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ABSTRACT

We present a secure service prototype built from untrustetributed code. The service manages private
data for a variety of different users, and user programsufatly require access to other users’ private data.
However, aside from covert timing channels, no part of tleise can corrupt private data or leak it between
users or outside the system without permission from thédateers. Instead, owners may choose to reveal
their data in a controlled manner. This application moddeisionstrated by Muenster, a job search website
that protects both the integrity and secrecy of each usata. ¢h spite of running untrusted code, Muenster
and other services can prevent overt leaks because thestantmnodules are constrained by the operating
system to follow pre-specified security policies, which aegertheless flexible enough for programmers to
do useful work. We build Muenster atop Asbestos, a recemcidbed operating system based on a form
of decentralized information flow control [5].

1 INTRODUCTION

Since Sun, and later Netscape, developed ways for a web éroovsafely run untrusted code from arbitrary
Internet sites, the average user's web experience has Indieslyetransformed. The key step was defin-
ing and enforcing security policies that prevented mostaitals behavior on the part of Java applets or
JavaScript scripts. Existing flaws in these policies and thelementations have had limited consequences
in the wild, and now JavaScript is an essential part of the exgierience. What iserverapplications, like
client applications, could safely run untrusted code? &emsident code has advantages in terms of band-
width, latency, and simplicity. A service that allowed aréiy users to extend it could take advantage of
open-source programmers around the world, leading to ngelafgment models and applications.

Unfortunately, the consequences of any breach in a sengdicaion are dire, leading potentially to
massive data loss, corruption, denial of service, or theagrabsing release of users’ private information.
As a result, existing attempts at server extensibility eeponly a fraction of the server's resources and
private data. Livejournal, for example, allows journalkaars to upload sandboxed PHP renderers for their
journals, but each renderer can read only a limited set of deta accessible through a strict APl and has
very limited write access [2].

This is one instance of a more general problem: conventiprajramming languages and operating
system environments only offer limited tools for defininglanforcing application security policies. Desir-
able policies might, for example, limit an application’sviege to the minimum required to accomplish its
expected task, according to the principle of least pridl§22]; or it might track the progress of sensitive
information through an application, preventing its undesiescape [4, 14]. In order to constrain a program
to follow such a policy, today’s application programmer mesbble together combinations of existing fea-
tures, such as Unix'shrootfacility and Perl’s variable tainting. The result is complbard to maintain, and
difficult to truly secure [11].

Recent work shows that decentralized information flow adn@IFC), however, can enforce many
security policies cleanly and reliably, either in the peogming language [16] or in the operating system [5,
27]. These systems label all secret data and track it as sepasetween software components to prevent



information leaks. To enforce a security policy, an appicmadesigner decides how to assign labels to the
application’s data and splits the application into pieaoeding to the policy. For example, there might be
one label per type of system user, one label per user, or beepar user per application.

Our previous work on DIFC in Asbestos improved the secuffigrnoexisting application, a dynamic web
site. In this paper, we move towards a new type of applicgbi@viously thought too inherently insecure
to build. Thewikicodemodel uses flexible secure information flow control to all@wedely affiliated, and
thus mutually suspicious, programmers to collaborate mstacting a secure web service. A core set of
programmers design the service architecture and the pomdsg security policy, as expressed in labels.
Thereafter, untrusted programmers can upload binary antleetserver to augment its base functionality.
Since this add-on code is constrained by the system’s $gq@alicies, the service still maintains its security
guarantees, and in particular, untrusted code cannotiioppately leak sensitive data from the server.

(Untrusted code can misbehave in ways not constrained slabf course, such as by running inef-
ficiently, annoying the user, or simply by performing no wséfinction. Furthermore, while current DIFC
systems eliminate overt information leaks and certain iasgannels, one untrusted module might poten-
tially extract a secret from another using a timing exploitts as wallbanging. A full system would need
to address these problems as well. DIFC primitives and gpjate application security policies should be
used to keep particularly sensitive data, such as private, Keom reaching untrusted code (which could
in turn leak the data through covert channels). A combimatibfuture work and existing techniques could
address resource leaks and other similar problems. Theiwtlils paper prevents high-rate overt leaks and
storage channels—a necessary first step, since breachesdraaus consequences and are hard to prevent
with conventional techniques.)

We tested the wikicode development model by buildiigenster a prototype job search web site in-
spired by Monster.com, on top of the Asbestos operatingsyf]. Job search sites serve two primary types
of users: job applicants and employers. Job applicants istiheir resumes and profiles to the service’s ap-
plicant pool and employers search through the pool, lookamggood matches. Applicant and employer
data is sensitive and must be protected from inapproprigteseire: some applicants will want to restrict
the employers that can see their resumés, and certairogenplwill want to keep their job postings secret
except to select applicants. Furthermore, job search usktikely desire an endless list of features, many
of which the site designer may lack the resources to impléntensatisfy this demand, Muenster users
can contribute wikicode programs that implement intengsteatures yet cannot violate users’ disclosure
policies. These programs require an access control mod# fieaible than, for example, data partitioning,
since untrusted code must compute over sensitive data.

Relative to our previous work on the Asbestos operatingesy$5], the central contribution of this paper
is the DIFC-enabled wikicode application model, which gbegond a more-secure variant of an existing
application. To our knowledge, Muenster is the first secpmieation that combines both interesting cross-
user data sharing policies and untrusted code. Wikicodesigded to preserve strong security policies—and
even to update policies—while supporting mutually unedstievelopers who are continuously developing
and improving a running service. This required that we dgvglatterns for selective information sharing
that go beyond the strict isolation and declassificatiosgméed previously. Online application development
requires DIFC-aware data storage policies for serviceiipadata. In particular, the file system must per-
sistently storeorivilege, allowing applications to isolate data from others whilepi@g it accessible to the
owner across application upgrades and reboots. Finatigesiikicode authors develop on a live machine
they do not control, we had to develop tools that facilitageuyging without violating the information flow
rules of the system. After discussing related work and amvier® of Asbestos, we discuss these contribu-
tions in turn, closing with a performance evaluation andsautision of our experience building systems that
use decentralized information flow control.



2 RELATED WORK

Several earlier systems have used confinement to safelyitexantrusted programs. Web browsers and
active network systems like ANT [26] execute untrusted J&8y@rograms by running them in a restricted
virtual machine. Browsers confine the untrusted programeslyicting the disk and network access of the
Java virtual machine. The ANT execution environment furtiestricts untrusted code by limiting the Java
language as well. Virtual machines are not limited to Jaegams; virtual machine [7, 9] sandboxes can
provide strong isolation for any program, including natoeade, for example in the NetTop project [24].
The strong isolation provided by virtual machines is urahié for wikicode because it precludes the safe
exchange of private data between mutually untrusted pnegrén untrusted wikicode program must be
able to read, write and process data as long as it does noitéixpfi the server in a way that violates the
information-flow rules. A virtual machine relinquishes afintrol over data that it exports to other VMs
for processing by another user’s untrusted module. Infaomdlow control enables wikicode to support
functions like applicant searches because the applicasiasigfier agents can receive secret data about
employers in order to make declassification decisions,Hayt tannot export the secrets off the server.

