
Appears inProceedings of the 11th IEEE International Conference on Network Protocols (ICNP 2003)

Exploiting Routing Redundancy via
Structured Peer-to-Peer Overlays

Ben Y. Zhao, Ling Huang, Jeremy Stribling,
Anthony D. Joseph, and John D. Kubiatowicz

Computer Science Division, U. C. Berkeley

�ravenben, hling, strib, adj, kubitron�@cs.berkeley.edu

Abstract

Structured peer-to-peer overlays provide a natural in-
frastructure for resilient routing via efficient fault detec-
tion and precomputation of backup paths. These overlays
can respond to faults in a few hundred milliseconds by
rapidly shifting between alternate routes. In this paper, we
present two adaptive mechanisms for structured overlays
and illustrate their operation in the context of Tapestry, a
fault-resilient overlay from Berkeley. We also describe a
transparent, protocol-independent traffic redirection mech-
anism that tunnels legacy application traffic through over-
lays. Our measurements of a Tapestry prototype show it to
be a highly responsive routing service, effective at circum-
venting a range of failures while incurring reasonable cost
in maintenance bandwidth and additional routing latency.

1. Introduction

With the continued growth of the Internet, developers
are deploying new and larger scale network applications,
such as file sharing, instant messaging, streaming multime-
dia and voice-over-IP (VoIP). These applications are plac-
ing increasingly heavy demands on the Internet infrastruc-
ture, requiring highly reliable delivery and quick adaptation
in the face of failure.

Unfortunately, it is becoming increasingly difficult to
meet these criteria. The growing size and complexity of the
network lead to frequent periods of wide-area disconnec-
tion or high packet loss. A variety of factors contribute to
this, including router reboots, maintenance schedules, BGP
misconfigurations, cut fibers and other hardware faults. The
resulting loss and jitter on application traffic creates signifi-
cant roadblocks to the widespread deployment of “realtime”
applications such as VoIP.

The magnitude of this loss and jitter is a function of the
routing protocol’s response time to faults, including time to

detect a fault, construct a new path, and reroute traffic. Re-
cent work has analyzed the fault-recovery time of intra-AS
protocols such as IS-IS for large IP backbone networks [11].
It found that while overall recovery is on the order of five
or six seconds, the majority of delay is not due to fault-
detection or path recalculation; it arises from timed delay
between fault-detection and update of routing entries in the
linecards. The latter is exacerbated by hardware features of
current routers. Without these factors, it is reasonable to ex-
pect IS-IS to respond to route failures in two or three sec-
onds.

Wide-area route convergence on BGP [23] is signifi-
cantly slower. Recent work has identified interactions be-
tween protocol timers as the fundamental cause of de-
layed convergence. Because BGP disseminates reachabil-
ity updates hop by hop between neighbors, full propaga-
tion across a network can take��� seconds, where� is the
longest alternative path between a source and any destina-
tion AS, and 30 is the length of a typical BGP rate limit-
ing timer [16]. Unfortunately, studies have shown a signifi-
cant growth in BGP routing tables fueled by stub ASes [2],
meaning the delayed convergence problem will only grow
in severity with time.

One commonality between deployed protocols is that the
network is treated as an unstructured graph with arbitrary
connections, implying the potential for any-to-any depen-
dencies between peers. Local changes must therefore be
propagated to all other peers in the network. Attempts to
aggregate such state to reduce bandwidth is a primary mo-
tivation for several of the timers that contribute to the route
convergence delay. Addressing schemes such as CIDR [22]
that introduce hierarchy and structure into the namespace
reduce the amount of routing state, and potentially reduce
the need for long term timers. The problem remains that
inter-AS routing is driven by peering agreements and pol-
icy, making state reduction a difficult problem.

In this paper, we make two contributions to address these
issues. First, we propose the use of structured peer-to-peer
(P2P) overlay networks [6] as resilient routing infrastruc-

1

Client−end DaemonTunneling TrafficControl Traffic

P2P Overlay Network

Peer Proxy

Peer Proxy

P2

P1

Legacy
Node A

Legacy
Node B

Register: A=P1’

Register: B=P2’
RouteToID(P2’)

RouteToID(P1’)

��

��

Figure 1. Tunneling traffic through a wide-area overlay. Legacy
application nodes tunnel wide-area traffic through the overlay.

tures. Since they support efficient fault detection and pre-
computation of backup paths, P2P overlays can rapidly
switch between alternate paths during network failure. Sec-
ond, we describe a general redirection and addressing mech-
anism that transparently redirects IP traffic from legacy ap-
plications through the overlay—providing stable communi-
cation to legacy applications in the face of a variety of faults.
Figure 1 illustrates this high level architecture.

