
Parsing Expression Grammars:
A Recognition-Based Syntactic Foundation

Bryan Ford
Massachusetts Institute of Technology

Cambridge, MA

baford@mit.edu

Abstract

For decades we have been using Chomsky’s generative system of
grammars, particularly context-free grammars (CFGs) and regu-
lar expressions (REs), to express the syntax of programming lan-
guages and protocols. The power of generative grammars to ex-
press ambiguity is crucial to their original purpose of modelling
natural languages, but this very power makes it unnecessarily diffi-
cult both to express and to parse machine-oriented languages using
CFGs. Parsing Expression Grammars (PEGs) provide an alterna-
tive, recognition-based formal foundation for describing machine-
oriented syntax, which solves the ambiguity problem by not intro-
ducing ambiguity in the first place. Where CFGs express nondeter-
ministic choice between alternatives, PEGs instead use prioritized
choice. PEGs address frequently felt expressiveness limitations of
CFGs and REs, simplifying syntax definitions and making it un-
necessary to separate their lexical and hierarchical components. A
linear-time parser can be built for any PEG, avoiding both the com-
plexity and fickleness of LR parsers and the inefficiency of gener-
alized CFG parsing. While PEGs provide a rich set of operators for
constructing grammars, they are reducible to two minimal recogni-
tion schemas developed around 1970, TS/TDPL and gTS/GTDPL,
which are here proven equivalent in effective recognition power.

Categories and Subject Descriptors

F.4.2 [Mathematical Logic and Formal Languages]: Gram-
mars and Other Rewriting Systems—Grammar types; D.3.1
[Programming Languages]: Formal Definitions and Theory—
Syntax; D.3.4 [Programming Languages]: Processors—Parsing

General Terms

Languages, Algorithms, Design, Theory

Keywords

Context-free grammars, regular expressions, parsing expression
grammars, BNF, lexical analysis, unified grammars, scannerless
parsing, packrat parsing, syntactic predicates, TDPL, GTDPL

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
POPL’04, January 14–16, 2004, Venice, Italy.
Copyright 2004 ACM 1-58113-729-X/04/0001 ...$5.00

1 Introduction

Most language syntax theory and practice is based on generative
systems, such as regular expressions and context-free grammars, in
which a language is defined formally by a set of rules applied re-
cursively to generate strings of the language. A recognition-based
system, in contrast, defines a language in terms of rules or predi-
cates that decide whether or not a given string is in the language.
Simple languages can be expressed easily in either paradigm. For
example, {s ∈ a∗ | s = (aa)n} is a generative definition of a trivial
language over a unary character set, whose strings are “constructed”
by concatenating pairs of a’s. In contrast, {s ∈ a∗ | (|s|mod 2 = 0)}
is a recognition-based definition of the same language, in which a
string of a’s is “accepted” if its length is even.

While most language theory adopts the generative paradigm, most
practical language applications in computer science involve the
recognition and structural decomposition, or parsing, of strings.
Bridging the gap from generative definitions to practical recogniz-
ers is the purpose of our ever-expanding library of parsing algo-
rithms with diverse capabilities and trade-offs [9].

Chomsky’s generative system of grammars, from which the ubiqui-
tous context-free grammars (CFGs) and regular expressions (REs)
arise, was originally designed as a formal tool for modelling and
analyzing natural (human) languages. Due to their elegance and
expressive power, computer scientists adopted generative grammars
for describing machine-oriented languages as well. The ability of
a CFG to express ambiguous syntax is an important and powerful
tool for natural languages. Unfortunately, this power gets in the
way when we use CFGs for machine-oriented languages that are
intended to be precise and unambiguous. Ambiguity in CFGs is
difficult to avoid even when we want to, and it makes general CFG
parsing an inherently super-linear-time problem [14, 23].

This paper develops an alternative, recognition-based formal foun-
dation for language syntax, Parsing Expression Grammars or
PEGs. PEGs are stylistically similar to CFGs with RE-like fea-
tures added, much like Extended Backus-Naur Form (EBNF) no-
tation [30, 19]. A key difference is that in place of the unordered
choice operator ‘|’ used to indicate alternative expansions for a non-
terminal in EBNF, PEGs use a prioritized choice operator ‘/’. This
operator lists alternative patterns to be tested in order, uncondition-
ally using the first successful match. The EBNF rules ‘A → a b |
a’ and ‘A→ a | a b’ are equivalent in a CFG, but the PEG rules ‘A
← a b / a’ and ‘A← a / a b’ are different. The second alternative
in the latter PEG rule will never succeed because the first choice is
always taken if the input string to be recognized begins with ‘a’.



A PEG may be viewed as a formal description of a top-down parser.
Two closely related prior systems upon which this work is based
were developed primarily for the purpose of studying top-down
parsers [4, 5]. PEGs have far more syntactic expressiveness than the
LL(k) language class typically associated with top-down parsers,
however, and can express all deterministic LR(k) languages and
many others, including some non-context-free languages. Despite
their considerable expressive power, all PEGs can be parsed in lin-
ear time using a tabular or memoizing parser [8]. These proper-
ties strongly suggest that CFGs and PEGs define incomparable lan-
guage classes, although a formal proof that there are context-free
languages not expressible via PEGs appears surprisingly elusive.

Besides developing PEGs as a formal system, this paper presents
pragmatic examples that demonstrate their suitability for describ-
ing realistic machine-oriented languages. Since these languages are
generally designed to be unambiguous and linearly readable in the
first place, the recognition-oriented nature of PEGs creates a natural
affinity in terms of syntactic expressiveness and parsing efficiency.

The primary contribution of this work is to provide language and
protocol designers with a new tool for describing syntax that is both
practical and rigorously formalized. A secondary contribution is to
render this formalism more amenable to further analysis by prov-
ing its equivalence to two simpler formal systems, originally named
TS (“TMG recognition scheme”) and gTS (“generalized TS”) by
Alexander Birman [4, 5], in reference to an early syntax-directed
compiler-compiler. These systems were later called TDPL (“Top-
Down Parsing Language”) and GTDPL (“Generalized TDPL”) re-
spectively by Aho and Ullman [3]. By extension we prove that with
minor caveats TS/TDPL and gTS/GTDPL are equivalent in recog-
nition power, an unexpected result contrary to prior conjectures [5].

The rest of this paper is organized as follows. Section 2 first defines
PEGs informally and presents examples of their usefulness for de-
scribing practical machine-oriented languages. Section 3 then de-
fines PEGs formally and proves some of their important properties.
Section 4 presents useful transformations on PEGs and proves the
main result regarding the reducibility of PEGs to TDPL and GT-
DPL. Section 5 outlines open problems for future study, Section 6
describes related work, and Section 7 concludes.

2 Parsing Expression Grammars

Figure 1 shows an example PEG, which precisely specifies a prac-
tical syntax for PEGs using the ASCII character set. The example
PEG describes its own complete syntax including all lexical char-
acteristics. Most elements of the grammar should be immediately
recognizable to anyone familiar with CFGs and regular expressions.
The grammar consists of a set of definitions of the form ‘A <- e’,
where A is a nonterminal and e is a parsing expression. The opera-
tors for constructing parsing expressions are summarized in Table 1.

Single or double quotes delimit string literals, and square brackets
indicate character classes. Literals and character classes can contain
C-like escape codes, and character classes can include ranges such
as ‘a-z’. The constant ‘.’ matches any single character.

The sequence expression ‘e1 e2’ looks for a match of e1 immedi-
ately followed by a match of e2, backtracking to the starting point
if either pattern fails. The choice expression ‘e1 / e2’ first attempts
pattern e1, then attempts e2 from the same starting point if e1 fails.

# Hierarchical syntax
Grammar <- Spacing Definition+ EndOfFile
Definition <- Identifier LEFTARROW Expression

Expression <- Sequence (SLASH Sequence)*
Sequence <- Prefix*
Prefix <- (AND / NOT)? Suffix
Suffix <- Primary (QUESTION / STAR / PLUS)?
Primary <- Identifier !LEFTARROW

/ OPEN Expression CLOSE
/ Literal / Class / DOT

# Lexical syntax
Identifier <- IdentStart IdentCont* Spacing
IdentStart <- [a-zA-Z_]
IdentCont <- IdentStart / [0-9]

Literal <- [’] (![’] Char)* [’] Spacing
/ ["] (!["] Char)* ["] Spacing

Class <- ’[’ (!’]’ Range)* ’]’ Spacing
Range <- Char ’-’ Char / Char
Char <- ’\\’ [nrt’"\[\]\\]

/ ’\\’ [0-2][0-7][0-7]
/ ’\\’ [0-7][0-7]?
/ !’\\’ .