It may be possible to enforce wikicode security policieshat kanguage level using a language like
JiF [16] with some modifications. The JiF compiler checksshirce code containing inline flow control
annotations to verify that sensitive information does nowfto unauthorized recipients. But this would
restrict wikicode contributors to a single language andirecthem to disclose their source code.

Our work is an extension of the Asbestos privilege sepafételd server [5], which was in turn inspired
by the OK Web Server (OKWS) [10]. OKWS provides a framewornksfecure web services on Unix through
various sandboxing techniques. Implementing wikicode seri@s of OKWS services does not seem feasi-
ble, since OKWS has no way to track the data of different usezs within a single service. As with virtual
machine sandboxing, OKWS can prevent an untrusted program directly reading private data, but it
cannot allow an untrusted program to read private data valsle preventing it from leaking that data.

Wikicode uses Asbestos, but there are a number of other napdaccess control (MAC) systems.
SELinux [14] and FreeBSD [25] both include MAC functiongliWe chose to use Asbestos because it
efficiently supports dynamic creation of many isolation @ms. This is important for wikicode because
users may join the system and untrusted programs may addeoemnty compartments at any time.

Other systems that perform automatic contamination pratiag[12] include 1X [15] and LOMAC [6],
but these systems use predefined information data flow rilsestos allows applications to define their
own data flow policies.

Other MAC storage systems store labels, but they do not stivilege in the file system. Of recent
systems, HiStar [27] most influenced the Asbestos persstiatyer; it uses a single-level store to store in-
stances of kernel objects, including labels. Similarly3J23] stores whole system “checkpoints” on disk;
system operation is resumed by reloading the last checlgobistate. The persistence layer we introduce
uses the filesystem to store privilege as a regular file idstéacheckpointing kernel objects to the disk.
Reclaiming privilege does not assume an earlier checkpmistate and multiple process can acquire, drop
and re-acquire privilege as long as they have access to pive@jate files storing it—even after a “hard”
reboot.

Existing database systems [13, 20] also support per-rowriggdabels based on users. The Asbestos
database benefits from closer integration with operatirsgesy labels, allowing different processes work-
ing on behalf of one user to have different security policiese database also allows unprivileged clients
to specify the label assignments on their data. These difters allow Asbestos to support more flexible
security policies.



*,0,1,2.3 Label levels, in increasing order

Tp, Cp Proces$'s tracking label and clearance label
LiC Ly Label comparison:
true iff Vx, L1(X) < La(X)
LiULy Least-upper-bound label:
(LaULz)(x) = max(Ly(x),L2(x))
LMLy Greatest-lower-bound label:

(L1ML2)(x) = min(L1(x), L2(x))
Figure 1: Summary of basic Asbestos label operations. Note thald@&nd?2 are not used by Muenster.

3 ASBESTOS OVERVIEW

This section provides an overview of the Asbestos operatymiem [5] used as a base for this work. Its
security and access control decisions are basedsfrestos labelswhich control and track interprocess
information flow, as well as application privilege, for arieetively unlimited number of information cat-
egories calledags® For example, an application may choose to mark sensitive with a tagt, which
prevents any unprivileged process that has examined ttasfiden exporting it over the network.

For each procesB, the kernel maintains acking labelTp and aclearance labelCp. The tracking
label lists all of the tag® has observed, either directly or indirectly, as well as #ggstfor which it has
privilege. WhenP receives a message from another prog@sés tracking label collects additional tags
from Q's tracking label via a least-upper-bound operationTg]«— Tp U Tq. P’'s clearance label governs
P’s ability to receive messages and protects it from unexggecbntamination: the kernel silently droR%s
message unleskg C Cp. The kernel maintains the invariant thias C Cp.

Tracking labels and clearance labels are functions maptaigg tolevels This work effectively uses
three levelsx, 1, and3. Thex level represents privilege. In a tracking lab&indicates that a process has
observed sensitive data (is contaminated with respecettath); in a clearance lab@yepresents thability
to observe sensitive data. The default level.isVe usually write labels using modified set notation. Thus,
L = {a3,bx,1} indicates a function with.(a) = 3, L(b) = x, andL(x) = 1 for x ¢ {a,b}. In comparisons,
*<1<3.

Any processP can ask the kernel to allocate a new tag; this 3etd) to . Thex level is immune to
contamination from received messagés(t) remainsx even aftefP receives a message from sof@evith
To(t) > *. In information flow terms, this allowB to declassifyinformation that is sensitive relative to
Only P itself can renounce this privilege. Creating new tags istile mechanism by which Asbestos grants
privilege; there is no tag hierarchy and, thus, no root [@@8.

The kernel enforces information flow tracking by checkingathnce labels and tracking labels on mes-
saging operations, but Asbestos processes can changbdieitaforce for a particular message within the
bounds of safe information flow. In particular, a sender @agerthe levels for particular tags on a message
(useful, for example, when a privileged process wants td semsitive data), prove to the receiver that it
holds privilege for one or more tags, grant privileges tordeeiver, and grant clearance to the receiver. The
last three cases are only possible when the sender haggevir the relevant tags.

Asbestos services must respond to many differently-tagggdests over time. Thevent proces¢EP)
abstraction lets such services avoid collecting tags. Gyatesses are limited, fast forks of a process; each
event process has its own labels and address space. Vaemed ktructures are optimized for the case of
small differences between event processes and their basesst

Asbestos was used to develop a privilege separated welr $§gfuaspired by the OK web server [10].
The Asbestos web server (AWS) labels user data as well aseseork connections appropriately, ensuring
that information leakage is not possible — e.g. by explgitrbug in the CGI scripts or any other untrusted
application component. The main AWS components include:

1our notation and terminology differed in prior work.



e a set ofworker EPs each handling requests for a particular user and contaedirsecordingly
¢ a set ofdeclassifier workerswvhich allow a user to make part of her private data public.

e a trusteddemuxthat accepts connections and redirects incoming requeste tappropriate worker
process. For new incoming connections, it also looks up aleidentifying the user and sets up
connection contamination accordingly.

e atrusteddentity daemorprocessifld), responsible for username to user contamination traoslat

e a trusteddatabaseservice that stores a single user’s privacy tag on eachtpriav of data and
propagates that tag to readers. AWS stores user data iretfaisate.

e a trustednetwork daemoifnetd that labels network connections so that contaminated chtaot
leak to connections without adequate clearance.

The Asbestos web server uses information flow control togetaiser privacy even if a worker is com-
promised. It accomplishes this by labeling each uiedata with a per-user tagr 3. Whenu logs onto the
server, AWS forks a new worker event process for the useragxiit withuy 3 as well. AWS then disallows
data tagged withuir 3 from leaving the system towards any user other thafhis policy prevents leaking
u's data even if a worker is compromised because the opersysigm tracks which processes and messages
containu’s data.

