]L
— PO - ~—~ |\ . FPO -
g FPQ 3 PPQ .
] 15 3 15
D i)
0 2
A 10 o 10 g
Q@ 2
& 5 L 5
0
0 200 400 600 800 1000 0 200 400 600 800 1000
Number of TCP Connections Number of TCP Connections

Figure 7.10: 5th and 95th percentiles of per-transfer delay as functions of the
number of flows. Just for transfers of 20 packets.

and transfers with multiple timeouts (and high delay), with no particular bias
towards the fair delay value.

7.4.2 Percentile Ratios

The previous section discussed fairness at just one level of load. In order to
assess fairness across a range of loads we need a single fairness metric subject
to comparison. We use the ratio of the 95th percentile of delay to the 5th
percentile. This reflects the extent to which unlucky transfers get a worse deal
than lucky ones. As above, we compare only transfers of the same length.

Figure 7.10 shows the 5th and 95th percentiles of delay as a function of
number of competing flows. The left-most extremes of both graphs are flat
because there are too few flows to use the entire link bandwidth, and thus
neither queuing nor packet loss. The 5th percentile graph for RED217 slopes
up very gradually because only transfers that experienced no timeout are lucky
enough to be included. The delay for these transfers depends only on the fixed
0.2 second RTT, not on total number of flows. The 5th percentile graph for
FPQ increases with number of flows because all transfers experience the same
increasing queuing delay. RED217’s and FPQ’s 95th percentile delays both
increase with the number of flows because in both cases the flows involved
are those subject to timeouts. RED217’s 95th percentile delay is higher than
FPQ’s because RED217 produces more timeouts. These graphs suggest that
the behavior evident in Figure 7.9 occurs across a wide range of loads.

Dividing the two percentile graphs yields Figure 7.11. The combination of
slightly higher 95th percentile delays and unfairly low 5th percentile delays gives
RED217 a higher ratio for most loads. Worse, the difference between RED217’s
and FPQ’s ratio increases as the load increases. This reflects RED217’s tendency
to let a fixed number of flows enjoy most of the bandwidth while the rest time
out.

Figure 7.12 shows ratios for 10 and 40 packet flows. As expected, RED217

CHAPTER 7. DELAY ANALYSIS 62

10
> RED217 ——
T
: N
0 3 (20-packet xfers-only)
i)
|5
[H]
o
o 6
o
<
i3
2 4
=
0
»
©
o A B e T
S
o

0

0 200 400 600 800 1000

Number of TCP Connections

Figure 7.11: Ratio of 95th to 5th percentile of delay as a function of the number
of flows. Just for transfers of 20 packets.

has a lower ratio for short flows than for long flows. FPQ’s ratio is substantially
lower in both cases.

CHAPTER 7. DELAY ANALYSIS 63

10 10
) RED217 — z RED217 —
o] FPQ - ! FPQ -
[a] 8 (10-packet xfers.only) o 8 (40-packet xfers-en
2 2
= =
Q [
IS <4
7} 6 5} 6
o o
£ £
wn n
2 4 e 4
< =
e} e}
(=2 o
k=T Y A R =S /A U D ——
o 2 o 2/
T T
4 ha

0 0
0 200 400 600 800 1000 0 200 400 600 800 1000
Number of TCP Connections Number of TCP Connections

Figure 7.12: Ratio of 95th to 5th percentile of delay as a function of the number
of flows. For transfers of just 10 and 40 packets.

Chapter 8

Conclusions

The central contribution of this thesis is the observation that congestion loss in
busy TCP networks depends primarily on the number of active flows and the
total storage in the network. Though the details vary, the general relationship
is

n2

where [is loss rate, n is the number of active flows, and b is the total storage.
Total storage includes both router buffer memory and packets in flight on long
links.