LEFTARROW <- ’<-’ Spacing
SLASH <- ’/’ Spacing
AND <- ’&’ Spacing
NOT <- ’!’ Spacing
QUESTION <- ’?’ Spacing
STAR <- ’*’ Spacing
PLUS <- ’+’ Spacing
OPEN <- ’(’ Spacing
CLOSE <- ’)’ Spacing
DOT <- ’.’ Spacing

Spacing <- (Space / Comment)*
Comment <- ’#’ (!EndOfLine .)* EndOfLine
Space <- ’ ’ / ’\t’ / EndOfLine
EndOfLine <- ’\r\n’ / ’\n’ / ’\r’
EndOfFile <- !.

Figure 1. PEG formally describing its own ASCII syntax

The ?, *, and + operators behave as in common regular expression
syntax, except that they are “greedy” rather than nondeterministic.
The option expression ‘e?’ unconditionally “consumes” the text
matched by e if e succeeds, and the repetition expressions ‘e*’
and ‘e+’ always consume as many successive matches of e as pos-
sible. The expression ‘a* a’ for example can never match any
string. Longest-match parsing is almost always the desired behav-
ior where options or repetition occur in practical machine-oriented
languages. Many forms of non-greedy behavior are still available
in PEGs when desired, however, through the use of predicates.

The operators & and ! denote syntactic predicates [20], which pro-
vide much of the practical expressive power of PEGs. The ex-
pression ‘&e’ attempts to match pattern e, then unconditionally
backtracks to the starting point, preserving only the knowledge of
whether e succeeded or failed to match. Conversely, the expres-
sion ‘!e’ fails if e succeeds, but succeeds if e fails. For example,
the subexpression ‘!EndOfLine .’ in the definition for Comment
in Figure 1, matches any single character as long as the nonter-



Operator Type Precedence Description
’ ’ primary 5 Literal string
" " primary 5 Literal string
[ ] primary 5 Character class
. primary 5 Any character
(e) primary 5 Grouping
e? unary suffix 4 Optional
e* unary suffix 4 Zero-or-more
e+ unary suffix 4 One-or-more
&e unary prefix 3 And-predicate
!e unary prefix 3 Not-predicate

e1 e2 binary 2 Sequence
e1 / e2 binary 1 Prioritized Choice

Table 1. Operators for Constructing Parsing Expressions

minal EndOfLine does not match starting at the same position.
The expression ‘Identifier !LEFTARROW’ in the definition for
Primary, in contrast, matches any Identifier that is not followed
by a LEFTARROW. This latter predicate prevents the right-hand-side
Expression at the beginning of one Definition from consuming
the left-hand-side Identifier of the next Definition, eliminat-
ing the need for an explicit delimiter. Predicates can involve arbi-
trary parsing expressions requiring any amount of “lookahead.”

2.1 Unified Language Definitions

Most conventional syntax descriptions are split into two parts: a
CFG to specify the hierarchical portion, and a set of regular ex-
pressions defining the lexical elements to serve as terminals for
the CFG. CFGs are unsuitable for lexical syntax because they can-
not directly express many common idioms, such as the greedy rule
that usually applies to identifiers and numbers, or “negative” syn-
tax such as the Literal rule above, in which quoted string literals
may contain any character except the quote character. Regular ex-
pressions cannot describe recursive syntax, however, such as large
expressions constructed inductively from smaller expressions.

Neither of these difficulties exist with PEGs, as demonstrated by
the unified example grammar. The greedy nature of the repetition
operator ensures that a sequence of letters can only be interpreted as
a single Identifier and not as two or more immediately adjacent,
shorter ones. Not-predicates describe the appropriate negative con-
straints on the elements that can appear in literals, character classes,
and comments. The last ‘!’\\’ .’ alternative in the definition of
Char ensures that the backslash cannot be used in a literal or char-
acter class except as part of an escape sequence.

Each definition in the example grammar that represents a distinct
lexical “token,” such as Identifier, Literal, or LEFTARROW,
uses the Spacing nonterminal to “consume” any whitespace and/or
comments immediately following the token. The definition of
Grammar also starts with Spacing in order to allow whitespace at
the beginning of the file. Associating whitespace with each imme-
diately preceding token is a convenient convention for PEGs, but
whitespace could just as easily be associated with the following to-
ken by referring to Spacing at the beginning of each token defini-
tion. Whitespace could even be treated as a separate kind of token,
consistent with lexical traditions, but doing so in a unified grammar
such as this one would require many explicit references to Spacing
throughout the hierarchical portion of the syntax.

2.2 New Syntax Design Choices

Besides being able to express many existing machine-oriented lan-
guages in a concise and unified grammar, PEGs also create new
possibilities for language syntax design. Consider for example a
well-known problem with C++ syntax involving nested template
type expressions:

vector<vector<float> > MyMatrix;

The space between the two right angle brackets is required because
the C++ scanner is oblivious to the language’s hierarchical syntax,
and would otherwise interpret the ‘>>’ incorrectly as a right shift
operator. In a language described by a unified PEG, however, it is
easy to define the language to permit a ‘>>’ sequence to be inter-
preted as either one token or two depending on its context:

TemplType <- PrimType (LANGLE TemplType RANGLE)?
ShiftExpr <- PrimExpr (ShiftOper PrimExpr)*
ShiftOper <- LSHIFT / RSHIFT

LANGLE <- ’<’ Spacing
RANGLE <- ’>’ Spacing
LSHIFT <- ’<<’ Spacing
RSHIFT <- ’>>’ Spacing

Such permissiveness can create unexpected syntactic subtleties, of
course, and caution and good taste are in order: a powerful syntax
description paradigm also means more rope for the careless lan-
guage designer to hang himself with. The traditional behavior for
operator tokens is still easily expressible if desired, as follows:

LANGLE <- !LSHIFT ’<’ Spacing
RANGLE <- !RSHIFT ’>’ Spacing
LSHIFT <- ’<<’ Spacing
RSHIFT <- ’>>’ Spacing

Freeing lexical syntax from the restrictions of regular expressions
also enables tokens to have hierarchical characteristics, or even to
refer back to the hierarchical portion of the language. Pascal-like
nestable comments, for example, cannot be described by a regular
expression but are easily expressed in a PEG:

Comment <- ’(*’ (Comment / !’*)’ .)* ’*)’

Character and string literals in most programming languages per-
mit escape sequences of some kind, to express either special char-
acters or dynamic string substitutions. These escapes usually have
a highly restrictive syntax, however. A language described by a
unified PEG could permit the use of arbitrary expressions in such
escapes, taking advantage of the full power of the language’s ex-
pression syntax:

Expression <- ...
Primary <- Literal / ...

Literal <- ["] (!["] Char)* ["]
Char <- ’\\(’ Expression ’)’

/ !’\\’ .

In place of the Java string literal "\u2200" containing the Uni-
code math symbol ‘∀’, for example, the literal could be writ-
ten "\(0x2200)", "\(8704)", or even "\(Unicode.FOR_ALL)",
where FOR_ALL is a constant defined in a class named Unicode.



2.3 Priorities, Not Ambiguities

The specification flexibility provided by PEGs, and the new syntax
design choices they create, are not limited to the lexical portions
of a language. Many sensible syntactic constructs are inherently
ambiguous when expressed in a CFG, commonly leading language
designers to abandon syntactic formality and rely on informal meta-
rules to solve these problems. The ubiquitous “dangling ELSE”
problem is a classic example, traditionally requiring either an in-
formal meta-rule or severe expansion and obfuscation of the CFG.
The correct behavior is easily expressed with the prioritized choice
operator in a PEG:

Statement <- IF Cond THEN Statement ELSE Statement
/ IF Cond THEN Statement
/ ...

The syntax of C++ contains ambiguities that cannot be resolved
with any amount of CFG rewriting, in which certain token se-
quences can be interpreted as either a statement or a definition. The
language specification [25] resolves this problem with the informal
meta-rule that such a sequence is always interpreted as a definition
if possible. Similarly, the syntax of lambda abstractions, let ex-
pressions, and conditionals in Haskell [11] is unresolvably ambigu-
ous in the CFG paradigm, and is handled in the Haskell specifica-
tion with an informal “longest match” meta-rule. PEGs provide the
necessary tools—prioritized choice, greedy repetition, and syntac-
tic predicates—to define precisely how to resolve such ambiguities.