4 A WIKICODE APPLICATION

Our wikicode demonstration application is a job search wighcalled Muenster, a service similar to Mon-
ster.com and Hotjobs.com. Muenster’s nicheliscreetjob searching and posting: job applicants and em-
ployers have personalized control over which other usarvigav their information. Job search has a num-
ber of important privacy requirements. Applicants shoutdable to keep their resume hidden from some
employers; for example, an applicant may choose to hide jibleisearch intentions from their current em-
ployer to avoid jeopardizing their current job. Employens@d also be able to keep their job opportunities
confidential, except for select applicants. For exampleswémployers are seeking to replace high-level
executives, secrecy can be critical for maintaining putglations. Employers might also want to keep their
hiring techniques private. For example, on Muenster, an@mepcan upload their own proprietary applicant
selection algorithms and Muenster will keep their algonghhidden from other employers.

We choose this application to test wikicode because it lidyg fastrictive security policies. Not all web
services will be as restrictive as Muenster, but we use Maeas an extreme test to explore the wikicode’s
ability to enforce security policies despite untrustedgpamnmers adding features and code to the server. The
challenge is not only to enforce the security policies orrusted extensions, but to do so without unduly
restricting their functionality.

We have built Muenster, defined its security policies, anglé&mented three uploaded extensions that
exercise different aspects of the security system. To stmw Muenster keeps user data private despite
untrusted extensions running on the server, we implemesustbmizable user interface widgets. We also
built an applicant search function that goes beyond ssuaiation and declassification, and allows users to
selectively share data with each other, all while runnin@@sintrusted extension. Finally, our reference
letter extension shows that an untrusted programmer cameniga running Muenster server with a new,
custom DIFC security policy without interfering with Mudasor any another extension on the server.

41 Wikicode Server

Muenster derives its underlying security policy from thébAstos Web server (AWS) [5]. Its design is based
on the AWS, but includes several enhancements that makéabkufor wikicode development. Figure 2
illustrates the main server components.
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Figure 2: Wikicode server modules.

Like the AWS, Muenster assigns each use data tagcalledur and contaminates all afs private
data withur 3. The web server’s network daemon prevents data leaks betussrs by preventing any
information contaminated with one user’s data tag fromdiiag to another user.

Since users will also store data on the server, Muensteraaisigns each userverite tag called uyy.
Only processes which run on behalfiohave privilege ovetyy, and only they may modify’'s data.

Untrusted Workers  Usually, an untrusted extension will fit into the server asaker. Each worker
extension runs as a different Asbestos process; each titifferdt web client invokes a service, the worker
forks a new event process to handle the request. The demunlengicints the client’s write privilegasy

to the event process and contaminates it with its datarfagreventing it from leaking the client’s private
data. Forking a separate event process for each clientreetie worker process from accumulating tags.

The author of a worker may or may not share her worker withratisers. Sensitive workers, such as
a proprietary applicant matching algorithms, may be k#ptate so that no other user may invoke them. If
worker authotu chooses to make her worker private, she uploads the exée@eiension and contaminates
it with her data tagir 3. Since the executable extension is tagged, the Muenstegrsmgs any instance
of the worker process withy 3, and a user that is not authorized to receive data with tigatvith not be
able to use the worker. if opts to make her worker public, she uploads her executatwadh a privileged
Muenster service which leaves the tag off the worker exdteitalabel, allowing other users to invokes
worker.

Allowing users to upload their own untrusted workers makgmssible for them to extend Muenster
in ways the original developers may not have foreseen. We imaglemented the following three example
extensions as untrusted worker processes on the servéudwate how an untrusted programmer might
contribute to Muenster.

4.2 User Interface Widgets

The most basic type of untrusted extension that Muenstarndhsapport is an extension that only accesses
one user’s data at a time. As a concrete implementation ®ptblicy, we developedser interface widgets

Ul widgets give users additional options when displayingirtiprofile to themselves when they log onto
Muenster’'s web site. Since the widgets never need to shaaewdth other users, they can simply run as
untrusted workers.

4.3 Searchingfor Applicants

Untrusted user interface widgets do not need to share dateée users, so it is easy to support them
with strict partitioning, but in wikicode we want to allow e&1s to share data, assuming they approve of
the sharing. The challenge is to all@electivesharing, where users determine who can see their private
data. Making the problem more challenging, a user might nowkanything about the other users in the
service because they might not want to reveal themselvasre@ur goal was to enable users to selectively
disclose their data to other users on a case by case basisutievealing anything about the other users. To
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better understand this kind of controlled data sharing, mglémented a resume search in Muenster where
applicants and employers can share secrets with each bthighey retain control over who learns them.
This demonstrates the flexible privacy policies that anustéd extension can implement with no special
administrative server support,

In a resume search, an employer searches for job applicadtdlaenster returns a set of applicant
resumes. However, an applicant may want to hide her resuchtharfact that she is looking for a job from
some employers but not others. To help protect user privabienster job applicant should only show up
in the search results if she wants to reveal herself to thémmip otherwise, her very existence in the system
should remain hidden. Like the applicants, an employer n&tywant to remain hidden in the system. For
example, they may want to hide the fact that they are lookimgmployees or they may only want to show
their open positions to suitable applicants.

Revealing an applicant’s (tagged) resume to an employemaradatory access control system like As-
bestos requires explicit declassification, but Muenstanogjust ask an applicant if they want to declassify
their resume for employes, as that would reveal thatis searching for applicants. Worse yet, if a notifica-
tion method was used, a malicious extension could use tliicatibns as a covert channel to leak all the
pending job descriptions, or any other private data, of am@mployer.

Our approach is to use a declassification service that hauddielassification requests without leaking
secrets. When a client asks the declassification servicedaskify some data, the trusted part of the service
examines the data’s label and invokes a separate declassifi@gent for each tag at which that label has
level 3.

Each user selects or creates their own declassificatiort #ggrmay declassify the given block of data
based on the user’s policy. The agent may be quite powerfoést runs on the server as a regular Asbestos
process. The user may select an agent that implements someiimple like a blacklist or something
more sophisticated, like a document relevance calculdfiéh that decides based on the employer’s job
description. A user may even write his own declassifier agfeim¢ chooses to. It can be written in any
language, including machine code, and it can even querydtabdse and read from the disk because the
kernel will ensure that it does not violate the informatiawflcontrol rules.

Figure 3 illustrates the details of an example search whagayer Foo is looking for applicants. In
the example, Foo logs into the untrusteglarch workerand enters some search parameters. The search
worker, which is tagged witlioo; 3, queries the database and requests that the results behsmmnght
declassification for recipient Foo. The database sendsreaalting row, which is tagged with its owner’s
data tag, to a declassifier (DC) client. The DC client run$weitent processes, which prevent the search
worker from accumulating the tags assigned to the many dagafows. With each row in a different event
process, row tags do not accumulate in the DC client and thell26t can continue to process rows even if



a given row is not declassified. Each DC client event prodems $ends its row to the DC server and asks
it to remove all tags except for the untrusted worker’s datpfoo;. Starting a new event process for each
row is relatively efficient because event processes use-appyrite support from the Asbestos kernel [5].

