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ABSTRACT

This paper presents a tool Altair that automatically gener-
ates API function cross-references, which emphasizes reliable
structural measures and does not depend on specific client
code. Altair ranks related API functions for a given query
according to pair-wise overlap, i.e., how they share state,
and clusters tightly related ones into meaningful modules.

Experiments against several popular C software packages
show that Altair recommends related API functions for a
given query with remarkably more precise and complete re-
sults than previous tools, that it can extract modules from
moderate-sized software (e.g., Apache with 1000+ functions)
at high precision and recall rates (e.g., both exceeding 70%
for two modules in Apache), and that the computation can
finish within a few seconds.

Categories and Subject Descriptors

D.2.7 [Software Engineering]: Distribution, Maintenance,
and Enhancement—Restructuring, reverse engineering, and
reengineering ; H.5.4 [Information Interfaces and Pre-
sentation]: Hypertext/Hypermedia—Navigation

General Terms

Algorithms, Documentation, Experimentation

Keywords

API recommendation, overlap rank, module clustering

1. INTRODUCTION
Contemporary software systems provide an increasingly

complex API to developers, consisting of hundreds or even
thousands of functions. Looking up API usages in documen-
tations such as the Unix man pages, the Java API specifi-
cation, and the MSDN library, is a daily exercise for many
developers. Those documentations come up with compre-
hensive and detailed cross-references for a large number of
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Figure 1: Numbers of all functions (left Y-axis) and
those commented with cross-referencing tag @see

(right Y-axis) in Apache 2.2.x (X-axis) source code.
The version numbers are not continuous.

API functions, e.g., SEE ALSO sections, providing hyper-
links to related functions that accomplish the same or a rel-
evant task. Such informative layout is an effective way to
organize the knowledge and help avoid getting lost in the
jungle.

However, maintaining these separate documentations is
painful and labor-intensive. Many documentation tools such
as doxygen [3], javadoc, and the C# compiler allow to manu-
ally fill in cross-references. Developers can annotate related
functions in code comments using specific grammars, e.g.,
leading by @see or enclosed by <seealso> tags, so as to
generate cross-references in documentations. However, it is
generally difficult for developers to track all related API for
each function. In addition, with the API evolving and grow-
ing, it becomes tedious to maintain the knowledge and keep
up to date by hands.

Take Apache HTTP server [1] as an example, the source
code of which is fairly well documented. As shown in Fig-
ure 1, from year 2005 to 2008 the number of documented
API functions grows from 1353 to 1461, while the number
of those commented with @see grows from 6 to 15, account-
ing for only 0.4%∼1.0% of all API functions — only a small
portion of API functions have cross-referencing annotations.
This paper will explore automatic techniques to improve the
coverage by generating function cross-references from source
code.

One way to discover related API functions is to mine fre-
quent usage patterns in client code [30, 22, 47, 36, 48]. The
basic idea is based on association rules or co-citation [39],
say, given a function f , find all functions g that are often
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int BZ2_bzCompressEnd ( bz_stream *strm )

Releases all memory associated with a compression stream.

See also

• BZ2_bzCompressInit and BZ2_bzCompress

• BZ2_bzDecompressEnd, BZ2_bzDecompressInit and BZ2_bzDecompress

Figure 2: An example output of Altair. It hyperlinks the bzip2 API function BZ2_bzCompressEnd to five related
functions and organizes them into two modules, i.e., compress and decompress.
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Figure 3: Stages of Altair.

called together with f . However, the approach might be sen-
sitive to how f is used in specific client code. If the client
code neither calls f much nor calls f and g simultaneously,
it could not find these patterns, which leads to missing and
unreliable results. Particularly, it could not extract much
useful information from library code, where no client code
is actually invoking these API functions. We will illustrate
the problem in Section 7.1.

Our tool Altair takes a different approach — it empha-
sizes how API functions are implemented rather than how
they are used, which is insensitive to specific client code. It
is based on the observation that in general API functions are
related because they share state, e.g., the data they access
overlap (see Section 2 for a formal definition). Altair per-
forms static analysis to extract structural information from
source code, i.e., how API functions access data, and then
computes pair-wise overlap between them. Given query f ,
Altair finds the related functions that overlap with f on the
most data that f accesses. In doing so, it can produce more
complete yet precise results. In addition, Altair introduces
a novel technique to cluster API functions into modules.

Figure 2 illustrates an example output of Altair. When
given a query BZ2_bzCompressEnd, which is an API function
from a popular data compressor bzip2 [2], Altair is able to
recommend five related functions and tries to arrange them
into two modules (compress and decompress). We believe
that this is a better organization for API understanding and
navigation.

We implement Altair for C programs. It performs analy-
sis, ranking, clustering, and post processing successively, as
shown Figure 3, and then answers user queries for API nav-
igation. Experiments show that Altair notably outperforms
previous API recommendations tools, and that it can further
help to cluster API functions into meaningful modules.

