
F2F: reliable storage in open networks

Jinyang Li Frank Dabek
UC Berkeley/MIT MIT�

jinyang, fdabek � @csail.mit.edu

Abstract

A major hurdle to deploying a distributed storage infras-
tructure in peer-to-peer systems is storing data reliably
using nodes that have little incentive to remain in the sys-
tem. We argue that a node should choose its neighbors
(the nodes with which it shares resources) based on ex-
isting social relationships instead of randomly. This ap-
proach provides incentives for nodes to cooperate and
results in a more stable system which, in turn, reduces
the cost of maintaining data. The cost of this approach is
decreased flexibility and storage utilization. We describe
our approach and sketch two applications for which this
approach is viable: a cooperative backup system and a
Usenet replacement.

1 Introduction
Systems that store data reliably satisfy a fundamental re-
quirement: new copies of data are created faster than exist-
ing copies are lost. Satisfying this requirement is difficult
in traditional peer-to-peer systems because nodes fail fre-
quently and creating new copies of lost data over limited-
capacity wide-area links takes a long time. This combi-
nation of frequent node failures and slow data creation
can make it expensive, or even impossible, to store large
amounts of data durably. Rodrigues and Blake [1] have
shown that node failure rate like that observed in Gnutella
implies that the bandwidth required to replace failed repli-
cas far exceeds that of a typical cable modem link even if
each node only stores � GB of data.

Since wide-area link capacity is unlikely to dramati-
cally increase in the near future, we have to reduce the
node failure rate to increase the storage capacity of peer-
to-peer systems. In particular, we are interested in re-
ducing permanent, voluntary node departures: such de-
partures are common in most peer-to-peer systems since
these systems offer little or no incentive for nodes to per-
manently remain in the system and continue to donate re-
sources. Existing incentives used by Bittorrrent and Mojo

This research was conducted as part of the IRIS project
(http://project-iris.net/), supported by the National
Science Foundation under Cooperative Agreement No. ANI-0225660.

Nation reward nodes for uploading data but not necessar-
ily for remaining in the system.

The pitiful capacity of the systems analyzed by Blake
and Rodrigues is a consequence of users failing to display
that good will without proper incentives: after download-
ing a file, users have no good reason to continue partici-
pating in the network (and in fact many good reasons to
exit it: resource usage, legal liability, etc.). With no reason
to remain in the system, users often leave permanently,
forcing any system to make new copies of whatever data
the recently departed node is responsible for storing. Even
if the node will rejoin the system at a later date (the next
time the user wishes to download a file, for example), this
behavior results in poor node availability. Poor availabil-
ity, in turn, leads to reduced capacity in most replication
systems since systems can not disambiguate temporary
departures from permanent departures and more copies of
each data item must be created to guarantee durability.

One solution to the problem of insufficient volun-
teerism among participants is to eliminate the need for
volunteers by operating a closed system: a central author-
ity (usually the system designer) explicitly admits, admin-
isters, and guarantees the continued operation of the nodes
that make up the system. Many data-intensive peer-to-
peer applications have been deployed in such a manner on
the PlanetLab testbed. OverCite [23], UsenetDHT [21],
and OpenDHT [17] all run only on PlanetLab nodes un-
der the control of their system designers. While solving
the problem of high failure rate, this approach limits the
system’s organic growth and the ultimate scale.

In this paper, we propose a way to structure peer-to-
peer storage systems that retains the benefits of an open
system (organic growth and scale), but creates an incen-
tive for nodes to increase their reliability. We draw our
ideas from social networks, and propose to link nodes in
the network based on friendship relationships between the
nodes’ owners. In real life, people tend to behave more
cooperatively towards their friends. Nodes restrict them-
selves to sharing storage and network resources only with
neighbors, but in return can expect that their neighbors
(friends) will behave cooperatively. We call this way of
structuring networks f2f .