The DC server is trusted infrastructure, privileged withprect to all user data tags. The DC clients are
not trusted, carry no privilege, and could be customized ¢8rs1 For each data tag on the row, the DC
server asks the corresponding DC agent if it is willing toldesify its data to user Foo. This request carries
tagfoor 3, preventing the DC agents from exporting information abguhis prevents the applicant from
learning that the search ever occurred. For each DC agemaghees to declassify the row, the DC server
will remove the respective tag and send the row back to trginadi untrusted worker with the sole tag
foor 3. In this example, Alice and Bob both agree to release theumes to Foo, but not Carol.

The key is that Alice and Bob can selectively share theirgiewresumes with Foo without learning that
Foo is searching for applicants; Carol retains her privhayshe also does not learn of Foo's search. Foo’s
actions are kept private unless it decides to contact Alidgab directly.

4.4 Referenceletters

To experiment with more sophisticated privacy policies tmdee if untrusted programmers can add their
own security policies to Muenster, we have implemented ereeice letter feature in Muenster as an un-
trusted extension. The reference letter feature allow$ ajpplicant to ask another user, such as a previous
employer, to write him a letter of reference. In general, gpliaant is not allowed to read his own reference
letters for confidentiality reasons, and Muenster’s refeedetter extension enforces this. However, the ex-
tension lets an applicant configure the system to analyziettiees and withhold some letters from potential
employers, without revealing any information about théelstto the applicant. The extension also ensures
that a letter is only associated with an applicant if the igppt requested it. These two properties enable
an applicant to retain editorial control over his referelatters without being able to read them in person
or learning that a letter was ever withheld. The original Mster developers may not have imagined such a
feature, but an untrusted programmer could easily implémencluding its privacy policy, without special
support from the Muenster administrators.

In the reference letter extension, an applicant issueswestdo another user for a letter by inserting a
row into the reference letter database table. The row amn& empty reference letter and is contaminated
with both the applicant’s and recommender’s data tags. Phpéicant must configure his declassifier such
that the recommender may see the row. The recommender cawthe the letter and update the database
row with the contents of the letter, which is still contantiwith both the applicant and the recommender’s
data tags. The presence of the applicant’'s tag means thieagphust explicitly declassify the letter before
anyone can see it. When an employer searches for the lattexpplicant’s declassifier can analyze the letter,
possibly using sentiment detection techniques [17, 1@] ramove the applicant’s data tag if the declassifier
approves of the letter. The letter is also tagged with thermmenender’s data tag, which prevents leaking the
contents of the letter to the applicant. To reveal the léttéine employers, the recommender must configure
his declassifier agent to remove his tag only when an emplpyeries the letter.

(Of course, the reference letter extension’s securitycpdhikes effect only as far as it can be enforced
by labels—that is, within Muenster itself. A recommendeuldcalways post a reference letter on the web,
although social pressure might discourage this. Furthegpsorecommender might always encode a mes-
sage in an outwardly unremarkable letter; an applicantidadsifier could only catch obvious problems,
such as overtly negative letters or letters too short to bulsConsidered generally, however, the extension
(1) prevents applicants from viewing recommendations a@hgrevents recommenders from viewing appli-
cants’ potential employers, while simultaneously (3)itettapplicants exclude references based on content,
a difficult combination of features involving three intetiag information flow tags. Similar combinations
will be useful in other contexts.)

Wikicode also enables the author of the reference lettéesy® prevent unauthorized reference letters



from entering his system by write-protecting the datababéetcontaining the letters. To do so, autlaor
creates the reference letter table with a clearance camgdliis write tagay x, which means only processes
which speak fora may maodify the table. He then configures Muenster to launshréfierence letter ex-
tension with his write privilegeaw . Sincea’s write privilege is only given to processes tlatrusts, an
unauthorized extension may not add unrequested lettelng teystem.

The reference letter worker shows that untrusted workers tiee flexibility to implement fairly sophis-
ticated features. Because the extensions run as full Asbesbcesses, and not just sandboxed processes,
they have full access to the server’s resources, withinrtfe@mation flow constraints: they can store per-
sistent data in the file system and database without risldagsl and they can even implement their own
security policies, like write protection using Asbestolsdks, without interfering with the server’s existing
security policy.

4.5 Programming Environment

For ease of development, Muenster components may be wiittéa native C or in Python, a popular
language for web applications. C has the advantage of higbrpgance and Python has the advantage of
development ease.

For rapid prototyping, Muenster provides a web based ugerfate for developing Python workers.
Users edit the source code directly on the Muenster webgsité, a submit button and their code is imme-
diately available as a running Muenster service.

Muenster also provides a humber of libraries and stock comps in C and in Python. Declassifier
libraries and worker libraries implement most of the commpaerations, so much of the system complex-
ity is hidden. Untrusted programmers do not need to deal thighlabeling schemes unless they need to
implement their own security policy but even if they do, theéeasions can be terse; the reference letter
application is only 218 lines of Python, including comments

Since the labeling scheme is consistent throughout theatpgrsystem, an untrusted extension is al-
lowed to create and modify database tables as well as readidedfile system files without the risk of
leaking data.

4.6 Caveats

In its current implementation, Muenster only uses one dagaand one write tag per user. Only having
one data tag per user has the limitation that all of one upeNgate data is in the same protection domain.
Therefore, if a user is willing to declassify his resume tmmpany Foo, then he has effectively declassified
the rest of his data to company Foo. Similarly, only having wamite tag per user means that that granting an
untrusted extension the ability to modify a user's datavedldt to modify all of that user’s data. In practice,
Muenster would use multiple data tags and multiple writestpgr user so that users may exercise finer
grained control over their private data. They would onlye@vportions of their profile to other users and
only grant write privileges over a portion of their data tarusted extensions. This is possible because
Asbestos allows applications to create new data tags airamyand store those new tags persistently.

5 PERSISTENT STORAGE

Muenster services store addresses, resumes, and othrematifan that must persist even if the server reboots
and all volatile storage is cleared. There are severalatgdls in building a persistent storage system that
maintains privilege and information flow invariants, evemcass reboots. If a contaminated process writes
contaminated data to the hard disk and then later, anotibeegs reads the file, the reading process must
become contaminated in the same way as the writer. Existingled file systems solve this problem, but
the wikicode development model imposes further challelmgegsersistent storage. Service code may create
private data and generate new security policies that amgply. A common policy would prevent other
services from modifying the data: the service generates/atpts tag and applies a clearancetgk to the
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Figure 4: File and directory labels. User Alice owns a publicly relsléadirectoryAlice, a publicly readable fil&Veb Blog and a
private fileDiary. Only processes with privilege tagx may modify her files.

data, whether it is stored directly in the file system or witbther, database-like application. The service and
the data store must therefore maintgjrprivilege when the server reboots, when the service codshesa
and restarts, and even when the service code itself is uhdat is, the privilege must be made persistent,
and the data store must maintain any relationships betweegdrvice’s privilege and data’s labels and
clearances. The mechanism for preserving these relatinshould be flexible enough to support arbitrary
application policies. Our prior storage layer could notmupthis usage.