The main contributions of this paper are: 1) adoption of
effective ranking and clustering measures, 2) program anal-
ysis to compute the measures, and 3) an evaluation against
several popular C software packages. Altair, along with de-
mos and source code, is publicly available at

http://pdos.csail.mit.edu/~xi/altair/

The rest of the paper is organized as follows. Section 2 de-
fines the overlap measure for ranking. Section 3 presents the
static analysis algorithm for computing the measure from
source code. Section 4 defines the modularity measure and
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Figure 4: Example access graph. f, g, h represent
functions, while x, y, z, w represent data. A directed
edge from f to x means that function f may access
some data x.

presents the clustering algorithm. Section 5 discusses al-
ternative measures and limitations. Section 6 describes im-
plementation detail. Section 7 shows experimental results.
We survey related work in Section 8 and then conclude in
Section 9.

2. OVERLAP RANK
Altair hinges on the hypothesis that developers tend to en-

capsulate state or data structures using a set of well-defined
API functions; these functions are the preferred or the only
means to access the data structures [23]. Therefore, these
API functions are related since the data that they access
overlap.

Consider a simple case. A program is represented as a
bipartite access graph, as shown in Figure 4. There are two
kinds of vertices: functions (f , g, and h) and data (x, y,
z, and w). A directed edge from f to x means that f may
access x. In the graph f and g share access to both x and
y. More challenging issues will be further discussed in Sec-
tion 3.

Let N (f) denote the set of data that f may access. Given
query f , how much it overlaps with g relates to the shared
data that they both access.

Definition 1. Given a function f , the overlap with func-
tion g is defined as

π(g|f) =
|N (f) ∩N (g)|
|N (f)| . (2.1)

π(g|f) ∈ [0, 1] represents the proportion of f ’s data that
is shared with function g. For example, as in Figure 4 we
can learn π(g|f) = 1 and π(f |g) = 2/3. For each function f ,
we may compute an overlap value with other functions and
rank these values for recommendation.

The measure is asymmetric, which is consistent with our
intuition: while g links to some “hot” function f , it does not
mean that f should necessarily link back to g. A symmetric
variant will be used in Section 4 for clustering. See Section 5
for discussion.
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Figure 5: Augmented access graph. e, f, g, g0, h rep-
resent functions, x, y, z, w represent data, and A rep-
resents a composite type.

3. ANALYSIS
This section describes the detail of computing a bipartite

access graph via program analysis.
We will use the code in Figure 5 as a running example. In

this example, function e returns a newly allocated object of
a composite type A; function f accesses two fields x and y of
a, which is of type A as well; function g accesses field z of b,
which is of type B, and calls an internal (private) function
g0, which behaves similarly to f . We omit the detail of
functions g0, h, and type B for brevity.

3.1 Challenges and Heuristics
There are several challenges arising from the example in

Figure 5. We describe them below, as well as heuristics that
Altair employs to address them.

Calls

When g calls g0, should we merge g0’s effect (e.g., the set of
data it accesses) into g or not? In practice it is common to
organize a big function’s implementation into several inter-
nal, smaller functions. If we do not merge their effect, the
big function’s overlap with others would be inaccurate. On
the contrary, API functions in a higher-level module should
be isolated from lower-level modules; merging their effect
in this case is inappropriate since they belong to separate
modules.

We observe that public functions are usually a natural
boundary when developers are designing and implementing
API functions. Therefore, Altair merges the effect of private
functions into their callers. If their callers are also private,
it does so recursively. If their callers are public functions,
it stops merging. A simple heuristic rule to determine pri-
vate/public for a C function is to see whether it is declared
as static or extern.

Open Programs

The analysis should conclude that both f and g access two
fields x and y. To do so, it should identify that the first
parameters a in f and g may alias, i.e., they may refer to
the same data. It is straightforward to perform a pointer
analysis over a whole program to compute such may-alias
results. However, the results would be missing for an open
program with library code only, e.g., no client code is present
to call f and g.

To this end, Altair conservatively assumes that all vari-

Edge Type Description
access(f, x) VF × VD f loads from/stores to x
call(f, g) VF × VF f calls g
allocate(f, t) VF × VT f (de)allocates t
composite(t, x) VT × VD t has a field x

Figure 6: Edges of augmented access graph. The
sets VF , VD, and VT represent functions, data fields,
and composite types, respectively.

ables of the same composite type (e.g., structure/record)
may represent the same data. That is, we represent local
data using type fields; all instances of the same composite
type are projected into a single one. In doing so Altair is
able to connect library API functions at a price of possible
precision loss, e.g., it cannot distinguish two instances of the
same type. Generally this is not a big problem, though it
may lead to some conservative results.

Allocation

Allocation functions such as malloc and free in C do not
explicitly touch any field of a given object, e.g., function e.
However, behaving as constructors and destructors, they do
affect all fields. We should not miss their effect.

Altair recognizes standard C allocation functions and con-
cludes that invoking them will access all fields of correspond-
ing types. It asks users to annotate customized allocation
functions. In doing so, Altair is able to identify them and
calculate correct effect for functions that invoke allocations.
In our experiments (Section 7.4) we see that such annotation
effort is negligible.