These tools do not make language syntax design easy, of course.
In place of having to determine whether two possible alternatives
in a CFG are ambiguous, PEGs present language designers with
the analogous challenge of determining whether two alternatives
in a ‘/’ expression can be reordered without affecting the language.
This question is often obvious, but sometimes is not, and is undecid-
able in general. As with discovering ambiguity in CFGs, however,
we have the hope of finding automatic algorithms to identify order
sensitivity or insensitivity conservatively in common situations.

2.4 Quirks and Limitations

If the definition of Grammar in Figure 1 did not reference
EndOfFile at the end, then any ASCII file starting with at least
one correct Definition would be interpreted as a “correct” gram-
mar, even if the file has unreadable garbage at the end. This pe-
culiarity arises from the fact that a parsing expression in a PEG
can “succeed” without consuming all input text. We address this
minor issue with the EndOfFile nonterminal, defined by the pred-
icate expression ‘!.’, which “matches” the end-of-file by failing if
any character is available and succeeding otherwise.

Both left and right recursion are permissible in CFGs, but as with
top-down parsing in general, left recursion is unavailable in PEGs
because it represents a degenerate loop. For example, the CFG rules
‘A → a A | a’ and ‘A → A a | a’ represent a series of ‘a’s in a
CFG, but the PEG rule ‘A ← A a / a’ is degenerate because it
indicates that in order to recognize nonterminal A, a parser must
first recognize nonterminal A. . . This restriction applies not only to
direct left recursion as in this example, but also to indirect or mutual
left recursion involving several nonterminals. Since both left and
right recursion in a CFG merely represent repetition, however, and
repetition is easier to express in a PEG using repetition operators,
this limitation is not a serious problem in practice.

Like a CFG, a PEG is a purely syntactic formalism, not by itself
capable of expressing languages whose syntax depends on semantic
predicates [20]. Although the Java language can be described as a
single unified PEG [7], C and C++ parsers require an incrementally
constructed symbol table to distinguish between ordinary identifiers
and typedef-defined type identifiers. Haskell uses a special stage
in the “syntactic pipeline,” inserted between the scanner and parser,
to implement the language’s layout-sensitive features.

3 Formal Development of PEGs

In this section we define PEGs formally and explore key properties.
Many of these properties and their proofs were inspired by those
of the closely related TS/TDPL and gTS/GTDPL systems [4, 5, 3],
although the formulation of PEGs is substantially different.

3.1 Definition of a PEG

In Figure 1 we used a “concrete” ASCII-based syntax for PEGs to
illustrate the characteristics of PEGs for practical language descrip-
tion purposes. For formal analysis, however, it is more convenient
to use an abstract syntax for PEGs that represents only its essential
structure. We begin therefore by defining this abstract syntax.

Definition: A parsing expression grammar (PEG) is a 4-tuple G =
(VN ,VT ,R,eS), where VN is a finite set of nonterminal symbols, VT
is a finite set of terminal symbols, R is a finite set of rules, eS is
a parsing expression termed the start expression, and VN ∩VT =
/0. Each rule r ∈ R is a pair (A,e), which we write A← e, where
A ∈VN and e is a parsing expression. For any nonterminal A, there
is exactly one e such that A← e ∈ R. R is therefore a function
from nonterminals to expressions, and we write R(A) to denote the
unique expression e such that A← e ∈ R.

We define parsing expressions inductively as follows. If e, e1, and
e2 are parsing expressions, then so is:

1. ε, the empty string

2. a, any terminal, where a ∈VT .

3. A, any nonterminal, where A ∈VN .

4. e1e2, a sequence.

5. e1/e2, prioritized choice.

6. e∗, zero-or-more repetitions.

7. !e, a not-predicate.

All subsequent use of the unqualified term “grammar” refers specif-
ically to parsing expression grammars as defined here, and the un-
qualified term “expression” refers to parsing expressions. We use
the variables a,b,c,d to represent terminals, A,B,C,D for nonter-
minals, x,y,z for strings of terminals, and e for parsing expressions.

The structural requirement that R be a function, mapping each non-
terminal in VN to a unique parsing expression, precludes the pos-
sibility of expressions in the grammar containing “undefined refer-
ences,” or subroutine failures [5].

The expression set E(G) of G is the set containing the start expres-
sion eS, the expressions used in all grammar rules, and all subex-
pressions of those expressions.



A repetition-free grammar is a grammar whose expression set con-
tains only expressions constructed without using rule 6 above. A
predicate-free grammar is one whose expression set contains only
expressions constructed without using rule 7.

3.2 Desugaring the Concrete Syntax

The abstract syntax does not include character classes, the “any
character” constant ‘.’, the option operator ‘?’, the one-or-more-
repetitions operator ‘+’, or the and-predicate operator ‘&’, all of
which appear in the concrete syntax. We treat these features of
the concrete syntax as “syntactic sugar,” reducing them to abstract
parsing expressions using local substitutions as follows:

• We consider the ‘.’ expression in the concrete syntax to be a
character class containing all of the terminals in VT .

• If a1,a2, . . . ,an are all of the terminals listed in a character
class expression in the concrete syntax, after expanding any
ranges, then we desugar this character class expression to the
abstract syntax expression a1/a2/. . ./an.

• We desugar an option expression e? in the concrete syntax to
ed/ε, where ed is the desugaring of e.

• We desugar a one-or-more-repetitions expression e+ to ede∗d ,
where ed is the desugaring of e.

• We desugar an and-predicate &e to !(!ed), where ed is the
desugaring of e.

3.3 Interpretation of a Grammar

Definition: To formalize the syntactic meaning of a grammar
G = (VN ,VT ,R,eS), we define a relation⇒G from pairs of the form
(e,x) to pairs of the form (n,o), where e is a parsing expression,
x ∈ V ∗T is an input string to be recognized, n ≥ 0 serves as a “step
counter,” and o ∈V ∗T ∪{ f} indicates the result of a recognition at-
tempt. The “output” o of a successful match is the portion of the in-
put string recognized and “consumed,” while a distinguished sym-
bol f 6∈VT indicates failure. For ((e,x),(n,o)) ∈⇒G we will write
(e,x)⇒ (n,o), with the reference to G being implied. We define
⇒G inductively as follows:

1. Empty: (ε,x)⇒ (1,ε) for any x ∈V ∗T .

2. Terminal (success case): (a,ax)⇒ (1,a) if a ∈VT , x ∈V ∗T .

3. Terminal (failure case): (a,bx) ⇒ (1, f ) if a 6= b, and
(a,ε)⇒ (1, f ).

4. Nonterminal: (A,x)⇒ (n + 1,o) if A← e ∈ R and (e,x)⇒
(n,o).

5. Sequence (success case): If (e1,x1x2y) ⇒ (n1,x1) and
(e2,x2y)⇒ (n2,x2), then (e1e2,x1x2y)⇒ (n1 +n2 +1,x1x2).
Expressions e1 and e2 are matched in sequence, and if each
succeeds and consumes input portions x1 and x2 respectively,
then the sequence succeeds and consumes the string x1x2.

6. Sequence (failure case 1): If (e1,x) ⇒ (n1, f ), then
(e1e2,x)⇒ (n1 + 1, f ). If e1 is tested and fails, then the se-
quence e1e2 fails without attempting e2,

7. Sequence (failure case 2): If (e1,x1y) ⇒ (n1,x1) and
(e2,y)⇒ (n2, f ), then (e1e2,x1y)⇒ (n1 + n2 + 1, f ). If e1
succeeds but e2 fails, then the sequence expression fails.

8. Alternation (case 1): If (e1,xy)⇒ (n1,x), then (e1/e2,xy)⇒
(n1 +1,x). Alternative e1 is first tested, and if it succeeds, the
expression e1/e2 succeeds without testing e2.

9. Alternation (case 2): If (e1,x) ⇒ (n1, f ) and (e2,x) ⇒
(n2,o), then (e1/e2,x)⇒ (n1 + n2 + 1,o). If e1 fails, then
e2 is tested and its result is used instead.

10. Zero-or-more repetitions (repetition case): If (e,x1x2y)⇒
(n1,x1) and (e∗,x2y) ⇒ (n2,x2), then (e∗,x1x2y) ⇒ (n1 +
n2 +1,x1x2).