We have developed a flexible technique for preserving pgdés calledpickling, and two persistent
storage services, a file system and a database. The labelsgidiem enables the system to store user data
such as uploaded programs without the risk of leaking themmtwthorized recipients. More importantly,
it also gives untrusted programs the ability to safely read arite the file system without risking privacy
leaks. The persistence services uphold information flowariawnts; preserve privilege across reboots; map
the tag values used in one boot to those used in the next; age@t channels through file metadata such
as names and labels; and allow applications to set up their toerarchy of privilege. Although these
requirements might be easy to provide if the file server cadbdtrarily create privilege and allocate specific
tags after a reboot, for higher assurance, the Asbestosefilersoperates within the same rules as any
ordinary Asbestos process; it does not havedipt@on of violating the information flow invariants.

Our file system semantics resemble those of HiStar [27],@Xoe the way privilege is stored. HiStar
and other systems such as EROS [23] avoid the problems ae$teertsprivilege by introducing a single-level
store: rebooting returns the system to a checkpointed, statka process’s tags and capabilities are stored
along with its virtual memory. In HiStar’s single-level st privilege is tied to process lifetime: after the
last process with privilege for a tagdies, there is no way to recover that privilege. Our pensisstore
seems more familiar to most programmers and simplifies thegss of recovering from application crashes
without losing associated tag state.

5.1 File System Semantics

The label rules for file operations in Asbestos are similathto label rules for processes. Each filén
the Asbestos file system hastracking label T and aclearance labelC;. These are analogous to the
corresponding Asbestos process labels. Like a procedsd, la file’s label represents the contamination
of the file’s data. The file system contaminates any procestsréads fromf with its tracking labelT .
Similarly, a file's clearance label is like a process’s ciee label; a proces3with tracking labellT p may
only write to a filef if Tp C Ct. For example, in Figure 4, user Alice owns the teand creates a fildiary
with clearance labeCgiary = {ax, 1}, then the only processes that may modifgry are processes to which
Alice grants the privilegax.

Directories have tracking labels and clearance labelstigx#e regular files. Creating, renaming and
removing a file are treated as writes to the directory. Fomgle, if a proces® is to create afile in directory
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Operation Label Checksand Action

read(f) T{CECp Action:Tp—TpUTs
write(f) Tp C Cy

createf, dir, T, Cs) TpC Cqir, TPE T, Cf C T4
pickle(f, dir, T¢, Cy, TpC Cgir, TPC T, Ct C Ty,

ft, fievel fpassword Te(ft) =*, Trs(ft) =%
unpickle(f, 3, passwordl T{CECp Action:Tp«—TpUTs
unpickle(f, level password Tp C Cs, Tt C Cp, level> figyel,
wherelevel< 3 password= fpassword
Action: Tp — (TpUT¢) M {ftlevel 3}

Figure5: Rules for operation on filé by proces$

d, it must have a tracking lab@lp such thafTp C Cq. Also, after a procesB reads the directory listing, its
tracking labelT p will reflect any further contamination ify. Figure 5 summarizes the label rules for file
system operations.

Unlike process labels, file labels are immutable. Files naybe dynamically contaminated or granted
privilege, and a file meant to hold a secret must be taggedppgtely when it is created. The immutable
tracking label and clearance label are supplied at creéitiog; the file system ensures that the new file is
at least as contaminated as the creating prodgss_(T ¢), maintaining the information-flow rules, and that
the clearance label is no more tagged than the tracking (&€l T ;). The immutable label design, which
was influenced by HiStar [27], simplifies certain informatifiow guarantees: for example, a directory
listing, which consists of the names and labels of the dirgi files, has a tracking label equal to the
directory’s tracking label, rather than a combination @& files’ labels. Designs that allow a file’s tracking
label to change are either more complex, leak informatiobpth. Although immutable labels might appear
cumbersome, in practice it has not been difficult to figureadiile’s intended label before the file is created.

Immutable file labels make it possible for a process to deteriifiit can read a file and how much more
contaminated it would become by doing so. Because file ladrelsmmutable and set at file creation time
(a write to the directory), they can safely be returned wheading a directory (a read contaminates the
reader with the directory tracking label). Directory regebmations must not return information that might
be affected by processes more contaminated than the diatgelf. Thus, reading a directory reports file
names, file labels, inode numbers, and the like, but not fikessbr timestamps. (A directory wity = {1}
might contain a more contaminated file with = {@3,1}. A process withTp = T could not write to
the directory, and thus could not remove the file, botild write to the file, possibly changing its size.)
Therefore, Asbestos provides a separaad- si ze operation that returns a file’s size and also marks the
reading process with the file’s tracking label.

5.2 Preserving Privilege with Pickles

The main contribution of the Asbestos file system is its metttomake privileges persist across system
reboots. Because tag names are non-persistent and randendyated, any persistent store must serialize
tags in some form. The Asbestos file system ymelde filesto serialize tags.

A pickle file or pickle is a serialized tag represented as a file in the file systemoéeps with privilege
for a tag may preserve that privilege by creating a pickléetan, another process magpicklethe pickle,
thus acquiring the privilege that was preserved in the pickl

To create a pickle of tag process sends a request to the file system contaitiagd the maximum
privilege (i.e., smallest levelfiee) that the file system should grant as the result of unpickiivgpickle.
Since a pickle is also a fil® also specifies its pathname, tracking label and clearaied [@he file system
performs the regular file creation checks on the trackingllatlearance label, and containing directory. It
also confirms thal has privilege ovet (Tp(t) = %), and that the file system process has privilege dyre
file system needs privilege with respect to every tag it skl Once these checks succeed, the file system
can create the pickle file.
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Figure 6: General file server architecture. Each client talks to @umievent process of the file server. The Event processes can
access pages from the buffer cache as well as modify the t@igkie id table.

To acquire the stored privilege in the pickle, proc@gsvhereQ may be the process equivaleniRafter
one or more reboots) issues an unpickle request to the filteray3 he request includes the pathname of the
pickle and the desired privilege level, which mustbde.e. The file system then checks@ passes the
normal file system checks for readiagd writing a file with the pickle’s tracking label and cleararabel.
The write check is done because we overloadG@Habel on pickles to indicate who can unpickle them. If
Q passes these checks, the file system gtaattshe desired privilege level to proceds

By starting with the simplifying assumption that there idyoane persistent store, it is easy to see
how pickles solve the persistence problem caused by rarydgenerated tags. Specifically, when trying to
acquire privilege by unpickling a pickle: If the pickle waated on this boot, the file system simply returns
the tag associated with the pickle. If no process has urggichl particular pickle on a given boot, the file
system simply creates a new tag for that pickle, and remesritsevalue for the duration of the boot.