3.2 Augmented Access Graph
Altair augments the access graph to incorporate with the

heuristics discussed above. As depicted in Figure 5, there
are three kinds of vertices in the augmented access graph:

• functions VF , e.g., e, f, g, g0, and h;

• data (composite fields1) VD, e.g., x, y, z, and w;

• composite types VT , e.g., A.

Meanwhile, there are four kinds of edges between vertices, as
listed in Figure 6. They are used to indicate that a function
may access some data directly, or indirectly via a callee, or
via a composite type due to allocation, or a combination of
the above.

To construct an augmented access graph from source code,
the analysis works as follows. For each load/store statement,
e.g., one in function f that accesses data x of composite type
A, Altair adds a corresponding access edge from f to x and
a composite edge from A to x. For each call statement, e.g.,
g calls g0, if the callee g0 is a private function, Altair adds a
corresponding call edge from g to g0. If function e invokes an
allocation function for type A, Altair adds a corresponding
allocation edge from e to A. Note that there may be type
conversions. For example, malloc returns a void pointer,
which will often be converted to a specialized type. Altair
tracks such conversions to deduce the real type.

1 Our implementation also represents each global variable
(e.g., a Boolean flag) as a data vertex.
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To convert an augmented access graph into a bipartite
graph, i.e., to find out what data set each function may ac-
cess following all paths, one can compute graph reachability
(transitive closure) [32] for each f ∈ VF . For example, in
Figure 5 both functions g and e will connect to x and y after
computing transitive closure. The resulting bipartite access
graph only contains VF , VD, and edges between them. The
algorithm has a time complexity of O(|V ||E|), where V and
E are vertices and edges, respectively.

If the augmented access graph is huge, one could compute
a limited number of iterations for an approximation. In our
experiments Altair uses the transitive closure approach and
is able to finish in a short time.

3.3 Ranking
It is straightforward to compute overlap between func-

tions from a bipartite access graph, based on (2.1), as well
as normalize (the largest to 1) and sort them in descend or-
der. If π(g|f) and π(h|f) have the same overlap rank, Altair
further compares π(f |g) with π(f |h).

If a function has too many related candidates, Altair shows
top l results (l = 10 by default). If still too many equal ones,
those with normalized overlap values less than a threshold
(default 0.85) will be discarded.

Note that a wrapper function that accesses no data but
simply calls other functions does not overlap with any func-
tions. In this case Altair separately considers its callees as
related functions.

4. CLUSTERING
This section presents a module definition and an algorithm

to cluster API functions into modules.
A straightforward clustering method would be grouping

functions by the data set they access [38, 45]. However, it
may not work in general. Real-world API implementations
may not be perfectly modularized; two functions in differ-
ent modules may still share a small portion of data (see
Section 7.3 for a case study).

4.1 Modularity
Based on the overlap measure (2.1), we define a joint mea-

sure called overlap coefficient [43] as follows.

π(f, g) =
|N (f) ∩N (g)|

min(|N (f)|, |N (g)|) (4.1)

= max(π(f |g), π(g|f)) (4.2)

π(f, g) measures how much f and g share in common, which
is symmetric and can be easily derived from overlap rank.

Our intuition used to define modularity is that the inter-
connection between modules should be relatively loose. Con-
sider the simplest two-module case. Assume that a set of
functions F can be partitioned into two modules, a subset
S ⊆ F and the complement S = F − S. According to the
intuition, compared to the overlap of all vertices in S, the
overlap between S and S should be small. We denote them
as volS and vol ∂S, respectively, given as follows.

volS =
X

f∈S,g∈F

π(f, g) (4.3)

vol ∂S =
X

f∈S,g∈S

π(f, g) (4.4)

1: Dff ←
P

g Πfg, given overlap matrix Π.

2: L← D−
1
2 ΠD−

1
2 .

3: Compute eigenvectors µk of L.
4: X ← (µ1, . . . , µk).
5: Normalize X to Y , where Yi = Xi/||Xi||2.
6: Apply k-means to cluster Y .
7: Cluster Πf into k modules accordingly.

Figure 7: Algorithm for k-module partitioning.

In other words, a good module S should be able to mini-
mize vol ∂S with respect to volS (similarly for volS). For-
mally, we define modularity based on the concept of graph
conductance [12].

Definition 2. Given a set of API functions F , the conduc-
tance of a module S (S 6= ∅ and S ( F ) is defined as

Φ(S) =
vol ∂S

min(volS, volS)
(4.5)

and the modularity of F is defined as

Φ(F ) = min
S

Φ(S). (4.6)

Φ(F ) ∈ [0, 1] describes how modularized F is. A small
value indicates a loose module, while a large value indicates
a tighter one.

4.2 Spectral Clustering
However, finding the optimal partition for S and S is

known to be NP-hard [37]. A popular technique is to relax
the combinatorial problem in continuous real values, which
is briefly described as follows.

The overlap matrix of π(f, g) over all functions F is de-
noted as Π, given by Πfg = π(f, g) and Πff = 0 (all diagonal
elements are zero). Let D be the diagonal matrix of Π and
I be an identity matrix. We define L and L as follows.