1

Such a network can grow quickly since each node can
independently invite other nodes to join the network by
enlisting friends (witness the explosive growth of Mys-
pace, Friendster, Orkut, etc.). There are also few perma-
nent node departures in f2f : when users, now friends, be-
have cooperatively towards one another, they are unlikely
to permanently leave the system and will maintain higher
node availabilities; the alternative is to disappoint a friend
by imposing poor service or high overhead on her. As a
result of users’ good behavior, the system’s failure charac-
teristics more closely mirrors that of the underlying hard-
ware than the whims of disinterested users.

f2f offers a new approach to the problem of storing a
large amount of data durably on poorly connected, wide-
area nodes. The decreased data maintenance overhead and
increased capacity provided by f2f comes at the cost of
decreased flexibility: the system limits resources that can
be used to those of a node’s neighbors. A f2f application
can neither use all idle resources nor provide global shar-
ing of common data. We argue that the benefits of having
reliable nodes outweighs the attractions of global sharing
for many classes of applications. In this paper, we quan-
tify the costs and benefits of such a system construction
using two example applications, backup and Usenet.

2 Network and Sharing Model

The network structure we propose, f2f , was inspired
by the popularity of social networking sites: Friendster,
Orkut and Club Nexus. These networks allow users to in-
put the identities of friends and explore the graph created
by friendship links by browsing lists of friends’ friends.

In f2f , each node knows a set of other nodes (neigh-
bors). Links between nodes encode either social relation-
ships or some out-of-band agreements between their cor-
responding owners that dictate that storage resources will
be shared between them. All links are bi-directional. Each
application running on a node has a public/private key pair
and learns neighbors’ public keys using out of band com-
munication.

Most distributed storage systems create a global sharing
domain where the resources donated by one node are nec-
essarily available to all nodes. f2f captures a more gen-
eral notion of the users’ willingness to cooperate. For ex-
ample, five mutually trusting friends could agree to run a
DHT for backup purposes: the DHT itself spreads all data
in the system among all participating nodes. However, if a
sixth member joins who is known by some, but not all, of
the existing members, the DHT’s notion of global sharing
no longer matches the users’ preferences.

Failure type Rate (per day Which trace
per node)

disk failure 1/1825 Maxtor datasheet
accidental data loss 1/314 PlanetLab [4]
node departure 1/27 Overnet [16]

Table 1: The permanent failure (���) in f2f is determined by the
rate of disk failure and accident data loss (����������	�
���������),
while ��� in traditional open networks is dominated by permanent
node departures (������).

3 Benefits
The permanent node failure rate (���) places a lower bound
on how often replicas must be created: any system must
make new copies of data items that permanently leave the
system to maintain data durability. We say that a data item
is stored durably if it exists in the system and will be able
to be retrieved at some time in the future even though the
data might not be available now. The most important ben-
efit of f2f is a reduction of the permanent failure rate. Be-
cause a node stores data only on neighbors that have ex-
plicitly agreed to cooperate, we expect ��� in f2f to reflect
only disk failures or accidental data loss due to operator
errors rather than voluntary node departures..

The incidence of disk failure is low; the lifetime of a
typical commodity disk is five years [14]. Operator ac-
tions that lead to data loss are also rare. On PlanetLab,
between October 2004 and September 2005 (����� days),
there were ����� data losses on the ����� PlanetLab ma-
chines [4]. Most of these losses were caused by the in-
stallation of a new version of PlanetLab software. This
corresponds to an approximate failure rate of �������! "�����$#

������%'&)(*� �+(-, failures per day per node for the data stored
on each PlanetLab machine. Data loss incidents will also
be rare on home users’ machines.

In contrast, the rate of data loss caused by perma-
nent node departure in an open network is much higher
than either disk or operator failures. We estimate the typ-
ical membership changes in an open peer-to-peer net-
work using the . -day Overnet trace [16] collected in Jan-
uary, 2003. Of the (�(�/�� active nodes in the first 2 days
of the trace, �!(�, of them were never online in the re-
maining � days of the trace. If we consider those �!(-,
nodes as having permanently left the network, the rate is
�!(�,��0 1(�(�/��$#2��%3&4(*����. departures per day per node. Ta-
ble 1 summarizes the permanent failure rates caused by
different factors. The ��� in f2f is mostly due to disk fail-
ures and accidental data loss (56(*� �0(�,), more than an
order of magnitude improvement over the node departure
rate ((*����.) in a traditional open network.