Structured P2P overlays utilize local routing resources of
���������, resulting in low control traffic and fast prop-
agation of route updates. In contrast, previous unstructured
approaches, like Resilient Overlay Networks [1], exhibit the
same state management problem as seen in BGP. Conse-
quently, unstructured networks incur��� �� total beacon
messages for fault detection and backup path construction,
preventing the system from scaling to hundreds of nodes.

Two adaptive routing mechanisms that are straightfor-
ward to implement in structured overlays areFirst Reach-
able Link (FRLS) and constrained multicast. The first
chooses between one of a set of routing paths that are
most stable, while the second sends duplicate pack-
ets along alternate paths to adapt to high packet loss.
To maintain their level of routing redundancy, struc-
tured P2P networks must continually refresh their rout-
ing tables. The result is a decoupling of the discovery
of backup paths (“precomputation”) from rapid adapta-
tion to failure (“route selection”). Precomputation shields
applications from slower route convergence at the net-
work layer.

In the following, we demonstrate the benefits of over-
lay routing through structured P2P overlays using a com-
bination of analysis, simulation, and experimental mea-
surements. We deploy a prototype of the Tapestry sys-
tem [10, 32], a fault-resilient overlay that implements these
adaptive mechanisms. We show that Tapestry can recover
from network failures in under 700 milliseconds while us-
ing less than 7 Kilobytes/second of per-node beaconing
traffic—agile enough to support most streaming multime-
dia applications. Our design should be scalable and easy for
Internet Service Providers (ISPs) to deploy, providing fault-
resilient routing services to legacy applications.

The remainder of this paper is as follows: Section 2 de-
scribes how to utilize a structured peer-to-peer overlay net-

work to quickly detect routing failures and route around
them using precomputed backup paths. Then, Section 3 de-
scribes the architecture of a fault-tolerant traffic tunneling
service built with such an overlay. We evaluate of our de-
sign in Section 4. Finally, we discuss related work in Sec-
tion 5 and conclude in Section 6.

2. Fault Tolerant Overlay Routing

In this section, we examine the fault-tolerant rout-
ing properties of structured peer-to-peer overlay networks.
First, we give an overview of these overlays and their gen-
eralized properties. Our algorithms require only the ba-
sic key-to-node mapping function common to all of these
protocols. While we motivate our examples and per-
form measurements using a locally designed protocol
(Tapestry), our results should extend to others. We then dis-
cuss mechanisms for efficient fault detection. Finally, we
propose techniques for routing around link failures and
loss, and for maintaining routing redundancy across fail-
ures.

2.1. Structured Peer-to-Peer Overlays

Structured peer-to-peer (P2P) overlay networks have re-
cently gained popularity as a platform for the construction
of resilient, large-scale distributed systems [9, 18, 19, 21,
25, 27, 32]. Structured overlays conform to a specific graph
structure that allows them to locate objects by exchanging
������� messages in an overlay of� nodes.

A node represents an instance of a participant in the over-
lay (one or more nodes may be hosted by a single physi-
cal IP host). Participating nodes are assignednodeIDs uni-
formly at random from a largeidentifier space. Application-
specific objects are assigned unique identifiers calledkeys,
selected from the same identifier space. For example, Pas-
try [25], Tapestry [10, 32], Chord [27], Kademlia [19] and
Skipnet [9] use an identifier space of�-bit integers modulo
�� (� 	
�� for Chord, Kademlia, Skipnet and Tapestry,
� 	
�� for Pastry).

Overlays dynamically map each key to a unique live
node, called itsroot. These overlays support routing of
messages with a given key to its root node, calledKey-
Based Routing [6]. To deliver messages efficiently, each
node maintains arouting table consisting of the nodeIDs
and IP addresses of the nodes to which the local node main-
tains overlay links. Messages are forwarded across overlay
links to nodes whose nodeIDs are progressively closer to the
key in the identifier space, such as in Figure 2. Each system
defines a function that maps keys to nodes. For example,
Tapestry maps a key to the live node whose nodeID has the
longest prefix match, where the node with the next higher

2

L4

L2

L1

L3

L4

L4

L3

L2

L3
L2

L1

8954

89008909

8957

AC78

8F4B

5230

8BB2

8112

89E3

8951

895D

Figure 2.Routing example in Tapestry. Routing path taken by a
message from node5230 towards node8954 in Tapestry us-
ing hexadecimal digits of length four. As with other key-based
routing (KBR) overlays, each hop resolves one digit.

nodeID value is chosen for a digit that cannot be matched
exactly.