L = D−
1
2 ΠD−

1
2 (4.7)

L = I − L (4.8)

Let λk be the k-th smallest eigenvalue of L and µk be the
corresponding eigenvector. An interesting result in spectral
graph theory is about the second smallest eigenvalue λ2, as
follows [12].

λ2/2 ≤ Φ(F ) (4.9)

We can then use λ2/2 to approximate modularity Φ(F ). The
corresponding eigenvector µ2 is a real-valued approximation
of the two-module bi-partitioning. We omit the proof detail
due to space limitation.

In a general k-module case, Altair adopts the widely-used
Ng-Jordan-Weiss spectral clustering algorithm [31] to parti-
tion n API functions in a set F into k modules, as shown
in Figure 7. The algorithm first computes an n × k matrix
X = (µ1, . . . , µk) formed by the first k eigenvectors (L and
L have the same eigenvectors so we use L), and normal-
izes each row of X for a new matrix Y . So Y contains n
normalized k-dimensional vectors, where ||Yi|| = 1. Then
Altair applies a classical k-means algorithm [24] to group
the n vectors into k clusters, and accordingly cluster the n
functions into k modules. See Section 7.3 for a case study.
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The matrix computation in the algorithm has a time com-
plexity of O(n3). Altair exploits highly-optimized libraries
BLAS and LAPACK for fast linear algebra computation,
which are available on most platforms.

We choose the spectral method rather than other cluster-
ing algorithms due to the following reasons.

First, the definition of modularity based on spectral graph
theory matches our intuition well, as explained in Section 4.1.

Besides, hierarchical clustering algorithms used in previ-
ous work [34, 28] generally require the triangle inequality
hold for a dissimilarity measure d over functions [13], i.e.,
d(f, g) + d(g, h) ≥ d(f, h) for any functions f , g, and h,
which is not true in our case [10], given d(f, g) = 1−π(f, g).
Spectral clustering does not impose such a requirement.

Moreover, spectral clustering has been proven to outper-
form other clustering algorithms such as k-means in many
cases [31].

4.3 Practical Issues
In the clustering algorithm we assume that the number of

modules k is priorly known and used as input to Altair. If
k is unknown, which is often true in practice, a commonly-
used workaround is to recursively bi-partition functions and
stop when meeting some criterion, e.g., λ2/2 exceeds a given
threshold φ ∈ [0, 1]. Though the workaround may lead to
less precise results, it is acceptable in our experiments.

One may tune φ to bias module sizes — a larger φ gen-
erally results in smaller modules. Particularly, when setting
φ = 0, Altair simply groups functions with non-zero over-
lap values as modules; on the other extreme, when setting
φ = 1, each individual function may be regarded as a sepa-
rate module.

5. DISCUSSION
This section discusses measures and limitations for gener-

ating API cross-references.

5.1 Alternative Measures
Below are other possible measures we have investigated.

Similarity

In fact, our initial implementation of Altair was based on
SimRank [19], a powerful measure used to compute similar-
ity between two items. However, there are several serious
issues when using it to generate API cross-references.

First, it focuses on how two functions are similar rather
than how they are related. Consider a “big” function f that
contains the core functionality and another “smaller” func-
tion g that only touches a very small portion of state. The
two are not similar because they differ vastly on sizes of data
they access, though the smaller one g is clearly related to
f and it would be missed using SimRank. Other similarity
measures have the similar problem.

Besides, SimRank has some counter-intuitive properties
that is not suitable here. For example, when two functions
both access two data fields rather than one, their similarity
value computed by SimRank would become even lower [7].

Association

As mentioned before, association measures reflect how often
two functions are used together in client code. As we will see
in Section 7.1, an association-based API recommendation

algorithm FRIAR [36] will miss related functions in many
cases, especially when client code is limited.

Importance

Given a set of functions, an importance ranking algorithm
computes the “hottest” ones, such as HITS [20]. Note that
such an algorithm itself does not accept a given query as
input at all; it ranks all functions rather than finds most
relevant ones to a query.

To adapt an importance ranking algorithm for finding re-
lated functions, one may first find a “neighbor” set of the
given query and rank the set according to importance. For
example, FRAN [36] finds neighbors in a call graph and
ranks them using HITS. However, the most important func-
tions may not be relevant to the query. See Section 7.1 for
a comparison between Altair and two importance-based al-
gorithms, Suade [35] and FRAN [36].

5.2 Limitations and Extensions
Altair computes pair-wise relevance based on overlap. One

may introduce other heuristic measures, such as naming con-
vention [47] and source organization [40], e.g., two API func-
tions with a common prefix or declared in the same header
file may be related. Besides, Altair does not understand
semantic relevance, e.g., recommending a SHA-1 hashing
function when given a query of MD5.

Since Altair requires to analyze API implementations, it
does not work for low-level system calls, the code of which is
usually unavailable. Altair may incorporate with association-
based approaches in this case.

Currently Altair does not consider overlap between two
wrapper functions. From a wrapper function users can only
navigate to the functions it wraps.

It remains unclear how to weight edges in an access graph.
Altair simply treats them uniformly. It is straightforward to
generalize overlap rank to a weighted access graph.