11. Zero-or-more repetitions (termination case): If (e,x) ⇒
(n1, f ), then (e∗,x)⇒ (n1 +1,ε).

12. Not-predicate (case 1): If (e,xy) ⇒ (n,x), then (!e,xy)⇒
(n + 1, f ). If expression e succeeds consuming input x, then
the syntactic predicate !e fails.

13. Not-predicate (case 2): If (e,x)⇒ (n, f ), then (!e,x)⇒ (n+
1,ε). If e fails, then !e succeeds but consumes nothing.

We define a relation⇒+
G from pairs (e,x) to outcomes o, such that

(e,x)⇒+ o iff an n exists such that (e,x)⇒ (n,o).

If (e,x)⇒+ y for y ∈V ∗T , we say that e matches x in G. If (e,x)⇒+

f , we say that e fails on x in G. The match set MG(e) of expression
e in G is the set of inputs x such that e matches x in G.

An expression e handles a string x ∈V ∗T if it either matches or fails
on x in G. A grammar G handles string x if its start expression eS
handles x. G is complete if it handles all strings x ∈V ∗T .

Two expressions e1 and e2 are equivalent, written e1 � e2, if
(e1,x)⇒+ o implies (e2,x)⇒+ o and vice versa. The resulting
step counts need not be the same.

Theorem: If (e,x)⇒ (n,y), then y is a prefix of x: ∃z(x = yz).

Proof: By induction on an integer variable m ≥ 0, using as the
induction hypothesis the proposition that the desired property holds
for all e,x,n ≤ m, and y.

Theorem: If (e,x)⇒ (n1,o1) and (e,x)⇒ (n2,o2), then n1 = n2
and o1 = o2. That is, the relation⇒G is a function.

Proof: By induction on a variable m ≥ 0, using the induction hy-
pothesis that the proposition holds for all e,x,n1 ≤ m,n2 ≤ m,o1,
and o2. This induction technique will subsequently be referred to
simply as induction on step counts of⇒G.

Theorem: A repetition expression e∗ does not handle any input
string x on which e succeeds without consuming input: for any x ∈
V ∗T , if (e,x)⇒ (n1,ε), then (e∗,x) 6⇒ (n2,o2) for any n2,o2. We call
this the ∗-loop condition.

Proof: By induction on step counts.

3.4 Language Properties

This section describes properties of parsing expression languages
(PELs), the class of languages that can be expressed by PEGs. PELs
are closed under union, intersection, and complement. It is unde-
cidable in general whether a PEG represents a nonempty language,
or whether two PEGs represent the same language.



Definition: The language L(G) of a PEG G = (VN ,VT ,R,eS) is the
set of strings x ∈V ∗T for which the start expression eS matches x.

Note that the start expression eS only needs to succeed on input
string x for x to be included in L(G); eS need not consume all of
string x. For example, the trivial grammar ({},VT ,{},ε) recognizes
the language V ∗T and not just the empty string, because the start
expression ε always succeeds even though it does not examine or
consume any input. This definition contrasts with TS and gTS, in
which partially consumed input strings are excluded from the lan-
guage and classified as partial-acceptance failures [5].

Definition: A language L over an alphabet VT is a parsing expres-
sion language (PEL) iff there exists a parsing expression grammar
G whose language is L.

Theorem: The class of parsing expression languages is closed un-
der union, intersection, and complement.

Proof: Suppose we have two grammars G1 = (V 1
N ,VT ,R1,e1

S) and
G2 = (V 2

N ,VT ,R2,e2
S) respectively, describing languages L(G1) and

L(G2). Assume without loss of generality, that V 1
N ∩V 2

N = /0, by
renaming nonterminals if necessary. We can form a new grammar
G′ = (V 1

N ∪V 2
N ,VT ,R1∪R2,e′S), where e′S is one of the following:

• If e′S = e1
S / e2

S, then L(G′) = L(G1)∪L(G2).

• If e′S = &e1
S e2

S, then L(G′) = L(G1)∩L(G2).

• If e′S = !e1
S, then L(G′) = V ∗T −L(G1).

Theorem: The class of PELs includes non-context-free languages.

Proof: The classic example language anbncn is not context-free,
but we can recognize it with a PEG G = ({A,B,D},{a,b,c},R,D),
where R contains the following definitions:

A ← a A b / ε
B ← b B c / ε
D ← &(A !b) a∗ B !.

Theorem: It is undecidable in general whether the language L(G)
of an arbitrary parsing expression grammar G is empty.

Proof: We first prove in the same way as for CFGs [3] that it is
undecidable whether the intersection of the languages of two PEGs
is empty. Since PELs are closed under intersection, an algorithm
to test the emptiness of the language L(G) of any G could be used
to test whether L(G1)∩L(G2) is empty, implying that emptiness is
undecidable as well.

Given an instance C = (x1,y1), . . . ,(xn,yn) of Post’s correspon-
dence problem over an alphabet Σ, it is known to be undecidable
whether there is a non-empty string w that can be built from el-
ements of C such that w = xi1 xi2 . . .xim = yi1 yi2 . . .yim , where 1 ≤
i j ≤ n for each 1≤ j ≤ m.

We build a grammar G = (VN ,VT ,R,D) where VN = {A,B,D}, and
VT = Σ∪{a1, . . . ,an}. The ai in VT are distinct terminals not in Σ,
which will serve as markers associated with the elements of C. R
contains the following three rules:

• A← x1Aa1/x2Aa2/. . . /xnAan/ε
• B← y1Ba1/y2Ba2/. . . /ynBan/ε

• D←&. &(A !.) B !.

Nonterminal A matches strings of the form xi1 xi2 . . .xim aim . . .ai2 ai1 ,
while B matches strings of the form yi1 yi2 . . .yim aim . . .ai2 ai1 . The
nonterminal D uses the and-predicate operator to match only strings
matching both A and B, representing solutions to the correspon-
dence problem. The &. at the beginning of the definition of D
(desugared appropriately) ensures that empty solutions are not al-
lowed, and the !. after the references to A and B ensure that the
complete input is consumed in each case. An algorithm to decide
whether L(G) is nonempty could therefore be used to solve the cor-
respondence problem C, yielding the desired result.

Definition: Two PEGs G1 and G2 are equivalent if they recognize
the same language: L(G1) = L(G2).

Theorem: The equivalence of two arbitrary PEGs is undecidable.

Proof: An algorithm to decide the equivalence of two PEGs could
also be used to decide the non-emptiness problem above, simply by
comparing the grammar to be tested against a trivial grammar for
the empty language.

3.5 Analysis of Grammars

We often would like to analyze the behavior of a particular gram-
mar over arbitrary input strings. While many interesting properties
of PEGs are undecidable in general, conservative analysis proves
useful and adequate for many practical purposes.

Theorem: It is undecidable whether an arbitrary grammar is com-
plete: that is, whether it either succeeds or fails on all input strings.

Proof: Suppose we have an arbitrary grammar G = (VN ,VT ,R,eS),
and we define a new grammar G′ = (V ′N ,VT ,R′,e′S), where V ′N =
VN ∪{A}, A 6∈VN , R′ = R∪{A←&eS A}, and e′S = A. If G’s start
expression eS succeeds on any input string x, then this input will
cause a degenerate loop in G′ via nonterminal A, so G′ is incom-
plete. If L(G) is empty, however, then G′ is complete and also fails
on all inputs. An algorithm to decide whether G′ is complete would
therefore allow us to decide whether G is empty, which has already
been shown undecidable.

Definition: We define a relation ⇀G consisting of pairs of the form
(e,o), where e is an expression and o ∈ {0,1, f}. We will write
e ⇀ o for (e,o) ∈⇀G, with the reference to G being implied. This
relation represents an abstract simulation of the ⇒G relation. If
e ⇀ 0, then e might succeed on some input string while consuming
no input. If e ⇀ 1, then e might succeed while consuming at least
one terminal. If e ⇀ f , then e might fail on some input. We will
use the variable s to represent a ⇀G outcome of either 0 or 1. We
define the simulation relation ⇀G inductively as follows:

1. ε ⇀ 0.

2. a ⇀ 1.

3. a ⇀ f .

4. A ⇀ o if RG(A) ⇀ o.

5. e1e2 ⇀ 0 if e1 ⇀ 0 and e2 ⇀ 0.
e1e2 ⇀ 1 if e1 ⇀ 1 and e2 ⇀ s.
e1e2 ⇀ 1 if e1 ⇀ s and e2 ⇀ 1.

6. e1e2 ⇀ f if e1 ⇀ f .