An important benefit of Key-Based Routing (KBR) is
that any node satisfying the namespace constraints can serve
as a next routing hop. For example, in Tapestry or Pastry, the
first hop of a message routing to the key 1111 requires only
that the node’s nodeID begins with 1. This property allows
each overlay node to proactively maintain a small number
of backup routes in its routing table. Upon detecting a failed
outgoing link, a router can rapidly switch to a backup link,
providingfast failover. In the background, the overlay net-
working algorithms can adapt to failure by restoring (re-
pairing) the redundancy in backup links. We discuss this
further in Section 2.3.

Most structured P2P protocols support Key-Based Rout-
ing, but differ in the performance tradeoffs they make.
Where appropriate, we will use details of Tapestry to illus-
trate our points in later discussions. Tapestry [32] is a struc-
tured peer-to-peer overlay that uses prefix matching to route
messages to keys, where each additional hop matches the
key by one or more digits. For each routing entry, Tapestry
tries to locate the nearest node with the required prefix in its
nodeID using a nearest neighbor search algorithm [10].

One discerning factor isproximity routing, the latency
optimization of routes using knowledge of physical network
latencies during overlay construction to improve end-to-end
latency. The overhead of routing on an overlay is generally
measured as the Relative Delay Penalty (RDP), the ratio of
overlay routing latency to IP latency. As we will show in
Section 4, proximity enabled overlays such as Tapestry pro-
vide low overhead over IP. Thus, tunneled IP traffic gains
resilience to faults without unreasonable increases in delay.

2.2. Efficient Fault Detection

Over 70% of Internet failures have durations less than
two minutes [7], making fast response time the key objec-
tive for any fault-resilient routing mechanism. Traditionally,

0

20

40

60

80

100

1 10 100 1000 10000 100000 1e+06

B
ea

co
ns

 p
er

 p
er

io
d

pe
r

no
de

of Nodes in Overlay

Unstructured Overlay (N2)
Tapestry/Pastry b=4

Basic Chord

Figure 3.Fault-detection Bandwidth. Unstructured overlay net-
works consume far more maintenance bandwidth than struc-
tured P2P networks. Bandwidth here is measured in beacons
per node per beacon period.

response time (��) is the sum of fault detection time (��)
and path discovery time (��): �� 	 ��
 ��. Proactively
maintaining backup paths allows us to immediately redi-
rect traffic after failure detection, eliminating path discov-
ery time (�� � ��). We now focus on minimizing�� .

Application-level protocols generally depend on soft-
state beacons (or heartbeat messages) to detect link and
node failures. Bandwidth (�) is often the limiting factor,
and is proportional to the product of the number of entries
in each routing table () and the heartbeat frequency (
):
� � 	 �
 . Nodes in structured peer-to-peer overlays main-
tain routing state () that grows logarithmically to the net-
work size (�): 	 � ������. Compared to unstructured
protocols [1] with linear growth routing state (� �),
these overlays can send beacons at significantly higher fre-
quencies while consuming identical bandwidth. Figure 3
shows the number of heartbeats sent per period for both un-
structured overlays such as RON and structured P2P over-
lays such as Tapestry and Chord.

Total Bandwidth Consumption: The number of beacons
sent per period is useful, but does not capture their true im-
pact on the network. Since queuing delay and congestion
happen on a per IP router basis, identical messages travers-
ing different overlay hops can place different stresses on the
network depending on the number of IP hops traversed. A
more accurate measure is theTotal Bandwidth Consump-
tion (TBC), measured as a bandwidth distance product:

��� 	 ��
�
�
��� � �����
��
�� � �����
 (1)

This metric reflects the fact that longer paths have a greater
opportunity cost since they consume more total resources.
Crossing fewer IP hops also means routes with low TBC
have fewer chances of encountering failures.

Messages routing across latency-optimized over-
lays cross a smaller number of IP routers and incur a lower
TBC. We further quantify this effect in Figure 10 in Sec-
tion 4.1, by comparing simulated TBC for a single struc-

3

2286

2225

2274

253022812046

1111

2299

1111

2046 2281 2530

22742299 2286

2225

Primary Route

Secondary Route

Tertiary Route

Original Route Path

Link Failure

Rerouted Path

Figure 4. First Reachable Link. Using simple route selection
(First Reachable Link or FRLS) to circumvent single and mul-
tiple failed links on an overlay path from 5230 to 8954.

Primary Route
Secondary Route

2530

22862274

2225

2046 2281

1111

2299 2274

2225

2286

253022812046

1111

2299

Multicast Path

Figure 5. Constrained Multicast. Two examples of constrained
multicast showing the multicast occurring at different posi-
tions on the overlay path.

tured P2P protocol (Tapestry), constructed with and without
overlay hop latency information.