2

A second advantage of f2f is a decrease in mainte-
nance bandwidth caused by temporary failures. A sys-
tem that preserves durability should do no work when
nodes temporarily fail. In practice, however, it is impos-
sible to distinguish a transient failure from a permanent
node departure by monitoring a node remotely over the
network. Most existing systems assume pessimistically
that a node has left the system permanently if it is un-
reachable. In contrast, as neighbors rarely leave the sys-
tem unannounced, f2f nodes assume optimistically that
an unreachable neighbor has suffered a temporary fail-
ure. A node can rely on out-of-band information from the
neighbor’s owner to learn about rare permanent node de-
partures.

Without the ability to distinguish transient failures from
permanent failures, a system ends up maintaining data
availability in order to achieve durability, keeping around
a total of approximately ������ replicas [4], where � is
the host availability and � is the initial replication level.
Overnet nodes’ average availability is

�	� ��� � . Therefore, a
system needs to incur an extra � � � times the storage and
bandwidth overhead than f2f as a result of creating redun-
dant replicas when faced Overnet node availability.

In summary, f2f incurs
��������� communication over-
head per node to ensure data is stored durably in the sys-
tem, where
 is the amount of unique data stored on each
node and ��� 5 (�� �+(-, (assuming desktop machines have
the same data loss rate as that in PlanetLab). For � & � ,

 & (TB, the overhead is only � GB of data transfer
per node per day (or equivalently,

��� � . MB/node/second)
which can be handled comfortably even with a cable mo-
dem link. On the contrary, in systems designed to work
in traditional open networks such as Overnet, each node
requires
��!� � �0������� bandwidth where � � & (*����. and
� & �	� ��� � . For � & � ,
 & (TB, the overhead is , (�/
GB of data transfer per node per day (or equivalently,
, MB/node/second), roughly . � times the maintenance
bandwidth needed in f2f . This bandwidth is an average
over a long period of time, across multiple failures at a
node. We can apply techniques in [22] to reduce the peak
bandwidth consumption.

4 Case Study I: backup
To illustrate how applications designed for f2f depart
from previous proposals for a traditional open peer-to-
peer network, we sketch the design of a distributed
backup application, BlockParty, and compare it to exist-
ing backup systems (Pastiche [2] and Venti-DHash [20]).

BlockParty provides an affordable, off-site backup ser-
vice for home users. It is an alternative to purchasing a
redundant disk (expensive and complicated) or paying for
a network backup service (expensive). We expect users

to backup unique, difficult to replace data such as digital
photo libraries or music collections. Recovering a large
amount of data from this system will be tedious (months
are required to recover (�� data over a cable modem link),
but the user can selectively download important data first
while archives are slowly restored.

BlockParty breaks the data to be backed up into chunks
and distributes each chunk to one or more neighbor
machines depending on the desired replication level � ;
chunks are preferentially sent to the neighbor with the
most free space. Data is only sent to neighbors, since these
nodes are owned by individuals we believe will act coop-
eratively. In BlockParty, the existence of a link in the un-
derlying f2f network implies a storage contract: neighbors
agree to share use each other’s spare capacity for backup.
The existence of social connections between neighbors
gives a node reason to believe that these contracts will
be honored: a neighbor’s incentive not to leave the sys-
tem or destroy backed up copies of data is avoiding his
friend’s ire. We assume that neighbors might be negligent
or sloppy, but that they are cooperative. To ensure storage
balance, the BlockParty software at a node dedicates at
least as much space to storing other nodes’ backups as the
node wishes to use on other nodes.