7. e1e2 ⇀ f if e1 ⇀ s and e2 ⇀ f .



8. e1/e2 ⇀ s if e1 ⇀ s.

9. e1/e2 ⇀ o if e1 ⇀ f and e2 ⇀ o.

10. e∗ ⇀ 1 if e ⇀ 1,

11. e∗ ⇀ 0 if e ⇀ f .

12. !e ⇀ f if e ⇀ s.

13. !e ⇀ 0 if e ⇀ f .

Because this relation does not depend on the input string, and there
are a finite number of relevant expressions in a grammar, we can
compute this relation over any grammar by applying the above rules
iteratively until we reach a fixed point.

Theorem: The relation ⇀G summarizes⇒G as follows:

• If (e,x)⇒G (n,ε), then e ⇀ 0.

• If (e,x)⇒G (n,y) and |y|> 0, then e ⇀ 1.

• If (e,x)⇒G (n, f ), then e ⇀ f .

Proof: By induction over the step counts of the relation⇒G. The
definition rules for ⇀G above correspond one-to-one to the rules
for⇒G. The conclusion in each case follows immediately from the
inductive hypothesis, except in the cases for the repetition operator,
which require the ∗-loop condition theorem from Section 3.3.

3.6 Well-Formed Grammars

A well-formed grammar is a grammar that contains no directly or
mutually left-recursive rules, such as ‘A ← A a / a’, which could
prevent the grammar from handling any input string. This check-
able structural property implies completeness, while being permis-
sive enough for most purposes. A grammar can have left-recursive
rules but still be complete if its degenerate loops are actually un-
reachable, but we have little need for such grammars in practice.

Definition: We define an inductive set WFG as follows. We write
W F(e) for e ∈W FG, with the reference to G being implied, to mean
that expression e is well-formed in G.

1. W F(ε).
2. W F(a).

3. W F(A) if W F(RG(A)).

4. W F(e1e2) if W F(e1) and e1 ⇀ 0 implies WF(e2).

5. W F(e1/e2) if WF(e1) and W F(e2).

6. W F(e∗) if W F(e) and e 6⇀ 0.

7. W F(!e) if WF(e).

A grammar G is well-formed if all of the expressions in its expres-
sion set E(G) are well-formed in G. As with the ⇀G relation, the
W FG set can be computed by iteration to a fixed point.

Lemma: Assume that grammar G is well-formed, and that all ex-
pressions in E(G) handle all strings x ∈V ∗T of length n or less. Then
the expressions in E(G) also handle all strings of length n+1.

Proof: By induction over the step counts of ⇒G. The interesting
cases are as follows:

• For a nonterminal A, the induction hypothesis allows us to as-
sume that RG(A) handles all strings of length n + 1; therefore
so does A by the definition of⇒G.

• For a sequence e1e2, we can assume that e1 handles all strings
x of length n + 1. If (e1,x)⇒ (n,ε), then e1 ⇀ 0, so W F(e2)
applies and e2 also handles x. If (e1,x)⇒ (n,y) for |y| > 0,
then e2 only needs to handle strings of length n or less, which
is given. If (e1,x)⇒ (n, f ), then e2 is not used.

• For e∗, the W F(e) condition ensures that e1 handles inputs of
length n+1, and the e 6⇀ 0 condition ensures that the recursive
dependency on e∗ in the success case only needs to handle
strings of length n or less.

Theorem: A well-formed grammar G is complete.

Proof: By induction over the length of input strings, each expres-
sion in E(G) handles every input string. Since G’s start expression
eS is in E(G), the conclusion follows.

3.7 Grammar Identities

A number of important identities allow PEGs to be transformed
without changing the language they represent. We will use these
identities in subsequent results.

Theorem: The sequence and alternation operators are asso-
ciative under expression equivalence: e1(e2e3) � (e1e2)e3 and
e1/(e2/e3)� (e1/e2)/e3.

Proof: Trivial, from the definition of⇒G.

Theorem: Sequence operators can be distributed into choice oper-
ators on the left but not on the right: e1(e2/e3) � (e1e2)/(e1e3),
but (e1/e2)e3 6� (e1e3)/(e2e3).

Proof: In the left-side case, the expression (e1e2)/(e1e3) invokes
e1 twice from the same starting point—on the same input string—
making its result the same as the factored e1(e2/e3) expression.
In the right-side case, however, suppose that e1 succeeds but e3
fails. In the expression (e1/e2)e3, the failure of e3 causes the whole
expression to fail. In (e1e3)/(e2e3), however, the first instance of
e3 only causes the first alternative to fail; the second alternative
will then be tried, in which the e3 might succeed if e2 consumes a
different amount of input than e1 did.

Theorem: Predicates can be moved left within sequences distribu-
tively as follows: e1 !e2 � !(e1e2) e1.

Proof: If e1 succeeds, then e2 is tested starting at the same point in
each case, resulting in the same overall behavior; the second case
merely invokes e1 twice at the same position. If e1 fails, then the
predicate in e1!e2 is not tested at all. The predicate in !(e1e2)e1 is
tested, and succeeds because of the first e1’s failure, but the overall
result is still failure due to the second instance of e1.

Definition: Two expressions e1 and e2 are disjoint if they succeed
on disjoint sets of input strings: MG(e1)∩MG(e2) = /0.

Theorem: A choice expression e1/e2 is commutative if its subex-
pressions are disjoint.

Proof: If either e1 or e2 fails on a string x, it does not matter which
is tested first. The only way the language can be affected by chang-



ing their order is if e1 and e2 both succeed on x and consume dif-
ferent amounts of input. Disjointness precludes this possibility.

Although the results from Section 3.4 imply that disjointness is un-
decidable in general, it is easy to “force” a choice expression to be
disjoint via the following simple transformation:

Theorem: e1/e2 � e1/!e1 e2 � !e1 e2/e1, and the latter two equiv-
alent choice expressions are disjoint.

Proof: Trivial, by case analysis.

4 Reductions on PEGs

In this section we present methods of reducing PEGs to simpler
forms that may be more useful for implementation or easier to rea-
son about formally. First we describe how to eliminate repetition
and predicate operators, then we show how PEGs can be mapped
into the much more restrictive TS/TDPL and gTS/GTDPL systems.

4.1 Eliminating Repetition Operators

As in CFGs, repetition expressions can be eliminated from a PEG
by converting them into recursive nonterminals. Unlike in CFGs,
the substitute nonterminal in a PEG must be right-recursive.

Theorem: Any repetition expression e∗ can be eliminated by re-
placing it with a new nonterminal A with the definition A← e A/ε.

Proof: By induction on the length of the input string.

Theorem: For any PEG G, an equivalent repetition-free grammar
G’ can be created.

Proof: Simply eliminate all repetition expressions throughout G’s
nonterminal definitions and start expression.

4.2 Eliminating Predicates

In this section we show how to eliminate all predicate operators
from any well-formed grammar whose language does not include
the empty string. The restriction to grammars that do not accept
the empty string is a minor but unavoidable problem: we will show
later that it is impossible for a predicate-free grammar to accept the
empty string without accepting all input strings.

Given a well-formed, repetition-free grammar G = (VN ,VT ,R,eS)
where ε 6∈ L(G), we will create an equivalent grammar G′ =
(V ′N ,VT ,R′,e′S) that is well-formed, repetition-free, and predicate-
free. This process occurs in three normalization stages. In the first
stage, we rewrite the grammar so that sequence and predicate ex-
pressions only contain nonterminals and choice expressions are dis-
joint. In the second stage, we further rewrite the grammar so that
nonterminals never succeed without consuming any input. In the
third stage we finally eliminate predicates.

4.2.1 Stage 1

In this stage we rewrite the existing definitions in R and the original
start expression eS, adding some new nonterminals and correspond-
ing definitions in the process, to produce V ′N , R1, and eS1.

We first add three special nonterminals, T , Z, and F , with corre-
sponding rules as follows. The nonterminal T matches any single
terminal, and has the definition ‘T <- .’ in concrete PEG syntax,
before desugaring. The nonterminal Z matches and consumes any
input string; to avoid introducing repetition operators, we define it
Z← TZ/ε. The nonterminal F always fails; to avoid using predi-
cates we define it F ← ZT .

We define a function f recursively as follows, to convert expres-
sions in our original grammar G into our first normal form:

1. f (e) = e if e ∈ {ε}∪VN ∪VT .

2. f (e1e2) = AB, adding A← f (e1) and B← f (e2) to R1.