Holding b constant in Equation 8.1 approximates the behavior of existing
IP routers, which have fixed-sized buffer memories. Chapter 5 analyzes some
typical router configurations from this point of view, and derives guidelines for
adjusting router buffering parameters. A constant b causes routers to signal
congestion to senders by varying the loss rate. This approach has the desirable
effect of capping the queuing delay at a low value. However, it produces high
loss rates as the number of flows increases, causing long and unfair timeout
delays.

Chapter 6 proposes a more scalable “Flow Proportional Queuing” (FPQ) sys-
tem for TCP congestion control. FPQ provides congestion feedback by varying
the queue length in proportion to the number of flows. In terms of Equation 8.1,
FPQ varies b in proportion to n, keeping the loss rate [roughly constant. The
network administrator can arrange for / to maintain a low value despite varying
load. Since every user sees low loss and similar queuing delay, this approach
should be fairer and more predictable than loss feedback under heavy load.

An FPQ router may cost more than a conventional router. First, FPQ
assumes large amounts of buffer memory: a few packets for each of the maximum
expected number of flows. Second, FPQ requires that a router count the number
of flows. This thesis presents a simple flow-counting algorithm that takes a few
instructions per packet and uses just one bit of state per flow. Other than these
two costs, an FP(Q router could be built with the same architecture that current
routers use.

64

CHAPTER 8. CONCLUSIONS 65

FPQ’s intentional use of queuing delay may seem to invite higher user-visible
latency, but in fact does not. Simulation of web-like traffic in Chapter 7 shows
that FPQ provides the same average transfer latency as loss feedback; FPQ’s
queuing delay and loss feedback’s timeouts have the same average effect. FPQ
has an advantage in the delay distribution, however; FPQ distributes delays and
bandwidth more fairly than loss feedback, and this advantage increases with the
number of competing flows.

FPQ enjoys these advantages over conventional drop-tail and RED queuing;:

e FPQ scales automatically with the number of flows, without the manual
parameter tuning required by drop-tail and RED routers.

e FPQ allows routers to include very large buffer memories without risking
unnecessarily high delay.

¢ FPQ eliminates most of the timeouts and unfairness caused by drop-tail
and RED with large numbers of flows.

For these reasons the performance of TCP networks such as the Internet should
benefit from the deployment of FPQ routers.

Bibliography

[1]

[4]

[7]

[8]

[9]

[10]

Dimitri Bertsekas and Robert Gallager. Data Networks. Prentice Hall,
Englewood Cliffs, New Jersey, 1987.

Trevor Blackwell. Applications of Randomness in System Performance
Measurement. PhD thesis, Harvard University, 1998.

Jean-Chrysostome Bolot. Characterizing end-to-end packet delay and loss
in the internet. In Proceedings of ACM SIGCOMM, 1993.

B. Braden, D. Clark, J. Crowcroft, B. Davie, S. Deering, D. Estrin,
S. Floyd, V. Jacobson, G. Minshall, C. Partridge, L. Peterson, K. Ra-
makrishnan, S. Shenker, J. Wroclawski, and L. Zhang. Rfc2309: Recom-
mendations on queue management and congestion avoidance in the inter-
net. Technical report, Internet Assigned Numbers Authority, Jon Pos-
tel, USC/ISI, 4676 Admiralty Way, Marina del Rey, DA 90292, 1998.
http:/ /info.internet.isi.edu/in-notes/rfc/files /rfc2309.txt.

Hans-Werner Braun. What is fix-west?
http://oceana.nlanr.net/NA /fixwest.html, 1997.

Ramon Caceres, Peter Danzig, Sugih Jamin, and Danny Mitzel. Character-
istics of wide-area tcp/ip conversations. In Proceedings of ACM SIGCOMM,
1991.

Dah-Ming Chiu and Raj Jain. Analysis of the increase and decrease algo-
rithms for congestion avoidance in computer networks. Computer Networks
and ISDN Systems, 17:1-14, 1989.

Kim Claffy. Fix-west network traces from the national laboratory for ap-
plied network research. ftp://ftp.nlanr.net/Traces/FR+ /960926, 1996.