Venti-DHash is a backup system based on a distributed
hash table [5]. The Venti-DHash software running on each
machine converts data to be backed up into small blocks
that are organized into a hash tree structure stored in the
DHT. Pastiche uses a modified version of Pastry [18] to
find, for each participant, a “buddy” that stores similar
files; the participant then sends the contents of its disk to
the one buddy (instead of spreading the contents of the
disk across many machines as Venti-DHash does). The
buddy is chosen from all participating machines, similar
to the proposal in [12].

4.1 Maintenance Traffic
A BlockParty node periodically queries neighbors that
store data to determine if the data is intact; when a neigh-
bor does not respond, BlockParty can delay making a new
copy of the data since the friendship relationship allows
the node to safely assume that the failure is temporary.
After a long timeout, or perhaps out-of-band verification
of a hardware failure, the system sends a new copy of the
data to an alternative neighbor. In contrast, Venti-DHash,
must create more copies of data due to a higher permanent
node departure rate and in response to node unavailability.

As the analysis in Section 3 shows, each Venti-
DHash node needs to consume , MB/second in or-
der to maintain � copies of his 1 TB of data durably
in an open network that has failure properties similar
to the Overnet trace. BlockParty, by contrast, requires

3

��� � .���� ��
����	��
��!��
����� .

4.2 Ensuring Cooperative Node Behavior

While the primary benefit of a f2f system is reduced main-
tenance traffic, the use of social links also provides nodes
an incentive for good behavior other than not leaving the
system. BlockParty users can expect that their neighbors,
chosen to reflect social links, will not deliberately delete
data or modify the BlockParty software to offer less stor-
age to their neighbors.

Venti-DHash, by contrast, assumes that all users run-
ning DHT nodes are cooperative. There is no mechanism
in Venti-DHash to ensure that a node donates the same
amount of storage as it consumes in the system.

Pastiche assumes that all nodes are malicious or selfish
unless proven not be so. It uses the Samsara system [3] to
enforce a storage invariant: the amount of data that a node
stores into the system equals the amount of data the sys-
tem stores on a node. If a node � wishes to store data on� , it has to store � ’s data or claim (randomly generated
data) in return. Samsara punishes uncooperative nodes
that delete or lose others’ data by deleting those nodes’
data. Each node periodically pings its buddies to obtain
a cryptographic proof that they actually store the backed
up data. If a buddy is unavailable or unable to provide the
proof, the querier probabilistically deletes his data based
on the assumption that the buddy failing the query has
deleted the data in a selfish attempt to gain storage with-
out donating an equal amount of storage or becoming un-
available purposefully to avoid work.

Samsara’s punishment scheme might not work well in
practice since it does not provide all nodes an incentive
not to leave or delete data. In Samsara, if a node � receives
data from � , the only way � can penalize � for deleting his
data is to delete � ’s claim; claims are random data which� is unlikely to miss. Only if claims are forwarded to form
a cycle is a node penalized by losing his backed up data.
This scheme also has a particularly adverse effect for co-
operative nodes suffering a disk failure; a failed Samsara
node begins a race against the clock to fetch its lost data
before the buddies holding that data identify the node at-
tempting to restore its data as a cheater.

We’ve used Samsara as an example, but any system that
assumes that nodes are malicious is likely to be as com-
plicated and costly as Samsara; BlockParty’s benefits arise
from changing the rules of the game by operating within
a node’s cooperative domain. The cost of playing under
more generous rules of node cooperation is a limitation on
what resources a node may access. We now evaluate how
this limitation impacts BlockParty’s ability to efficiently
use storage resources.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 20 40 60 80 100

cu
m

ul
at

iv
e

fr
ac

tio
n

of
 n

od
es

number of units each node has backed up

venus
orkut

orkut(degree>=5)
random

orkut 2:1 (degree>=5)

Figure 1: The distribution of amount of successfully backed up
data among nodes in venus, orkut and a random graph. We en-
sure each node has degree at least 	 in the orkut(degree ���)
graph by requiring nodes with less than 	 neighbors to befriend
some random nodes. orkut 2:1 (degree ���) shows the results
when each node donates ����� units storage space to back up �����
units data. All nodes succeed in backing up all their data in this
case.