Altair accepts a query of one function. It is easy to extend
Altair to accept a query that consists of a set of functions.
It could first merge the data that these functions access and
compute the overlap with others.

6. IMPLEMENTATION
Altair’s backbone is written in C++. The analysis part

is implemented in the LLVM compiler infrastructure [21],
which includes a GCC front-end.

Our current implementation to deal with C language fea-
tures is unsound in several ways. It does not support pointer
arithmetic. It resolves function pointers intra-procedurally
and ignores unresolved ones.

Altair provides XML and JSON back-ends. Combined
with code annotations (e.g., a brief description of each API
function) extracted by doxygen, Altair provides a friendly,
interactive user interface for searching and browsing API
functions via the Exhibit web application framework [17].
Readers may refer to Altair’s web site for online demos.

7. EXPERIMENTS
In this section we evaluate Altair’s ranking and clustering

algorithms for API hyperlinking and present quantitative
performance results. All experiments were conducted on a
laptop with a 2.4 GHz Intel Core 2 Duo CPU and 4 GB
memory, running Mac OS X 10.5.6.
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7.1 Ranking Comparison
We first compare Altair (ranking only) with three recent

algorithms: Suade [35], FRAN, and FRIAR [36]. As dis-
cussed in Section 5, Suade and FRAN are based on impor-
tance while FRIAR is based on association.

Note that Suade is not initially designed for API recom-
mendation; we use a re-implementation from the FRAN and
FRIAR paper [36]. We also adopt all the four test cases from
the paper, plus two additional ones, all based on the snap-
shot of Apache HTTP server 2.0.x source code on October
1st, 2003. They are from a separate, low-level API called
Apache Portable Runtime (APR) that the Apache HTTP
server is built on top of. Note that most APR function
names are with prefix “apr_”.

Since none of the tools use function names as recommen-
dation heuristics, it is reasonable to compare results by in-
specting whether they are prefixed with “apr_”. Note that
many functions inside the Apache server (rather than APR)
are with prefix “ap_”, which should generally be considered
irrelevant to APR functions.

Altair uses default ranking settings described in Section 3,
along with two annotations for APR allocation functions,
i.e., apr_palloc and apr_pcalloc.

Figure 8 lists the queries and the corresponding results
produced by each tool. FRIAR answers none for first four
cases, so we ignore it during those discussions.

First, apr_file_eof is a file function that tests the end-
of-file indicator. Suade returns an irrelevant function, which
is also included in FRAN’s result. FRAN further returns
apr_file_read, a related function with the common prefix
“apr_file_”; its second result ap_rputs is not part of APR
but a server function that sends a string to clients, which
has nothing to do with file operations. Altair retrieves nine
file operation functions (see names apr_file_*) and all of
them are from the same module of the query.

Similarly, Altair returns more precise and complete re-
sults from the network (socket) module for the second query
apr_socket_listen, a networking function that listens on
a socket. Suade returns two non-APR functions. FRAN
returns three related functions, while others are not. For
example, ap_log_perror is used to append an entry in a
server’s error log, which is not related to networking.

The third query is apr_collapse_spaces, a self-contained
function that simply strips all spaces in a string. It is not
necessarily to be used with any other functions. In this case,
Suade and FRAN returns some irrelevant results; Altair re-
turns nothing, as we expected.

The fourth query apr_pool_terminate is not an API func-
tion and should have not be used for comparison. We put
it here for completeness purpose only because it appeared
in the previous paper. The function is documented as “pro-
grams do NOT need to call this directly”. It is called in-
ternally by APR to clean some global state (e.g., a global
pool) when APR terminates. Note that the function’s name
is confusing — actually it does not even have any parame-
ter, meaning it will not be used together with pool routines
such as apr_pool_destroy that destroys a given pool object
(see next query). Altair returns three results. The first one,
apr_pool_initialize, is a similar internal function that ini-
tializes global state when APR starts, corresponding to the
query apr_pool_terminate. The second result cleans up
global state, too; it has no parameter either and does a sim-
ilar job to the query function. The third function allocates

a new pool; Altair gets it because the function may access
the global pool as the query function does.

The next query apr_pool_destroy is a “real” pool API
function. Altair returns precisely pool operations. Suade
returns an unrelated thread function in the second. The
results returned by FRAN and FRIAR include a standard
C string function strlen, which is not a part of APR.

The last query apr_hash_get is a hash table lookup func-
tion. In this case Altair returns apr_hash_*, clearly from the
same module of the query. Other tools return some irrele-
vant memory operations and miss the expected hash table
functions.

Most test cases were adopted from previous work rather
than chosen by ourselves, with the hope that the comparison
could be more fair. We added the last two cases because oth-
erwise FRIAR would give nothing for all queries. We have
further tried many other APR functions. The results show
that Altair consistently outperforms previous recommenda-
tion tools. Suade and FRAN sometimes recommend irrele-
vant functions, while FRIAR may simply answer none, e.g.,
for the first four cases. The overlap-based ranking criterion
used in Altair is more reliable; even if some API functions
are never called by any code, Altair can still produce re-
markably precise and complete results.