Link Quality Estimation: To measure the quality of rout-
ing links, nodes send periodic beacons on outgoing links.
At longer periodic intervals, each node replies with an ag-
gregated acknowledgment message. Each ack includes se-
quence numbers for beacons received, allowing the sender
to gauge overall link quality and loss rates. Backup routes
need to be probed periodically as well. To conserve band-
width, we send beacons to primary entries using one beacon
rate, and probe backup entries at half that rate.

We derive an estimated link quality from the current
measured loss rate and a history of past values. To avoid
overreacting to intermittent problems (and avoid route flap-
ping), we introduce damping by estimating loss rate as:

�� 	 �
� �� � ����
 � � �� (2)

where�� is an instantaneous loss rate from the current pe-
riod, and� is the hysteresis factor. We explore the appropri-
ate damping factor in Section 4.

2.3. Resilient Routing Policies

Having described mechanisms to maintain and monitor
backup paths, we need to define how such paths are used
to evade routing failures. We describe here two policies that

1st Hop

2nd Hop

3rd Hop

Secondary Route

Tertiary Route

2222

2221

2046 2281 2530

1111

22742299 2286

2225 2220

Primary Route

Figure 6. Path convergence with prefix routing. Routing path
from 5230 to 8954 in prefix-based protocol. Note that with
each additional hop, the expected number of nearby next hop
routers decreases, causing paths to rapidly converge.

define how routes are chosen under failure and lossy condi-
tions. In our discussions, we refer toprimary andbackup en-
tries in the routing table, where backups are next hop nodes
that satisfy the routing constraint but are further away in the
network.

First Reachable Link Selection: We first define a sim-
ple policy calledFirst Reachable Link Selection (FRLS),
to route messages around failures. A node observes link or
node failures as near-total loss of connectivity on an outgo-
ing route. From a set of latency sorted backup paths, FRLS
chooses the first route whose link quality is above a defined
threshold�����. See Figure 4 for two examples.

Constrained Multicast: Simple link selection is less ef-
fective when multiple links are experiencing high loss. We
proposeconstrained multicast, where a message entering a
lossy region of the network is duplicated, and the copies
are sent on multiple outgoing hops. Constrained multicast
is complementary to FRLS, and is triggered when no next
hop path has estimated link quality higher than�����.

For example, a node monitors three possible paths to the
next hop, (A, B, and C), and stores and sorts them sorted
by latency. A typical����� might be 70%. After a link fail-
ure on�, estimated link qualities might be 5% (A), 95% (B)
and 85% (C). FRLS chooses the first link in order with the
minimum link quality (B). In case of high loss, link quali-
ties might be 45%, 40%, and 60%. Since no path satisfies
�����, messages are duplicated and sent on some subset of
the available paths.

Figure 5 shows two examples of constrained multicast
occurring at different points in the routing path. A discus-
sion of routing policies that provide a controlled tradeoff
between bandwidth and reliability is available in [31].

While naive use of constrained multicast can exacerbate
lossy links when loss is due to congestion, the additional
traffic is sent on an alternate (likely independent) path. Ad-

4

ditionally, we now discuss a convergence property that can
significantly reduce the bandwidth overhead imposed by
duplicate messages, by allowing us to selectively detect and
drop duplicates.

Efficiency via Path Convergence:We observe that the
overhead of routing away from the primary path can be con-
trolled on protocols that demonstrate “path convergence,”
where paths to a common destination intersect at a rate pro-
portional to the distance between the source nodes. Figure 6
shows path convergence in Tapestry.

This property is exhibited in protocols that consider net-
work proximity in conjunction with ID-based constraints on
intermediate overlay routers. Pastry and Tapestry are pro-
tocols that implement proximity routing based on a pre-
fix routing scheme. With each additional hop, the expected
number of nodes in a network that qualify as a next hop
router decreases linearly. Therefore, nearby nodes are in-
creasingly likely to choose a common next hop as they zero
in on their destination by name and the number of possible
routers decreases. Recent work shows that underlying net-
work geometries for most protocols demonstrate path con-
vergence properties [8].

With path convergence, a message that takes a backup
route is likely to converge back to the primary path on
the next hop. This minimizes the impact of taking a single
backup path on end-to-end latency. For constrained multi-
cast, convergence allows routers to detect and drop dupli-
cate packets, minimizing the stress put on the network by
the duplicate. Routers identify messages by a flow ID and
a monotonically increasing sequence number. Each router
can effectively detect and drop duplicates with efficient use
of a finite queue of sequence numbers.