4.3 Storage Efficiency
BlockParty needs to allocate data to neighbors to maxi-
mize the total amount of data backed up. The allocation
must respect nodes’ storage constraints. Unfortunately,
even with global information and coordination, comput-
ing the best allocation is NP-complete 1. Furthermore, in
certain worst case graphs, even the best possible space uti-
lization is low. Consider a simple graph where node � has
10 neighbors, each with no neighbors other than � . As-
sume each node needs to back up (� unit data and con-
tributes (� unit free storage space. Node � can back up
all of its data (it sends (unit to each friend), but � ’s (�
neighbors must share � ’s storage: each neighbor backs up
(unit on � . In this graph, only � � units of total data are
backed up, resulting in ������ � & (���� space utilization.

Fortunately, with real life social graphs, the simple
strategy of choosing a neighbor with the most free space
to back up a chunk of data works well. We simu-
late BlockParty’s performance using two data sets: orkut
which we obtained by crawling Orkut and venus which
is a complete set of friendship links provided by a large
online dating site. The orkut and venus social graphs are
illustrative, in practice, the set of people one is willing to
place in an Orkut friend list, might not be the same set that
one is willing to trust with important data. The orkut data
set consists of ��� ��� � users with a median node degree of
. . The venus data set includes ��/���.*� � users with a median

1We can reduce maximum independent set to the backup problem
where each node tries to swap � unit of data with one of its neighbors.

4

node degree of � . In our simulations, each node attempts
to backup (� � units of and donates (� � units of free space.
At each step, a random node copies (unit of its remaining
data on the neighbor with the most available space while
there is still free space on its neighbors.

The total space utilization of BlockParty on the orkut
and venus graphs is .���� and �0(� respectively. Nodes
succeed in backing up different amounts of data depend-
ing on their positions in the network. Figure 1 shows the
cumulative distribution of the amount of data each node
is able to back up on its neighbors. More than half of the
nodes manage to back up all data in both graphs. How-
ever, roughly � � � of the nodes only manage to back up
less than half of the target amount of data.

In Figure 1, we also compare orkut result to that ob-
tained in a random graph with the same number of nodes
and links as orkut. The space utilization on a random
graph is much higher (/�� �) and all nodes manage to back
up at least � � units. The inefficient space utilization in
orkut is a result of some nodes having few neighbors; this
is partly because we are unable to crawl the orkut popu-
lation completely, leaving many nodes’ neighborhood un-
explored. In particular, ��� � orkut nodes have � or less
neighbors while few nodes (� , �) in the random graph
have less than � neighbors. One simple yet effective opti-
mization is to enforce a minimal node degree by encour-
aging people to make more friends. As Figure 1 shows, if
we enforce all orkut nodes to have at least � friends, the
overall space utilization increases to / � � . Furthermore,
/�� � of the nodes manage to back up at least � � units
of their data. To further increase the chance of achiev-
ing full backups, we can sacrifice storage utilization by
demanding each node donate more resource than it con-
sumes. Figure 1 shows that if each node donates � times
more space than it consumes, in addition to having at least
� neighbors, all nodes successfully back up all their data.

5 Case Study II: Usenet
Usenet [9] is a large distributed bulletin board service. It
is currently connected as a mesh of servers. Usenet uses a
flood-fill algorithm to propagate and therefore replicate all
articles to all servers that carry a “full feed”. This is very
expensive in terms of bandwidth and disk storage, requir-
ing more than 100Mbps bandwidth to replicate 2TB of
data daily [21]. UsenetDHT [21] is a re-design of Usenet
that organizes servers into a DHT. UsenetDHT replaces
local article storage with shared storage provided by the
DHT. All articles are replicated only twice by the DHT
(instead of
 times where
 is the number of nodes in the
system) and each server only downloads the article that
users actually read from the DHT (instead of every article
posted).