The processes that can acquire pickled privilege can béelihiy the pickle’s tracking label and clear-
ance label and the tracking labels and clearance labelssarittaining directories. This means that the
pickler can restrict unpickling to a set of processes thatdeady privileged with respect to some other tag
t by putting tag in the clearance label of the pickle. For exampld,dfincludes{t x, px}, it could picklep
with Cq = {t«,3}. This means that a proceRsnay only acquirep from the pickle if it hasT o(t) = *. This
is similar to how Alice was able to write-protect Herary file in Section 5.1.

Privilege Hierarchies  Pickles enable applications to construct their own prgaléierarchies using the
file system angbasswordprotected pickles. If a key is provided during pickle creatthen the correct key
must also be supplied during unpickling. In order to creatmdependent privilege hierarchy, an application
can first create a password protected pickle with an emptkitrg label and clearance label to root its
hierarchy. Then it would create a directory tree, protebigthe first pickle, to match the privilege hierarchy
it desires. After a system reboot, the application can recthe entire privilege hierarchy by unpickling the
root pickle and then using it to unpickle the subsequenti$asigthe hierarchy; Muenster uses this technique
to store its users’ privilege handles.

5.3 File Server Implementation

The Asbestos file system is composed of a user level file sangtwo kernel components, a buffer cache
and a pickle-to-tag mapping table (Figure 6). Processessadbe file system by communicating with the
file server, which accesses the disk through a special kitegface.

To write data to the disk, the file server first makes sure alldbntamination associated with the data
has already been serialized: that is, all tags at a lever dki@a 1 have pickle equivalents. This ensures
that the file server can use the data it is about to write in @istent way after a reboot. If there were a
non-pickled tag on some file, there would be no way for the 8kwer to figure out which tag in the fresh
boot corresponded to the non-pickled tag.
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The file server has read and write privileges to the raw diskKd, so it is effectively trusted with all
data in the file system and all pickled tags, but the file ses/aot completely privileged and is not trusted
with any tags or data outside the file system. Specifically,kiérnel will not allow the file server to write
contaminated data to the disk. This means that the file senust have privilege for all tags on any data
going to disk. As a consequence, processes may protecti@bpsecret data from ever being written to
disk by simply contaminating it with a tag that they nevenmgra the file server. The file system is only as
privileged as it is trusted by the processes that store data i

A tagged process may communicate with the file server evarhds not picked all of its tags, so the
file server uses event processes to avoid accumulating aeadipg these tags to its clients. Each client of
the file server communicates with a unique event processe&iach event process acts like a fork of the
base process from the perspective of information flow, atlrent processes don'’t spread the resulting tags.
However, the file server does need some information to flowvdsen its event processes. Therefore, we
extended the kernel interface to provide that informatiothe form of a memory-mapped buffer cache and
a map between tags and pickles. Both interfaces are dedigr@did channels. For instance, writing a page
to the buffer cache may communicate information betweentgu®cesses, but since the kernel only allows
completely uncontaminated writes, the file server canrak tiata for which it does not have privilege.

5.4 Database

We also updated our prior, memory-only database to stodaits persistently and to support fully general
labels. In designing the database, we used many of the dpattgrns found in the file system to preserve
information flow constraints. For example, rows are sinidefiles in a directory; they each have a tracking
label, Tow and a clearance labetl,,,. Database tables are treated similarly to directories alpel$ in the
database are also immutable.

When processing a read query, the database returns eadhingatow in a separate message contami-
nated with the strict upper bound of the row’s tracking ladnad the tracking label of the querying process.
After all the rows are sent, the database sends a row doneageessth the tracking label of the process
that submitted the query. The message labels ensure tloahn&imination tags propagate to the recipient of
each row. The database sends a separate message for eaetaosethe rows may have different tracking
labels. If the rows did have different tracking labels and tatabase sent all rows at once, the resulting
message would have a cumbersome number of contaminatisnatagd the recipient process would likely
become too contaminated to be of further use or be unableéiveethe message.

In addition to the labeling scheme, the Asbestos databésesdirom a conventional database because a
conventional database returns one row at a time and waitsdalient to request the next row. This protocol
would be unusable in Asbestos because if the client is nbbaatd to receive one of the row messages, it
would never know when to ask for the next row.

Since the database may read many rows during the course nfjle sjuery, it runs as a privileged
process. For simplicity, we implemented the database bgtisg a commodity database (SQLite) and
adding a front-end process that handles labels. To prewsmiricchannels, the database only supports a
subset of the SQL language; for example it does not suppdtte@regation queries like SUM.

6 DEBUGGING MECHANISMS

Muenster shows that web services can be built from untrustetbonents. But how can those components
be built? In a conventional development scenario, a sepfiogrammer builds their service using private
infrastructure, such as a development server, over whhtihve full control. When things go wrong with
the service, the programmer can examine the entire maciicleding error logs, console, and process
memory. Even when physical access to the machine is notlpessievelopers may collect and expose
debugging information (e.g. through the web browser) withany information flow restrictions.
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1 init() {

2 tag_t t;

3 sys_new_tag(&t);

4 pi ckl e(private_pi ckl e_path, passwd, *, &t);

5 witefile(priv_file, C{t 3, 1}, V={t =, 3});
6 sel f _decl assify_cl earance(t, 3);

7

8

sys_tag_dissociate(t, 1);

9 http_output("Initialization: success!");
10 return;

11 }

12

13 main() {

14 char * buf;

15 init();

16

17 read_fromny_fil e(buf);
18 htt p_out put (i nput);
19 }

Figure7: Block of C-like code demonstrating possible bugs when idpieg for Muenster.

The wikicode model changes this significantly. An untrustegieloper’s wikicode service runs in an
environment owned and built by other developers, who maymake their code public. Service developers
have no privileged access, such as root or console accaess, thiese would represent gigantic channels.
Instead, service code is constrained to follow stringeotisey policies, which often prevent that code from
exporting information, including debugging informatiomchk as backtraces and error logs. This problem is
unique to information flow controlled systems.

How can a wikicode service be developed in such an envirotrigris section presents a set of abstrac-
tions, based on the conceptd#bug domainsvhich allow developers to debug their code without vioigti
information flow rules. A debug domain represents a set &f tagwhich the service author has debugging
privilege. Kernel errors and application behavior are egaoto the debug domain, but only as allowed by
the explicit debugging privilege. A service author atteimgpto debug a service might, for example, create a
special debugging worker, which would explicitly granmilgge to the service’s debug domain. Alternately,
a normal system user experiencing problems with a servightngrant his or her privilege to the service’s
debug domain, as long as they trust the service author.

The rest of this section describes examples of errors tlgupl DIFC applications, the debug domain
abstraction, and some ways we use debug domains to facilifaicode and similar development tasks.