We did not do comparison against additional APIs, be-
cause the other tools only provided test data for the Apache
snapshot. We also recognize that ideally we should compare
these tools based on some prior, quantitative standard (if
existed), though it is difficult to do so.

7.2 Modular Precision and Recall
In addition to ranking we evaluate whether Altair is able

to extract meaningful modules with respect to given queries;
other API recommendation tools do not support doing so.

We reuse Apache 2.0.x from the previous subsection, which
contains 1,051 public functions. Due to space limitation, we
show results of the first two queries: apr_file_eof in the
“file I/O handling” module and apr_socket_listen in the
“network routines” module. According the documentation,
the two modules have 51 and 54 functions, respectively.

Since the number of module k is unknown, Altair uses
the bi-partitioning workaround by tuning threshold φ, as
discussed in Section 4.3, and finds the module that the given
query belongs to.

Let A and B be sets of functions extracted by Altair and
documented by Apache for the same module, respectively.
We measure precision and recall rates [43] as the threshold
φ varies, defined as follows.

precision =
|A ∩B|
|A| recall =

|A ∩B|
|B| (7.1)

Roughly speaking, precision measures the percentage of ex-
tracted functions while recall measures that of documented
functions.

As shown in Figure 9, Altair achieves both high precision
and recall rates, i.e., 82.2% and 72.5% for the file module,
and 93.0% and 74.1% for the network module, given φ = 0.2.
The threshold φ should be small because the documented
modules by Apache are coarse-grained (more than 50 func-
tions in one module). As φ gets larger, Altair extracts fined-
grained modules that are more related to the query, thus the
precision increases and the recall decreases. For example,
for query apr_file_eof with φ = 0.5, apr_file_seek and
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Suade FRAN FRIAR Altair
apr_file_eof( do_emit_plain apr_file_read N/A apr_file_seek
apr_file_t *file) ap_rputs apr_file_read

do_emit_plain apr_file_dup
apr_file_dup2
(... 5 more)

apr_socket_listen( listen apr_socket_opt_set N/A apr_socket_shutdown
apr_socket_t **new_sock, make_sock apr_socket_close apr_os_sock_get
apr_socket_t *sock, apr_socket_bind apr_socket_atmark
apr_pool_t *pool) ap_log_perror apr_socket_send

ap_sock_disable_nagle apr_socket_recv
make_sock apr_socket_sendto

(... 14 more)
apr_collapse_spaces( __ctype_b_loc ap_cfg_getline N/A N/A
char *dest, read_quoted
const char *src) get_x_coord

get_y_coord
(... 41 more)

apr_pool_terminate(void) apr_pool_destroy apr_pool_destroy N/A apr_pool_initialize
apr_pool_clear apr_pool_cleanup_for_exec
destroy_and_exit_process apr_pool_create_ex
start_connect
(... 15 more)

apr_pool_destroy( apr_allocator_owner_get apr_pool_create_ex apr_pool_create_ex apr_pool_clear
apr_pool_t *pool) apr_thread_exit strlen apr_pool_clear apr_pool_create_ex

apr_pool_terminate apr_palloc strlen apr_palloc
(... 24 more) (... 138 more) (... 29 more) (.. 6 more)

apr_hash_get( find_entry apr_palloc apr_hash_set apr_hash_copy
apr_hash_t *ht, find_filter_def apr_hash_set apr_palloc apr_hash_merge
const void *key, dav_xmlns... memcpy apr_hash_make apr_hash_set
apr_ssize_t klen) dav_xmlns... strlen strlen apr_hash_make

dav_get... apr_pstrdup apr_pstrdup apr_hash_this
(... 25 more) (... 95 more) (... 18 more) (... 3 more)

Figure 8: A comparison of API recommendation tools.
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Figure 9: Clustering threshold φ (X-axis) with cor-
responding precision and recall rates (Y-axis) for ex-
tracting modules of two APR functions.

apr_file_read were retained in the results since they are
more related to the query, while less related functions like
apr_file_dup were excluded.

Note that the recall rates may be underestimated, be-
cause some documented API functions are not available on
our testing platform (e.g., apr_socket_sendfile). In other
words, they are not compiled and analyzed by Altair. Test-
ing on another platform or changing Apache compile config-
urations may further improve the results.

Besides, with φ = 0 the recall rates may not reach 100%,
which means that Altair misses some functions in the mod-
ules even when it does not do clustering. One example is
apr_file_remove in the file module, which simply delegates
calls to the system call unlink and does not overlap or share
state with others. The result poses an interesting issue that
one cannot extract the file module given apr_file_remove,
because it is a corner function that does not connect to other
file operations in data. On the other hand, our experience

Compress
BZ2_bzCompressInit
BZ2_bzCompress
BZ2_bzCompressEnd

Decompress
BZ2_bzDecompressInit
BZ2_bzDecompress
BZ2_bzDecompressEnd

File operations

BZ2_bzReadOpen
BZ2_bzRead
BZ2_bzReadClose
... (8 in total)

Utility
BZ2_bzBuffToBuffCompress
BZ2_bzBuffToBuffDecompress

Figure 10: The bzip2 API with four modules.

shows that starting with a query of either apr_file_eof or
apr_file_read will result in almost the same module, be-
cause they are both“core” functions and share common data
with other operations in file module.