Since the links between existing Usenet servers already
reflect an out-of-band peering agreement, we propose to
replicate articles along these links: each article is stored on
the server where it was originally posted and one of that
server’s immediate neighbors. Meta-data and control-data
are flooded to all servers; each server maintains a list of
all articles that includes, for each article, the IP addresses
of the source and replica nodes.

This scheme retains same benefits of UsenetDHT (op-
erating in a closed system like PlanetLab): increased
capacity and reduced network requirements when com-
pared to Usenet. The system-wide storage overhead of this
scheme is twice the amount of daily storage required to
store unique articles (� � � TB) instead of ��
 , where
 is
the number of full feed servers. The system’s bandwidth
consumption is proportional to the data read at each node
(typically (�� of all articles) instead of the total amount of
data posted. NewsCache [7] reduces resource consump-
tion of leaf nodes by caching news articles that are read
instead of obtaining the full feed, while UsenetDHT and
our proposal both aim to reduce the bandwidth consump-
tion of backbone and non-leaf nodes. Usenet in f2f also
spends less bandwidth in ensuring data durability as it
does not need to create an extra ������� of replicas in re-
sponse to transient failures as UsenetDHT does.

6 Discussion
f2f is not applicable to all types of peer-to-peer applica-
tions. It is especially suitable for data intensive applica-
tions that do not require global visibility or global sharing.
For example, cooperative backups, as well as private file
sharing, do not depend on global participation: a small
number of stable neighbors suffice to back up a node’s
data. The presence of hundreds or even millions more par-
ticipating nodes are not necessarily helpful. Usenet on f2f
demonstrates a different type of application suitable for
f2f , one which has localized storage and relies on a sep-
arate mechanism (i.e. flood-fill of meta data) to achieve
data visibility.

The underlying social graph in f2f is application spe-
cific since a node’s owner may cooperate with different
groups in the context of different applications. For exam-
ple, a user may choose to back up her data on close friends
but engage in private sharing with a larger circle of peo-
ple.

7 Related Work
Social networks, also known as “small world” net-
works have been well studied in the past [10] for their
low network diameter and the ability to route queries
quickly [11]. They are used to enhance existing online

5

reputation systems (e.g. [8][19]) by identifying reputa-
tion based on position in the social networks or filter-
ing friends’ ratings to avoid collusion. Reputation systems
are also used to predict the likelihood of a random node
behaving correctly given its past performance observed
by others. Many systems use social networks to pre-
dict or ensure nodes’ trustworthiness, e.g. SPROUT [13],
Maze [24], Turtle [15]. The idea of having a node explic-
itly pick out other trustworthy nodes also resembles that
in SPKI/SDSI [6] and PGP certification chain. In compar-
ison, f2f uses social networks to provide incentives for
nodes to contribute to the system and thus obtain reliable
storage.

8 Conclusion
This paper has outlined a new way to structure peer-to-
peer systems. We argue that a user should explicitly iden-
tify, based on existing social relationships, the nodes with
which it wishes to share storage and network resources.
Systems structured in this way require less bandwidth to
maintain data durability compared to open systems be-
cause nodes have an incentive to remain in the system.
This approach is not suitable to all applications, but a
number of applications can be built on this style of over-
lay: we have designed a a cooperative backup system and
Usenet replacement.

References
[1] C. Blake and R. Rodrigues. High availability, scalable storage,

dynamic peer networks: Pick two. In 9th Workshop on Hot Topics
in Operating Systems, May 2003.

[2] L. P. Cox, C. Murrary, and B. Noble. Pastiche: Making backup
cheap and easy. In 5th Symposium on Operating Systems Design
and Implementation (OSDI 2002), 2002.

[3] L. P. Cox and B. Noble. Samsara: Honor among theives in
peer-to-peer storage. In 19th ACM Symposium on Operating
Systems Principles(SOSP 2003), 2003.

[4] F. Dabek. A Distributed Hash Table. PhD thesis, Massachusetts
Institute of Technology, Oct. 2005.