3. f (e1/e2) = A/ !A f (e2), adding A← f (e1) to R1.

4. f (!e) = !A, adding A← f (e) to R1.

Definition: The stage 1 grammar G1 of G is (V ′N ,VT ,R1,eS1),
where eS1 = f (eS), R1 = {A← f (e) | A← e∈R}∪{new definitions
resulting from application of f}, and V ′N = VN ∪{new nonterminals
resulting from application of f}.

Lemma: For any expression e, f (e)�G1 e.

Proof: By structural induction over e. The only interesting case is
for choice expressions, which uses the identity e1/e2 � e1/!e1 e2.

Theorem: G1 � G, all sequence and predicate expressions in the
expression set of G1 contain only nonterminals as their subexpres-
sions, and all choice expressions are disjoint.

Proof: Direct from the construction of f .

4.2.2 Stage 2

We now rewrite the stage 1 grammar G1 into another equiva-
lent grammar G2 = (V ′N ,VT ,R2,eS2), in which all nonterminals ei-
ther succeed and consume a nonempty input prefix, or fail: ∀A ∈
V ′N(A 6⇀G2 0). This transformation is analogous to ε-reduction on
CFGs, though the details are different due to predicates.

We use two functions g0 and g1, to “split” expressions into ε-only
and ε-free parts, respectively. The ε-only part g0(e) of an expres-
sion e is an expression that yields the same result as e on all input
strings for which e succeeds without consuming any input, and fails
otherwise. The ε-free part g1(e) of e likewise yields the same result
as e on all inputs for which e succeeds and consumes at least one
terminal, and fails otherwise.

We first define g0 recursively as follows:

1. g0(ε) = ε.

2. g0(a) = F .

3. g0(A) = g0(RG(A)).

4. g0(AB) = g0(A)g0(B) if A ⇀ 0, otherwise g0(AB) = F .

5. g0(e1/e2) = g0(e1)/g0(e2).

6. g0(!A) = !(A /g0(A)).

Lemma: The function g0 terminates if G is well-formed.

Proof: By structural induction over the WFG relation. Termination
relies on g0(AB) not recursively invoking g0(B) if A 6⇀ 0.



We now define the function g1 primitive-recursively as follows:

1. g1(ε) = F .

2. g1(a) = a.

3. g1(A) = A.

4. g1(AB) = g0(A)B / Ag0(B) / AB.

5. g1(e1/e2) = g1(e1)/g1(e2).

6. g1(!e) = F .

Definition: The stage 2 grammar G2 is (V ′N ,VT ,R2,eS2), where
R2 = {A← g1(e) | A← e ∈ R1}, and eS2 = g1(eS1) / g0(eS1). We
effectively split all of the nonterminal definitions in R1, retaining
only the ε-free parts in the definitions of R2, while substituting the
corresponding ε-only parts at the points where these nonterminals
are referenced in order to preserve the original behavior. There are
only two such points: case 6 of g0, where we rewrite the operands
of predicate expressions, and case 4 of g1, for ε-free sequences.

We say that the splitting invariant holds if the following is true:

• If (e,x)⇒+
G1

ε, then (g0(e),x)⇒
+
G2

ε and (g1(e),x)⇒
+
G2

f .

• If (e,x) ⇒+
G1

y for |y| > 0, then (g0(e),x) ⇒
+
G2

f and

(g1(e),x)⇒
+
G2

y.

• If (e,x)⇒+
G1

f , then (g0(e),x)⇒
+
G2

f and (g1(e),x)⇒
+
G2

f .

Lemma: Assume that the splitting invariant holds for all input
strings of length n or less. Then the splitting invariant holds for
strings of length n+1.

Proof: By induction over the step counts of⇒G1 and⇒G2 .

Theorem: G2 is well-formed and equivalent to G, and for all non-
terminals A ∈VN , A 6⇀G2 0.

Proof: A direct consequence of the splitting invariant and the fact
that G is well-formed.

4.2.3 Stage 3

Finally we rewrite G2 into the final grammar G′ = (V ′N ,VT ,R′,e′S).

Definition: We define a function d, such that d(A,e) “distributes” a
nonterminal A into an ε-only expression e resulting from the stage
2 function g0:

1. d(A,e) = e, if e ∈ {ε,F}.
2. d(A,e1e2) = d(A,e1) d(A,e2).

3. d(A,e1/e2) = d(A,e1) / d(A,e2).

4. d(A, !e) = !(A e).

Lemma: If e = g0(e′) and e′ ∈ E(G2), then A e � d(A,e) A. That
is, we can use d(A,e) to move e leftward across a nonterminal ref-
erence in a sequence expression.

Proof: Structural induction on e and the identities in Section 3.7.

Now define a function n(e,C) = (e (Z/ε) / ε) C.

Lemma: If e is an ε-only expression in G2, then !e C � n(e,C).

Proof: If e succeeds, then the (Z/ε) also succeeds and consumes
the entire remaining input. (The nonterminal Z alone is not suffi-
cient because it was rewritten in stage 2 to be ε-free.) Since any
nonterminal C is ε-free, the overall expression will therefore fail.
If e fails, however, then (e (Z/ε) / ε) succeeds without consuming
anything, making the overall expression behave according to C.

We now define a function h0 to eliminate predicates from ε-
producing expressions resulting from the g0 or d functions:

1. h0(ε,C) = C.

2. h0(F,C) = F .

3. h0(e1e2,C) = n(n(h0(e1,C),C) / n(h0(e2,C),C),C).

4. h0(e1/e2,C) = h0(e1,C) / h0(e2,C).

5. h0(!(B/e),C) = n(B/h0(e,C),C).

6. h0(!(A (B/e)),C) = n(A (B/h0(e,C)),C).

Lemma: If e = g0(e′) or e = d(A,g0(e′)) and e′ ∈ E(G2), then
h0(e,C) is a predicate-free expression equivalent to e C.

Proof: By structural induction over e. Case 5 handles predicates
resulting directly from g0, which always have the form !(B/e1),
where e1 is likewise an expression resulting from g0. Case 6 sim-
ilarly handles the situation e = d(A,g0(e′)). Case 3 rewrites a se-
quence e1e2 using the not-predicate analog of DeMorgan’s Law: if
e1 and e2 are ε-only expressions, then e1e2 � !(!e1/!e2). We can-
not simply use h0(e1e2,C) = h0(e1,C) h0(e2,C) because h0(e1,C)
consumes input if C succeeds, which would cause the h0(e2,C) part
to start at the wrong position.

We now define a corresponding function h1 to eliminate predicates
from the ε-free expressions generated by the stage 2 function g1:

1. h1(e) = e, if e ∈ {a,A}.

2. h1(AB) = AB.

3. h1(e1B) = h0(e1,B), if e1 is not a nonterminal.

4. h1(Ae2) = h0(d(A,e2),A), if e2 is not a nonterminal.

5. h1(e1/e2) = h1(e1) / h1(e2).

Lemma: If e = g1(e′) and e′ ∈E(G2), then h1(e) is a predicate-free
expression equivalent to e in G2.

Proof: By structural induction over e. In case 3, we know from
the definition of g1 that e1 is an ε-only expression resulting from
g0, so we use the function h0 to combine it with the subsequent
(ε-free) nonterminal and eliminate predicates from e1. Case 4 is
similar, except that we must first move e2 to the left of A using the
d function before applying the predicate transformation.

Definition: The predicate-reduced grammar G′ of G is
(V ′N ,VT ,R′,e′S), where V ′N is the set of nonterminals produced
in stage 1, R′ = {A ← h1(e) | A ← e ∈ R2}, and e′S =
h1(g1(eS1)) / h0(g0(eS1),T ).

Theorem: G′ is well-formed, repetition-free, predicate-free, and
equivalent to G.

Proof: G′ is repetition-free because G is repetition-free and we
never introduced any repetition operators. From the previous result,
each nonterminal A ∈V ′N is equivalent to the corresponding nonter-
minal in the stage 2 grammar. By the same result, the h1(g1(eS1))



part of the new start expression e′S is equivalent to the ε-free part of
the original start expression eS. The h0(g0(eS1),T ) in the new start
expression succeeds and consumes exactly one terminal whenever
the input string is nonempty and the ε-only part of the original start
expression eS succeeds. Finally, since we made the assumption at
the start that the original grammar does not accept the empty string,
the transformed grammar behaves identically for this degenerate
case. Since the acceptance of a string into the language of a gram-
mar only depends on the success or failure of the start expression,
and not on how much of the input the start expression consumes,
the new grammar G′ accepts exactly the same strings as G.