Label Errors  The observed high frequency of label errors in Muensterldpweent, as well as their im-
portance, made them the primary target for Asbestos debgghabel errors may have a number of causes,
including insufficient clearance to receive contaminatimmproper declassification and lack of privilege
with respect to a faulting tag. In Muenster for instance uass that useAlice develops and uploads her
own module shown in Figure 7. Alice first creates a newtagsed to protect her application’s private data,
and pickles it to make persistent (lines 3 & 4). Note that sygw.tag() grants x to the calling process.
Then Alice creates a new file to store the private applicatlata, sets the file labels so that readers get
contaminated td3 and writers need to have- (line 5) and raises her process’s clearance label with ceéspe
tot, making it possible to receive3 contamination (line 6). Additionally, the user drops thg feom her
tracking label (line 8) for two reasons: first, she doesné&d hold “unnecessary” privilege, and second
she wants to keep the process’s tracking label as small atbpmd-inally, the process informs the user of
successful initialization by sending her a message (line 9)

This block of code will actually not work because of a labeberThe first bug is on line 8: the user drops
tagt prematurely. Although the user is able to read the secrdgfitee it has granted herself clearance to do
so on line 6), she has dropped privilege to declassify inftiom with respect to. After reading the secret
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file (line 17), the process gets contaminated wizhand can no longer write data to the user’'s connection
(line 18), since the network daemon cannot accept this thg.chll to httpoutput() will result in a label
error due td and there will be a warning on the console, but the user wileh® idea of what went wrong.

In this case we would like the developer to receive debuginédion that would help resolve the error,
such as the tag that caused the label error, the level ofdlgantboth the sender’s tracking label and the
receiver’s clearance label, the specific type of label getor Providing such debugging information directly
reveals information about the sender’s tracking label &edréceiver’s clearance label with respect to the
faulting tag. This information flow should be modeled andtéat to adhere to the information flow control
rules of the system, to prevent any information leakage.

6.1 DebugDomains

Label errors have high impact on the development of Asbegipkcations like Muenster (especially for un-
trusted users) since they are frequent during developrmentan lead to serious, complex bugs. Therefore,
label errors serve as a concrete working example of our apprto debugging.

To debug a label error like the one presented in Figure 7. eMlizvorker proces¥Va would need to
explicitly notify the kernel that it wants to receive debugssages about label errors related to a set of tags,
T. (In this caseT consists of a single tagy) This is done by instructing the kernel to create an interna
structure called a debug domain and associate the membeérsvith the debug domain. Processes, such
asW,, that subscribe to the debug domain receive debug messagegsated by the kernel due to errors
involving one or more of these tagsAdding member tags and subscribers to a debug domain affexts
way information may flow and requires privilege with respecboth the debug domain and the member
tags or subscriber end-points that are being added.

When an error occurs becausetefor any other member ofF—the kernel sends a debug message to
all subscribers containing details about the offendingsags, including its source, destination, message
ID, the tag that caused the fault, the level of the faultingdia in the sender’s tracking label and receiver’s
clearance label, and finally the type of label error. To emghat information flow control rules are not
violated, the debug message carries the contaminationtiothe sender and the destination of the message
that caused the label error. More specifically, a debug ngegssulting from a label error while Alice tries to
send a message to the network daemetdcarries the label(Tw, M T netd) U {t1x, tox, .. . thx, 3}) LI{ px, 3},
wheret; are the members af andp is the destination of the debug message, i.e. the subssrlistening
tag. In the case of Figure 7 the message would be contaminatiedhe label(Tw, M Tneta) L {t*, px,3},
sincet is the only member tag of the debug domain in question. Thislleontaminates the receiver of the
debug message with both sender and receiver contaminatide eeclassifying information about the set
of tags that are being debugged.

Using Debug Domainsin Muenster  Debug domains make it possible for Muenster users—inctudin
untrusted remote users—to debug their code on a “live” serwiithout risking data leaks, by modeling and
managing debugging privilege in a decentralized fashion.

In order for user Alice to debug her application, a separatridger process holding privilege to receive
messages generated for the relevant debug domains isa@daiperform collection and exposure of debug
information.

In Muenster users have access to one kind of processessi@utnvorker processes that are part of the
web service and run on the users’ behalf. Therefore Alicausara separate, uncontaminated worker process
for debugging purposésThe debugging worker would need to hold debugging priglegth respect to

2Processes may create and subscribe to an arbitrary numtdebuag domains.

SEvery debug domain is represented by a special tag, whichdigor holds privilege for and can grant to other processes

4A different user's worker, for example another developeovias agreed to help her debug her service, may be used for
debugging purposes as long as privilege with respect teAltag @Alicer) is granted to that worker.
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Figure 8: Label error presented in the example of Figure 7. Messagfefisen Alice to the Network daemon (Netd) causes label
error due to tad. The kernel generates a debug message and sends it to atibals of the debug domains t is a member of
(p from ddAandm, n from some other debug domain representedit)X). Message sent tp is received byp's owner—in our
example “Alice-debug”.

Alice’s relevant tags. All such debugging privilege is etied in a debug domain: members of the debug
domain are monitored for errors and debugging informatgddclassified with respect to members and
sent to all subscriber processes—thus modeling debuggividege as subscription to the relevant debug
domain.

In practice, Alice would send a message to her debuggingevantanting privilege with respect to all
of her private tags that she wants to enable debugging fare’Aldebugging worker would then take the
following steps:

1. Create a new debug domaldAfor Alice (and get privilege over it as the creator)
Subscribe tadA (required privilege is held)

Add all tags granted by Alice tdd Aas members (required privilege is held)
Optionally addAlicer to the members aldA

Optionally grant Alice privilege ovelldAso that she can manage it (e.g. add additional members or
subscribe to it).

ok~ wbn

Using this setup, Alice’s debugging worker will be able toeiwe debug messages concerning Alice. Each
such message carries appropriate contamination and aherieformation flow rules are not violated and
data leaks with respect to non-member tags are prevengpaeR8 illustrates an instance of these debugging
mechanisms.

Debug domain generalization = Debug domains are flexible enough to be applied to variouagighg
problems, such as system call tracing, label history tragkand dead process tracking. System call debug
messages contain the arguments to the system call as wisllratuirn value, a label history debugger tracks
changes in a monitored process’s tracking label or cleardatmel, and a process death debugger notifies
subscribers of a dying process’s ID.

Looking back to the example code of Figure 7, if the unalleddiuffer passed to the function on line 17
leads to a page fault, Alice can use a system call tracinggldbmain to identify the problem. Alice may
also use label history to identify the calls that led to diagpprivilege (line 8) and getting contaminated
(line 17) with respect ta. Finally, while debugging, one could use a debug domain eatifly processes
exiting early or dying due to bugs.

We have successfully used debug domains to implement detggmls and performed debugging tests.
In test cases, we have verified label error debugging intginmwhere the user has no console access, just
like the Muenster untrusted developers.