It is worth noting that simply using function parameter
type apr_file_t of apr_file_eof to group the APR file
module does not work. Even another software package Sub-
version [4] has a number of API functions with apr_file_t

as parameter types; they are clearly neither part of the file
module nor APR.

The clustering results show that Apache (especially APR)
is fairly modularized and that Altair can extract modules
with acceptable precision and recall rates from a moderate-
sized program (1,000+ functions).

7.3 Case Study
This case study uses bzip2 to illustrate how k- and bi-

partitioning work for clustering, and to justify our argument
that naive grouping of functions is not sufficient.
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According to the manual, the bzip2 API contains 16 of-
ficial functions, which can be split into four modules, as
listed in Figure 10. Altair first extracts them from source
code and computes pair-wise overlap. It detects one wrap-
per function, BZ2_WriteClose, which simply delegates calls
to another API function BZ2_WriteClose64. Since the wrap-
per BZ2_WriteClose can be considered to belong to the same
module of BZ2_WriteClose64, Altair removes the wrapper
and continues with the rest 15 functions.

To visualize clustering results we represent each function
as a k-dimensional vector, using Yi generated in the fifth
step of the k-partitioning algorithm (see Figure 7).

If the number of modules k = 4 is priorly known as in-
put, Altair outputs exactly the same module partitions as
in Figure 10. Here we omit the figure since it is difficult to
visualize 4-dimensional vectors.

If k is unknown, Altair performs recursive bi-partitioning
(k = 2) unless λ2/2 exceeds some threshold φ. The results
are shown in Figure 11. The first bi-partition (a) successfully
distinguishes seven file operations, the second (b) identifies
three decompress functions, and (c) separates three com-
press functions, leaving two utility functions. The results
are consistent with Figure 10, indicating that these API
functions are well separated by Altair — our tool even pre-
cisely identifies fine-grained compress and decompress func-
tions, which operate on the same structure. Simply grouping
function can hardly identify the two modules since they still
share a small amount of data.

In addition, we measure λ2/2 for bi-partitions (a), (b), (c),
and further partitions of the four resulting modules, shown
in Figure 11(d). We can see that the values of λ2/2 for (a),
(b), and (c) are relatively small, indicating that bzip2 API
is fairly modularized so that it can be easily partitioned.
Interestingly, if we continue partitioning the four resulting
modules, λ2/2 will increase noticeably. Hence φ = 0.4 is a
good stop criterion in this case; modular precision and recall
can both reach 100%.

Once having module results, Altair can generate docu-
mentations with clustered cross-references, as in Figure 2.
The module information can be further used as prerequisite
input (e.g., the initial set of functions) to other software en-
gineering tools, such as specification mining tools [6]. For
instance, the finite-state automaton of the bzip2 compress
API should be as follows.

(BZ2_bzCompressInit; BZ2_bzCompress∗; BZ2_bzCompressEnd)∗

A specification mining tool is expected to learn it from run-
ning trace. However, if the trace is noisy, e.g., containing
some unrelated function BZ2_bzDecompress, the resulting
automaton would be imprecise [25]. As we have shown in
the case study, Altair is able to extract precise modules from
structural information and help these tools.

7.4 Quantitative Results
Figure 12 lists benchmarks for quantitative results, con-

sisting of five popular software packages. The line of code
(KLOC) is measured over LLVM intermediate representa-
tions (IRs), which will not be affected by spaces or com-
ments. V and E are numbers of vertices and edges in aug-
mented access graphs during analysis, respectively. F is the
number of functions Altair retrieves for ranking and clus-
tering. Time and memory consumption are measured using
the time command [5]. We also list allocation functions we

manually annotated, at most two for each package.
We do not report analysis and ranking time, because both

are less than one second. The clustering time measures the
first bi-partition of all functions, only a few seconds for all
benchmarks. Moreover, even if we set φ = 1, i.e., to force
Altair to exhaustively bi-partition every function into a sepa-
rate module, clustering of openssl (the most time-consuming
benchmark) can finish within 90 seconds. The time can be
further reduced when Altair runs on multi-core processors.
The first and exhaustive bi-partitions of openssl can finish
within two and eight seconds, respectively, on a Linux SMP
server with four 2.0 GHz quad-core processors.

Since httpd-2.2.10 has been manually annotated with @see

in source code, we estimate how much Altair may help it. Of
1,461 documented functions in httpd-2.2.10, 15 (1.0%) are
commented with @see, while Altair generates cross-references
for 895 functions (55.1%). The percentage may be further
improved, because Altair reuses the makefile of httpd for
analysis and not all Apache modules are compiled. We be-
lieve that the coverage rate is acceptable.

In addition, for the 15 functions that are manually anno-
tated with @see, Altair’s results cover 10 of them. Since by
default Altair only relates wrappers to functions they wrap,
changing Altair’s configuration for wrappers would increase
the number to 14, missing only one @see that appears to be
semantic relevant.