Kim Claffy, Hans-Werner Braun, and George Polyzos. A parameterizable
methodology for internet traffic flow profiling. IEEE Journal on Selected
Areas in Communications, 13(8), October 1995.

ATM Forum Technical Committee. ATM User-Network Interface Specifi-
cation. Prentice Hall Software, 1995.

66

BIBLIOGRAPHY 67

[11] Charles Eldridge. Rate controls in standard transport layer protocols. Com-
puter Communications Review, 22(3), July 1992.

[12] Ashok Erramilli; Onuttom Narayan, and Walter Willinger. Experimental
queueing analysis with long-range dependent packet traffic. IEEE/ACM
Transactions on Networking, 4(2):209-223, April 1996.

[13] Wuchang Feng, Dilip Kandlur, Debanjan Saha, and Kang Shin. Techniques
for eliminating packet loss in congested tcp/ip networks. Technical report,
University of Michigan, 1997. CSE-TR-349-97.

[14] Sally Floyd. Connections with multiple congested gateways in packet-
switched networks part 1: One-way traffic. Computer Communications
Review, 21(5), October 1991.

[15] Sally Floyd. Tcp and explicit congestion notification. ACM Computer
Commaunication Review, 24(5), October 1994.

[16] Sally Floyd. Red: Discussions of setting parameters. http://www-
nrg.ee.lbl.gov/floyd/REDparameters.txt, November 1997.

[17] Sally Floyd. Red: Discussions of setting parameters, 1997. http://www-
nrg.ee.lbl.gov/floyd/REDparameters.txt.

[18] Sally Floyd and Van Jacobson. On traffic phase effects in packet-switched
gateways. Internetworking: Research and Ezperience, 3(3), September
1992.

[19] Sally Floyd and Van Jacobson. Random early detection gateways for con-
gestion avoidance. IEEE/ACM Transactions on Networking, August 1993.

[20] Henry Fowler and Will Leland. Local area network traffic characteristics,
with implications for broadband network congestion management. IEEE
Journal on Selected Areas in Communications, 9(7):1139-1145, September
1991.

[21] Mark Handley. An examination of mbone performance. Technical report,
University of Southern California Information Sciences Institute, 1997.
ISI/RR-97-450.

[22] Eman Hashem. Analysis of random drop for gateway congestion con-
trol. Master’s thesis, Massachusetts Institute of Technology, 1989.
MIT/LCS/TR-465.

[23] Adon Hwang. Observations of network traffic patterns at an end network:
Harvard university. Master’s thesis, Harvard College, 1998.

[24] Van Jacobson. Congestion avoidance and control. In Proceedings of ACM
SIGCOMM, 1988.

BIBLIOGRAPHY 68

[25] Van Jacobson. Notes on using red for queue management and congestion
avoidance. http://www.nanog.org/mtg-9806/ppt/vj-nanog-red.pdf, June
1998.

[26] Van Jacobson, Craig Leres, and Steve McCanne. tcpdump. anonymous ftp
at ftp.ee.lbl.gov.

[27] Raj Jain. A timeout-based congestion control scheme for window flow-
controlled networks. IEEE Journal on Selected Areas in Communications,
SAC-4(7):1162-1167, October 1986.

[28] Phil Karn and Craig Partridge. Improving round-trip time estimates in
reliable transport protocols. In Proceedings of ACM SIGCOMM, 1987.

[29] H. T. Kung, Trevor Blackwell, and Alan Chapman. Credit-based flow con-
trol for atm networks: Credit update protocol, adaptive credit allocation,
and statistical multiplexing. In Proceedings of ACM SIGCOMM, 1994.

[30] H. T. Kung and Koling Chang. Receiver-oriented adaptive buffer allocation
in credit-based flow control for atm networks. In Proceedings of IEEE
Infocom, 1995.

[31] H. T. Kung and Alan Chapman. The fcve (flow controlled virtual channels)
proposal for atm networks. In Proceedings of the International Conference
on Network Protocols, 1993.