We have also created three library calls using debug domstirexd ) which traces a process’s system
calls, It (), which traces a process’s tracking label changes, and thestaswait() library call. We have

16



Average searches/second

Average searches/second

O 1 1 1 1 1 1 1 1 1
0 10 20 30 40 5 60 70 80 90 100 0 20 40 60 80 100
Attempted declassifications/search Percent of declassifications that succeed

(a) (b)
Figure9: (a) Completed searches per second as a function of the mwhimvs that the search returned (before declassification)
The declassifier used for these measurements declassifiegditent of the request. (b) Completed searches per sexoad
function of the percentage of declassifications that suteeAll searches returned 100 rows from the database.
also built a simple Asbestos debugger library that allovesgsses to fork debuggers that collect debugging
information on the processes’ behalf. Furthermore, we Hmik a simple tool around the uploader of
untrusted worker processes that would restart a Muenstedewwithin a debug domain, capture all debug
messages the developer had clearance to receive and thigededbel error reports and system call tracing
through a web interface.

7 PERFORMANCE

Muenster’s declassification scheme involves a significemtumt of work, so we were concerned that the
performance of Muenster would be unreasonably low. To tiyate the performance of the declassification
system we evaluated the throughput of Muenster’s seardtifum the heaviest user of the declassification
scheme, while changing the load on the declassificatioresydtirst, we varied the query that the search
worker performs to return differing numbers of results fritra database. Next, we used a testing declassifier
that let us change the percentage of users that declassifiediata. These tests show that the performance
of job searches has room for improvement, but the systemtignreasonably slow.

In these experiments, the Asbestos server was a 2.8GH2Reftivith 1GB of RAM and a 7200RPM
PATA drive with an average seek time of 8.5ms. The experimémk place on a gigabit local network
with a Linux HTTP client generating requests. The serverthanlatest version of Asbestos [1], including
the persistent storage layer described in Section 5. TheaMeeapplicant database contained 2500 rows,
each with about 30 bytes of data. Our experiments accessadrdan persistent storage, but did not do any
logging.

Figure 9(a) shows the number of searches that complete fidirne, as the number of rows returned
by each search varies. As we expected, performance is roligebr, with the cost of additional rows
accounted for mainly by additional declassification andtaxtthl search worker processing.

Figure 9(b) indicates that the cost of declassifying (vieating the declassification request) is small.
The component breakdown in Figure 10 shows mostly constasit aegardless of the fraction of rows
declassified, with the exception being the search workes.search worker formats and returns the data to
the user and therefore is expected to do more work as moreai@rdeclassified. The search worker is also
written in Python which is not very efficient.

In summary, per-row declassification impacts request pmdace by a factor of roughly three. Though
significant, this cost does not rule out the approach.

8 DiscussioN

The Muenster application and wikicode in general reapedkeyobenefits from using information flow
control (IFC). First, confined, automated declassificaisom more expressive mechanism than simple static
ACLs or capabilities. For instance, Muenster users carnifypsress control policies over employers they’re
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Figure 10: The cost of different components in the system, as a functfdhe percentage of rows that the declassifier permits. All
searches returned 100 rows from the database.

not even allowed to know are in the system. More importalfig, provides a precise yet high-level language
for specifying our end-to-end security policies. We builtdhster by envisioning desired security policies,
then trying to implement them using labels. When we had diffjcin making this translation, we often
discovered holes in the policy itself.

Security policies in Asbestos are specified using labeldagsl and in the system we describe, all priv-
ileged code—such as application declassifiers—make pdécisions based on labels and tags. Originally,
we had planned for more complex declassifiers: perhaps ausgdd want to reveal their employment his-
tory more broadly than their name and address, even thouhisiory and name were tagged identically.
However, we found that these policies—which would dectasslectednformation based on theontents
or resultsof a query, rather than declassifyiafj secret information based on tlientity of a querier—were
extremely vulnerable to covert channel exploits. A ded@scould be tricked into declassifying an appli-
cant's name by a worker that encoded that name in a queryid iesng steganography. Our declassifiers
thus make their decisions on the basis of information thésea®s IFC renders unforgeable, namely labels,
query history, and explicitly trusted outside informatiénkey lesson, also mentioned in Section 4.6, is that
sources of information that need to be declassified diftgrenust given distinct tags.

The Asbestos label mechanisms go a long way toward confiingranication within the bounds of
the security policy, but as in other IFC systems, covert oenare a persistent challenge. With current
commodity hardware, it is possible to leak data through eshaystem resources [18]. Software covert
channels present a more fundamental challenge, howewdr,because they can be replicated for high
throughput and because they naturally appear in commowa@ftpatterns.

Whenever information travels from one contamination leéeehnother, covert channels can creep in.
Flow control—whether there was room to enqueue a messagexdmple—inherently conveys informa-
tion back to the source and thus cannot be used across lévelisad, our usual solution is to place a
privileged mediator process between the contaminatioaldevn Muenster, when data flows from lower
to higher contamination, the mediator is usually the filgesysor the database. For example, to process a
Muenster candidate search, the request query and cangiadile both climb from their previous contam-
ination levels to the employer-candidate combined levelvhy of the database front end. Such privileged
mediators are less confined by IFC and must be careful notgmsexinformation leaks; for example, while
developing the database front end and the declassifiercegemie discovered and corrected several over-
looked covert channels. In future work, it might be inteiregto consider integrating finer-grained language
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based solutions, such as JiF [16], for these few remainitigadrpoints in the system.

Wikicode is not immune to other covert channels, althoughbeléeve they are limited in number and
mainly restricted to timing leaks. For example, declassdigents can modulate the time they take before
sending a response, yielding a covert channel to the seasdkew This particular channel can be limited
by bounding or quantizing the amount of time a query takesreafeturning, although this remains future
work for us.

Another artifact of operating in the physical world is thaets may try to misrepresent their identities
when making accounts on Muenster, thus hampering IFC pslidio mitigate this risk, Muenster can verify
user identities when they create accounts, much like fimaiggtitutions do when users create online web
accounts.

9 CONCLUSION

In this paper we presentikicode a new application development model that enables the ecatipn of
mutually untrusted developers while maintaining the aggpion’s security guarantees. Wikicode leverages
the flexible information flow control model furnished by Ashkas, profiting from the power of automated
declassification and the expressiveness of labels forfgpegihigh-level security policy. Declassifiers and
other confined modules can use information their creat@sat authorized to see, yet they have the full
power of the operating system at their disposal, withoutdimgerigidly specified confinement policies.
Modules simply pick and choose what information and sess/tbey need.

In order to support wikicode we extend Asbestos to persistigges in a highly flexible manner, by
storing them in the filesystem using thiekle primitive. We also add a crucial feature for introspectithre
debug domainallowing untrusted programmers to debug their applicatiaithout violating the security
policy.

We successfully demonstrated wikicode with the Muenstgliegtion, a simple job searching site that
makes heavy use of customizable, untrusted code, yet rirairtkee invariant that even the mere presence of
employers and job seekers in the system is kept secret frioen osers unless explicitly disclosed. Although
covert channels do remain a challenge, as yet they seem tahag®able. Finally, we showed that, in spite
of the extra effort needed for all our security mechanismsgeiter’'s performance is reasonable.
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