8. RELATED WORK
This section relates Altair to previous work.

API Recommendation

There is a large body of work of API tools that help develop-
ers to learn API usages in a convenient way. Prospector [27]
is a notable tool that answers queries of how to create cer-
tain Java types. It mines code snippets from both API type
signatures and client code for reuse. ROSE [49] finds the re-
lation of functions by mining co-changes in version histories
of software. Strathcona [14] and XSnippet [41] find rele-
vant code examples from a repository, which focus on how
to accomplish a specific task composing several API func-
tions from existing examples. Altair emphasizes related API
implementations in the same modules. They could comple-
ment and leverage each other.

PR-Miner [22] extracts frequent API patterns from source
code. If there is any violation, i.e., an API pair is mostly
used together but not at some program point, it indicates
a potential bug. As shown in Section 7.1 and in previous
work [36], though effective for bug detection, such algo-
rithms might be missing for extracting API cross-references
because they depend on specific client code.

The FRAN algorithm [36] extends Suade [35] to recom-
mend API functions using random walks, which shares part
of the goal of Altair. As discussed before, both algorithms
rank functions based on importance out of call graphs. Altair
constructs an access graph to exploit overlap between func-
tions, which can return more precise and complete results in
general.

Module Clustering

There is a rich research literature on partitioning software
for comprehension and clustering modules to recover the de-
sign [8, 16]. Similar techniques have been developed to iden-
tify objects in legacy code written in procedural languages
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Figure 11: Recursive bi-partitioning of bzip2 API modules, where (a) separates file operations, (b) separates
decompress, (c) separates compress from utility functions, and (d) measures λ2/2 for each bi-partition. Points
(some may overlap) represent functions, the numbers of which are indicated in the parentheses along with
their module names.

Package KLOC V E F Clustering (sec) Memory (MB) Allocation
bzip2-1.0.5 30.0 175 458 16 < 1 4.6 –
sqlite-3.6.5 163.8 2,391 7,873 751 1 55.8 sqlite3_{malloc, free}
httpd-2.2.10 256.6 4,061 10,069 1,188 1 109.9 apr_{palloc, pcalloc}
subversion-1.5.6 438.8 6,620 17,391 1,632 9 205.1 apr_{palloc, pcalloc}
openssl-0.9.8i 553.8 7,197 12,999 3,599 28 374.5 CRYPTO_{malloc, free}

Figure 12: Benchmarks. KLOC is measured over LLVM IRs; V and E are the numbers of vertices and
edges in augmented access graphs (before computing transitive closure), respectively; F is the number of
API functions; we list clustering time (ranking and analysis time is negligible), memory consumption, and
allocation functions we manually annotated.

(see [9] for a survey). Even in object-oriented software sys-
tems, one may inspect the use relations among classes [18]and
cluster them into larger components for visualization. Clus-
tering call graphs [46] is another option.

It remains unclear what criteria may work best for cluster-
ing general systems. As for API functions written in C, our
analysis seems to work well, since Altair captures pair-wise
overlap of both global and local data between functions. In
addition, the overlap and modularity measures are easy to
interpret.

Concept analysis [38] is also an effective approach to iden-
tify modules. There have been debates on whether concept
analysis [42] or clustering [34] works better. The main prob-
lem of concept analysis is that it may produce meaningless,
“tangled” modules [38], especially when two modules cannot
be perfectly decoupled, e.g., they share minor state. Spec-
tral clustering used by Altair is more flexible and does not
have this limitation.

Spectral clustering was first introduced in the 1970s [12].
As discussed in Section 4.2, it matches our intuition of mod-
ules well, imposes no further requirements over measures,
and usually outperforms other methods. Our experiments
show that it can be computed efficiently using linear algebra
libraries. Sometimes it is referred as normalized cut [37] in
the area of computer vision and machine learning.

Program Analysis

Altair conservatively assumes that two variables with the
same type may alias and takes the advantage for a faster
computation. It may adopt other more precise and expen-
sive pointer analysis [33].

Altair computes data that each function f may access,
The information can be used to extract data fields that are
often used together, e.g., a buffer and its length, which is
useful for discovering consistency and concurrency bugs [26].

Structural overlap is related to program slicing [44, 15],
though the formulation is different. To compute overlap
between functions, one should track shared data fields and
ignore values that simply flow from one function to another
via assignment. Besides, Altair computes overlap in an open
program rather than in a whole program.

Another interesting technique is automatic program par-
titioning. Swift [11] partitions a web application into client
and server under some security constraints, and performs
a minimum cut to reduce network communication between
them. Flowcheck [29] also computes a minimum cut to esti-
mate a program’s potential privacy leaks via dynamic anal-
ysis. Altair instead uses a normalized cut for clustering, be-
cause using minimum cut would result in small, meaningless
leaf sets.

9. CONCLUSION
To automate generation of API function cross-references,

Altair computes pair-wise overlap and rank related func-
tions accordingly. It outperforms previous API recommen-
dation tools by exploiting reliable structural information,
which is not sensitive to specific client code. Altair also
helps developers understand software structures by decom-
posing them into meaningful modules using spectral clus-
tering. It would be interesting to collect user behavior for
guiding cross-reference generation in the future.
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