4.2.4 The Empty String Limitation

To show that we have no hope of avoiding the restriction that the
original grammar cannot accept the empty input string, we prove
that any predicate-free grammar cannot accept the empty input
string without accepting all input strings.

Lemma: Assume that G is a predicate-free grammar, and that for
any expression e and input x of length n or less, (e,ε) ⇒+ ε iff
(e,x)⇒+ ε. Then the same holds for input strings of length n+1.

Proof: By induction over step counts in⇒G.

Theorem: In a repetition-free grammar G, an expression e matches
the empty string iff it matches all input strings and produces only ε
results. In consequence, ε ∈ L(G) implies L(G) = V ∗T .

Proof: By induction over string length.

We could work around the empty string limitation by defining PEGs
to require all recognized strings to include a designated end marker
terminal, as Birman does in the original TS and gTS systems [5].

4.3 Reduction to TS/TDPL

We can reduce any predicate-free PEG to an instance of Birman’s
TS system [4, 5], renamed “Top-Down Parsing Language” (TDPL)
by Aho and Ullman [3]. We will use the latter term for its descrip-
tiveness. TDPL uses a set of grammar-like definitions, but these
definitions have only a few fixed forms in place of open-ended hier-
archical parsing expressions. We can view TDPL as the PEG ana-
log of Chomsky Normal Form (CNF) for context-free grammars.
Instead of defining TDPL “from the ground up” as Birman does,
we simply define it as a restricted form of PEG.

Definition: A TDPL grammar is a PEG G = (VN ,VT ,R,S) in which
S is a nonterminal in VN and all of the definitions in R have one of
the following forms:

1. A← ε.

2. A← a, where a ∈VT .

3. A← f , where f ≡ !ε.

4. A← BC/D, where B,C,D ∈VN .

The third form, A← f , representing unconditional failure, is con-
sidered “primitive” in TDPL, although we define it here in terms of
the parsing expression !ε. The fourth form, A← BC/D, combines
the functions of nonterminals, sequencing, and choice. A TDPL
grammar G is interpreted according to the usual⇒G relation.

Theorem: Any predicate-free PEG G = (VN ,VT ,R,eS) can be re-
duced to an equivalent TDPL grammar G′ = V ′N ,VT ,R′,S).

Proof: First we add a new nonterminal S with definition S← eS,
representing the original start expression. We then add two non-
terminals E and F with definitions E ← ε and F ← f respectively.
Finally, we rewrite each definition that does not conform to one of
the TDPL forms above using the following rules:

A← B 7−→ A← BE/F
A← e1e2 7−→ A← BC/F

B← e1
C← e2

A← e1/e2 7−→ A← BE/C
B← e1
C← e2

A← e∗ 7−→ A← BA/E
B← e

Aho and Ullman define an “extended TDPL” notation [3] equiva-
lent in expressiveness to repetition-free, predicate-free PEGs, with
reduction rules almost identical to those above.

4.4 Reduction to gTS/GTDPL

Birman’s “generalized TS” (gTS) system, named “generalized
TDPL” (GTDPL) by Aho and Ullman, is similar to TDPL, but uses
slightly different basic rule forms that effectively provide the func-
tionality of predicates in PEGs.

Definition: A GTDPL grammar is a PEG G = (VN ,VT ,R,S) in
which S is a nonterminal and all of the definitions in R have one
of the following forms:

1. A← ε.

2. A← a, where a ∈VT .

3. A← f , where f ≡ !ε.

4. A← B[C,D], where B[C,D]≡ B C/ !B D, and B,C,D ∈VN .

Theorem: Any PEG G = (VN ,VT ,R,eS) can be reduced to an
equivalent GTDPL grammar G′ = V ′N ,VT ,R′,S).

Proof: First we add the definitions S← eS, E ← ε, and F ← f , as
above for TDPL. Then we rewrite all non-conforming definitions
using the following transformations:

A← B 7−→ A← B[E,F]
A← e1e2 7−→ A← B[C,F]

B← e1
C← e2

A← e1/e2 7−→ A← B[E,C]
B← e1
C← e2

A← e∗ 7−→ A← B[A,E]
B← e

A← !e 7−→ A← B[F,E]
B← e

4.4.1 Parsing PEGs

Corollary: It is possible to construct a linear-time parser for any
PEG on a reasonable random-access memory machine.



Proof: Reduce the PEG to a GTDPL grammar and then use the
tabular parsing technique described by Aho and Ullman [3].

In practice it is not necessary to reduce a PEG all the way to
TDPL or GTDPL form, though it is typically necessary at least
to eliminate repetition operators. Practical methods for construct-
ing such linear-time parsers both manually and automatically, par-
ticularly using modern functional programming languages such as
Haskell [11], are discussed in prior work [8, 7].

4.4.2 Equivalence of TDPL and GTDPL

Theorem: Any well-formed GTDPL grammar that does not accept
the empty string can be reduced to an equivalent TDPL grammar.

Proof: Treating the original GTDPL grammar as a repetition-free
PEG, first eliminate predicates (Section 4.2), then reduce the result-
ing predicate-free grammar to TDPL (Section 4.3).

5 Open Problems

This section briefly outlines some promising directions for future
work on PEGs and related syntactic formalisms.

Birman defined a transformation on gTS that converts loop fail-
ures caused by grammar circularities into ordinary recognition fail-
ures [5]. By extension it is possible to convert any PEG into a com-
plete PEG. It is probably possible to transform any PEG into an
equivalent well-formed PEG, but this conjecture is unverified; Bir-
man did not define a structural well-formedness property for gTS.
Such a transformation on PEGs is conceivable despite the unde-
cidability of a grammar’s completeness, since the transformation
works essentially by building “run-time” circularity checks into the
grammar instead of trying to decide statically at “compile-time”
whether any circular conditions are reachable.

Perhaps of more practical interest, we would like a useful conserva-
tive algorithm to determine if a choice expression e1/e2 in a gram-
mar is definitely disjoint, and therefore commutative. Such an al-
gorithm would enable us to extend PEG syntax with an unordered
choice operator ‘|’ analogous to the choice operator used in EBNF
syntax for CFGs. The ‘|’ operator would be semantically identical
to ‘/’, but would express the language designer’s assertion that the
alternatives are disjoint and therefore order-independent, and tools
such PEG analyzers and PEG-based parser generators [7] could ver-
ify these assertions automatically.

A final open problem is the relationship and inter-convertibility
of CFGs and PEGs. Birman proved that TS and gTS can simu-
late any deterministic pushdown automata (DPDA) [5], implying
that PEGs can express any deterministic LR-class context-free lan-
guage. There is informal evidence, however, that a much larger
class of CFGs might be recognizable with PEGs, including many
CFGs for which no conventional linear-time parsing algorithm is
known [7]. It is not even proven yet that CFLs exist that cannot be
recognized by a PEG, though recent work in lower bounds on the
complexity of general CFG parsing [14] and matrix product [23]
shows at least that general CFG parsing is inherently super-linear.

6 Related Work

This work is inspired by and heavily based on Birman’s TS/TDPL
and gTS/GTDPL systems [4, 5, 3]. The⇒G relation and the basic
properties in Sections 3.3 and 3.4 are direct adaptations of Birman’s

work. The major new features of the present work are the extension
to support general parsing expressions with repetition and predicate
operators, the structural analysis and identity results in Sections 3.5
through 3.7, and the predicate elimination procedure in Section 4.2.
While parsing expressions could conceivably be treated merely as
“syntactic sugar” for GTDPL grammars, it is not clear that the pred-
icate elimination transformation, and hence the reduction from GT-
DPL to TDPL, could be accomplished without the use of more
general expression-like forms in the intermediate stages. For this
reason it appears that PEGs represent a useful formal notation in
its own right, complementary to the minimalist TDPL and GTDPL
systems.

Unfortunately it appears TDPL and GTDPL have not seen much
practical use, perhaps in large measure because they were origi-
nally developed and presented as formal models for certain types
of top-down parsers, rather than as a useful syntactic foundation in
its own right. Adams [1] used TDPL in a modular language proto-
typing framework, however. In addition, many practical top-down
parsing libraries and toolkits, including the popular ANTLR [21]
and the PARSEC combinator library for Haskell [15], provide back-
tracking capabilities that conform to this model in practice, if per-
haps unintentionally. These existing systems generally use “naive”
backtracking methods that risk exponential runtime in worst-case
scenarios, but the same features can be implemented in strictly lin-
ear time using a memoizing “packrat parser” [8, 7].