[32] T. Lakshman, A. Neidhardt, and T. Ott. The drop from front strategy in
tcp and in tep over atm. In Proceedings of IEEE Infocom, 1996.

[33] Dong Lin and H. T. Kung. Tcp fast recovery strategies: Analysis and
improvements. In Proceedings of IEEE Infocom, 1998.

[34] Dong Lin and Robert Morris. Dynamics of random early detection. In
Proceedings of ACM SIGCOMM, 1997.

[35] Allison Mankin. Random drop congestion control. In Proceedings of ACM
SIGCOMM, 1990.

[36] Steve McCanne and Sally Floyd. Ns (network simulator). http://www-
nrg.ee.lbl.gov/ns/, June 1998.

[37] Steve McCanne and Van Jacobson. The bsd packet filter: A new architec-
ture for user-level packet capture. In Proceedings of the Winter USENIX
Conference, 1993.

[38] Jeffrey Mogul. Dec-pkt-4. http://ita.ee.lbl.gov/, March 1995.

[39] Robert Morris and Shieyuan Wang. Harvard network traces.
http://www.eecs.harvard.edu/net-traces/, March 1997.

BIBLIOGRAPHY 69

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

John Nagle. Rfc896: Congestion control in ip/tcp internetworks.
Technical report, Internet Assigned Numbers Authority, Jon Postel,
USC/ISI, 4676 Admiralty Way, Marina del Rey, DA 90292, 1984.
http:/ /info.internet.isi.edu/in-notes/rfc/files /rfc896.txt.

John Nagle. Rfc970: On packet switches with infinite storage.
Technical report, Internet Assigned Numbers Authority, Jon Postel,
USC/ISI, 4676 Admiralty Way, Marina del Rey, DA 90292, 1985.
http:/ /info.internet.isi.edu/in-notes/rfc/files /rfc970.txt.

Peter Newman, Tom Lyon, and Greg Minshall. Flow labelled ip: A con-
nectionless approach to atm. In Proceedings of IEEE Infocom, 1996.

Vern Paxson. Automated packet trace analysis of tcp implementations. In
Proceedings of ACM SIGCOMM, 1987.

Vern Paxson. End-to-end internet packet dynamics. In Proceedings of ACM
SIGCOMM, 1987.

Scott Shenker, Lixia Zhang, and David Clark. Some observations on the
dynamics of a congestion control algorithm. In Proceedings of ACM SIG-
COMM, 1990.

W. Richard Stevens. TCP/IP Illustrated, Volume 1: The Protocols.
Addison-Wesley, 1994.

W. Richard Stevens. Rfc2001: Tcp slow start, congestion avoidance,
fast retransmit, and fast recovery algorithms. Technical report, Inter-
net Assigned Numbers Authority, Jon Postel, USC/ISI, 4676 Admiralty
Way, Marina del Rey, DA 90292, 1997. http://info.internet.isi.edu/in-
notes/rfc/files/rfc2001.txt.

Cisco Systems. Memory options for cisco 4000 series (product bulletin
#419). http://www.cisco.com/warp/public/728/4000/419 pb.htm, 1996.

Cisco Systems. Cisco 12000 series gigabit switch
routers (gsrs) packet-over-sonet/sdh line card data sheet.
http://www.cisco.com/warp/public/733/12000/gsont_ds.htm, 1998.

Kevin Thompson, Gregory Miller, and Rick Wilder. Wide-area internet
traffic patterns and characteristics. IEEE Network, November/December
1997.

Curtis Villamizar and Cheng Song. High performance tcp in ansnet. Com-
puter Communications Review, 24(5), October 1994.

Maya Yajnik, Jim Kurose, and Don Towsley. Packet loss correlation in the
mbone multicast network. In IEEE Global Internet Conference, 1996.

BIBLIOGRAPHY 70

[63] Lixia Zhang, Scott Shenker, and David Clark. Observations on the dynam-
ics of a congestion control algorithm: The effects of two-way traffic. In
Proceedings of ACM SIGCOMM, 1991.