[5] F. Dabek, M. F. Kaashoek, J. Li, R. Morris, J. Robertson, and
E. Sit. Designing a DHT for low latency and high throughput. In
1st NSDI, March 2004.

[6] C. Ellison, B. Frantz, B. Lampson, R. Rivest, B. Thomas, and
T. Ylonen. Spki certificate theory. RFC 2693, Network Working
Group, 1986.

[7] T. Gschwind and M. Hauswirth. NewsCache: A high-performance
cache implementation for Usenet news. In 1999 USENIX Annual
Technical Conference, pages 213–224, June 1999.

[8] T. Hogg and L. Adamic. Enhancing reputation mechanisms via
online social networks. In Proceedings of the 5th ACM
conference on Electronic Commerce, 2004.

[9] B. Kantor and P. Lapsley. Network news transfer protocol. RFC
977, Network Working Group, Feb. 1986.

[10] J. Kleinberg. The small-world phenomenon: An algorithmic
perspective. In 32nd Symposium on Theory of Computing, 2000.

[11] D. Liben-Nowell. An Algorithmic Approach to Social Networks.
PhD thesis, Massachusetts Institute of Technology, June 2005.

[12] M. Lillibridge, S. Elnikety, A. Birrel, and M. Burrows. A
cooperative internet backup scheme. In USENIX Annual
Technical Conference, 2003.

[13] S. Marti, P. Ganesan, and H. Garcia-Molina. DHT routing using
social links. In 3rd International Workshop on Peer-to-Peer
Systems (IPTPS 2004), 2004.

[14] Maxtor diamondmax 16 datasheets.
http://www.maxtor.com/.

[15] B. C. Popescu, B. Crispo, and A. S. Tanenbaum. Safe and private
data sharing with turtle: Friends team-up and beat the system. In
Proc. 12th Cambridge International Workshop on Security
Protocols, 2004.

[16] S. S. Ranjita Bhagwan and G. Voelker. Understanding
availability. In Proceedings of the 2003 International Workshop
on Peer-to-Peer Systems, Feb. 2003.

[17] S. Rhea, B. Godfrey, B. Karp, J. Kubiatowicz, S. Ratnasamy,
S. Shenker, I. Stoica, and H. Yu. OpenDHT: A public DHT
service and its uses. In Proceedings of ACM SIGCOMM, Aug.
2005.

[18] A. Rowstron and P. Druschel. Pastry: Scalable, distributed object
location and routing for large-scale peer-to-peer systems. In
Proceedings of the 18th IFIP/ACM International Conference on
Distributed Systems Platforms (Middleware 2001), Nov. 2001.

[19] J. Sabater and C. Sierra. Social regret, a reputation model based
on social relations. In ACM SIGecom Exchanges, 2002.

[20] E. Sit, J. Cates, and R. Cox. A DHT-based backup system. In
IRIS Student Workshop, 2003. http:
//project-iris.net/isw-2003/papers/sit.pdf.

[21] E. Sit, F. Dabek, and J. Robertson. UsenetDHT: A low overhead
Usenet server. In 3rd International Workshop on Peer-to-Peer
Systems, Feb. 2004.

[22] E. Sit, A. Haeberlen, F. Dabek, B.-G. Chun, H. Weatherspoon,
R. Morris, M. F. Kaashoek, and J. Kubiatowicz. Proactive
replication for data durability. In 5rd International Workshop on
Peer-to-Peer Systems (IPTPS 2006), 2006.

[23] J. Stribling, I. G. Councill, J. Li, M. F. Kaashoek, D. R. Karger,
R. Morris, and S. Shenker. OverCite: A cooperative digital
research library. In 4th International Workshop on Peer-to-Peer
Systems (IPTPS 2005), Feb. 2005.

[24] M. Yang, H. Chen, B. Y. Zhao, Y. Dai, and Z. Zhang. Deployment
of a large-scale peer-to-peer social network. In USENIX
WORLDS, 2004.

6