The positive form of syntactic predicate (the “and-predicate”) was
introduced by Parr [20] for use in ANTLR [21], and later incorpo-
rated into JavaCC under the name “syntactic lookahead” [16]. The
metafront system includes a limited, fixed-lookahead form of syn-
tactic predicates under the terms “attractors” and “traps” [6]. The
negative form of syntactic predicate (the “not-predicate”) appears to
be new, but its effect can be achieved in practical parsing systems
such as ANTLR and JavaCC using semantic predicates [17].

Many extensions and variations of context-free grammars have
been developed, such as indexed grammars [2], W-grammars [28],
affix grammars [13], tree-adjoining grammars [12], minimalist
grammars [24], and conjunctive grammars [18]. Most of these ex-
tensions are motivated by the requirements of expressing natural
languages, and all are at least as difficult to parse as CFGs.

Since machine-oriented language translators often need to process
large inputs in linear or near-linear time, and there appears to be no
hope of general CFG parsing in much better than O(n3) time [14],
most parsing algorithms for machine-oriented languages focus on
handling subclasses of the CFGs. Classic deterministic top-down
and bottom-up techniques [3] are widely used, but their limitations
are frequently felt by language designers and implementors.

The syntax definition formalism SDF increases the expressiveness
of CFGs with explicit disambiguation rules, and supports unified
language descriptions by combining lexical and context-free syn-
tax definitions into a “two-level” formalism [10]. The nondeter-
ministic linear-time NSLR(1) parsing algorithm [26] is powerful
enough to generate “scannerless” parsers from unified syntax defi-
nitions without treating lexical analysis separately [22], but the al-
gorithm severely restricts the form in which such CFGs can be writ-
ten. Other machine-oriented syntax formalisms and tools use CFGs
extended with explicit disambiguation rules to express both lexical
and hierarchical syntax, supporting unified syntax definitions more
cleanly while giving up strictly linear-time parsing [21, 29, 27].
These systems graft recognition-based functionality onto generative
CFGs, resulting in a “hybrid” generative/recognition-based syntac-



tic model. PEGs provide similar features in a simpler syntactic
foundation by adopting the recognition paradigm from the start.

7 Conclusion

Parsing expression grammars provide a powerful, formally rigor-
ous, and efficiently implementable foundation for expressing the
syntax of machine-oriented languages that are designed to be un-
ambiguous. Because of their implicit longest-match recognition
capability coupled with explicit predicates, PEGs allow both the
lexical and hierarchical syntax of a language to be described in one
concise grammar. The expressiveness of PEGs also introduces new
syntax design choices for future languages. Birman’s GTDPL sys-
tem serves as a natural “normal form” to which any PEG can easily
be reduced. With minor restrictions, PEGs can be rewritten to elim-
inate predicates and reduced to TDPL, an even more minimalist
form. In consequence, we have shown TDPL and GTDPL to be
essentially equivalent in recognition power. Finally, despite their
ability to express language constructs requiring unlimited looka-
head and backtracking, all PEGs are parseable in linear time with a
suitable tabular or memoizing algorithm.

Acknowledgments

I would like to thank my advisor Frans Kaashoek, as well as
François Pottier, Robert Grimm, Terence Parr, Arnar Birgisson, and
the POPL reviewers, for valuable feedback and discussion and for
pointing out several errors in the original draft.

8 References

[1] Stephen Robert Adams. Modular Grammars for Program-
ming Language Prototyping. PhD thesis, University of
Southampton, 1991.

[2] Alfred V. Aho. Indexed grammars—an extension of context-
free grammars. Journal of the ACM, 15(4):647–671, October
1968.

[3] Alfred V. Aho and Jeffrey D. Ullman. The Theory of Parsing,
Translation and Compiling - Vol. I: Parsing. Prentice Hall,
Englewood Cliffs, N.J., 1972.

[4] Alexander Birman. The TMG Recognition Schema. PhD the-
sis, Princeton University, February 1970.

[5] Alexander Birman and Jeffrey D. Ullman. Parsing algorithms
with backtrack. Information and Control, 23(1):1–34, August
1973.

[6] Claus Brabrand, Michael I. Schwartzbach, and Mads Vang-
gaard. The metafront system: Extensible parsing and trans-
formation. In Third Workshop on Language Descriptions,
Tools and Applications, Warsaw, Poland, April 2003.

[7] Bryan Ford. Packrat parsing: a practical linear-time algorithm
with backtracking. Master’s thesis, Massachusetts Institute of
Technology, Sep 2002.

[8] Bryan Ford. Packrat parsing: Simple, powerful, lazy, linear
time. In Proceedings of the 2002 International Conference on
Functional Programming, Oct 2002.

[9] Dick Grune and Ceriel J.H. Jacobs. Parsing Techniques—A
Practical Guide. Ellis Horwood, Chichester, England, 1990.

[10] J. Heering, P. R. H. Hendriks, P. Klint, and J. Rekers. The
syntax definition formalism SDF—reference manual—. SIG-
PLAN Notices, 24(11):43–75, 1989.

[11] Simon Peyton Jones and John Hughes (editors). Haskell 98
Report, 1998. http://www.haskell.org.

[12] Aravind K. Joshi and Yves Schabes. Tree-adjoining gram-
mars. Handbook of Formal Languages, 3:69–124, 1997.

[13] C.H.A. Koster. Affix grammars. In J.E.L. Peck, editor, AL-
GOL 68 Implementation, pages 95–109, Amsterdam, 1971.
North-Holland Publ. Co.

[14] Lillian Lee. Fast context-free grammar parsing requires fast
boolean matrix multiplication. Journal of the ACM, 49(1):1–
15, 2002.

[15] Daan Leijen. Parsec, a fast combinator parser.
http://www.cs.uu.nl/˜daan.

[16] Sun Microsystems. Java compiler compiler (JavaCC).
https://javacc.dev.java.net/.

[17] Sun Microsystems. JavaCC: LOOKAHEAD minitutorial.
https://javacc.dev.java.net/doc/lookahead.html.

[18] Alexander Okhotin. Conjunctive grammars. Journal of Au-
tomata, Languages and Combinatorics, 6(4):519–535, 2001.

[19] International Standards Organization. Syntactic metalan-
guage — Extended BNF, 1996. ISO/IEC 14977.

[20] Terence J. Parr and Russell W. Quong. Adding semantic and
syntactic predicates to LL(k)—pred-LL(k). In Proceedings of
the International Conference on Compiler Construction, Ed-
inburgh, Scotland, April 1994.

[21] Terence J. Parr and Russell W. Quong. ANTLR: A Predicated-
LL(k) parser generator. Software Practice and Experience,
25(7):789–810, 1995.

[22] Daniel J. Salomon and Gordon V. Cormack. Scannerless
NSLR(1) parsing of programming languages. In Proceedings
of the ACM SIGPLAN’89 Conference on Programming Lan-
guage Design and Implementation (PLDI), pages 170–178,
Jul 1989.

[23] Amir Shpilka. Lower bounds for matrix product. In IEEE
Symposium on Foundations of Computer Science, pages 358–
367, 2001.

[24] Edward Stabler. Derivational minimalism. Logical Aspects of
Computational Linguistics, pages 68–95, 1997.

[25] Bjarne Stroustrup. The C++ Programming Language.
Addison-Wesley, 3rd edition, June 1997.

[26] Kuo-Chung Tai. Noncanonical SLR(1) grammars. ACM
Transactions on Programming Languages and Systems,
1(2):295–320, Oct 1979.

[27] M.G.J. van den Brand, J. Scheerder, J.J. Vinju, and E. Visser.
Disambiguation filters for scannerless generalized LR parsers.
In Compiler Construction, 2002.

[28] A. van Wijngaarden, B.J. Mailloux, J.E.L. Peck, C.H.A.
Koster, M. Sintzoff, C.H. Lindsey, L.G.L.T. Meertens, and
R.G. Fisker. Report on the algorithmic language ALGOL 68.
Numer. Math., 14:79–218, 1969.

[29] Eelco Visser. A family of syntax definition formalisms. Tech-
nical Report P9706, Programming Research Group, Univer-
sity of Amsterdam, 1997.

[30] Niklaus Wirth. What can we do about the unnecessary diver-
sity of notation for syntactic descriptions. Communications of
the ACM, 20(11):822–823, November 1977.