Self-Repair: While much of our discussion has focused on
routing on alternate paths when network links have failed,
we note that self-repair algorithms must be present to re-
plenish backup paths after recovering from a failure. Other-
wise, primary and backup paths will all eventually fail, leav-
ing some paths unreachable. When the overlay detects any
path failure, it must act to replace the failed route and re-
store the pre-failure level of path redundancy.

Algorithms for self-repair are specific to each overlay
protocol. In general, their goal is to find additional nodes
with a specific constraint (matching a certain prefix or hav-
ing a certain position in a linear or coordinate namespace),
given some nodes with that property. Two general strate-
gies are possible. A node can query nearby nodes to min-
imize repair latency, or query other nodes that already sat-
isfy the constraint. The latter strategy gives a much higher
chance of a successful repair, at the cost of contacting fur-
ther away nodes. For example, a Tapestry node can query
nearby nodes for nodes that match prefix� , or query nodes
in its routing table that already share� for similar nodes.

Normal Traffic, A−>B Overlay−tunned Traffic, A−>B

P2P Overlay

put(hash(IP_b), P’(B))get(hash(IP_b))

put(hash(IP_a), P’(A))

P
2P

 P
ro

xy

register(B)
P

2P
 P

roxy
register(A)

C. Daemon C. Daemon

Linux Kernel

Legacy Application

Legacy Node B

IP Network

Linux Kernel

Legacy Application

Legacy Node A

Figure 7. Proxy architecture. Architectural components in-
volved in routing messages from source� to destination �.
Destination � stores its proxy ID with a hash of its IP ad-
dress as an object in the overlay. The source proxy retrieves
�’s proxy ID from the overlay and routes �’s traffic to it.

3. Tunneling Traffic via Structured Overlays

In this section, we discuss an architecture that tunnels
legacy application traffic through the P2P overlay so that it
can benefit from the fault tolerance of Section 2; tunneled
traffic leverages overlay mechanisms to route around link
and node failures.

3.1. Transparent Tunneling

Figure 7 shows an architecture that tunnels application
traffic through an overlay via nearby proxy nodes. Clients
contain overlay-aware daemons that make themselves ad-
dressable in the overlay by locating nearby proxies and ad-
vertising mappings between their native IP addresses and
overlay proxy addresses. With each new outgoing IP con-
nection, a client daemon determines whether the destina-
tion is reachable through the overlay; if so, the daemon redi-
rects traffic to the nearby proxy where it enters the overlay,
routes to the destination proxy, then exits to the destination
node. We elaborate in the following paragraphs.

Proxy traffic redirection: Traffic redirection involves two
steps, registering a routeable ID for each legacy node in
the overlay ID space, and publishing a mapping from the
node’s IP address to that ID. To register an ID, the dae-
mon on the legacy node (�) first chooses a nearby overlay
node as its proxy using an introduction service or out-of-
band directory. Recall that in a structured P2P overlay, IDs
in the namespace are mapped to a specific “root” node. The
proxy (�) assigns� an ID in the ID space: (� ���), such
that � ��� is the closest unused id to� inside its range,
where range is defined by the routing protocol. Figure 8 il-
lustrates registration and tunneling.

For example, legacy nodes registering with a Chord
proxy would receive sequentially decreasing identifiers be-
ginning with� �
. This insures that messages addressed
to � ��� are delivered to� despite changes in the over-
lay membership. Assuming nodeIDs are assigned uniformly
at random, the probability that a given proxy node with�

5

0

proxy Id
destination

source
proxy Id

Figure 8. Registering with proxy nodes. Legacy application
nodes register with nearby proxies and are allocated proxy IDs
which are close to the name of the proxy node. Legacy nodes
can address each other with these new proxy names, routing
through the overlay to reach one another.

legacy clients loses one of them to a new overlay node is
��� where� is the size of the namespace. Given� active
proxy nodes, the chance of any proxy losing a legacy node
is then�� � ���� . For example, in a 160 bit namespace over-
lay of 10,000 nodes each averaging 10 legacy clients, the
probability of a new node “hijacking” one of them from its
proxy is�
� �
�� ���������, or �����.

The next step is to establish a mapping from�’s IP ad-
dress to its overlay ID. This allows the overlay to do a
“DNS-like” name translation. Since most structured P2P
overlays already have a storage layer such as a Distributed
Hash Table (DHT), we opt to utilize that instead. Therefore,
the proxy stores in the overlay a mapping between a hash of
the legacy node’s IP and its proxy identifier (�SHA-1(IP�),
� ��� �), either using theput call on a DHT interface, or
by storing the mapping locally and using thepublish call on
the DOLR interface [6].

Application Interface at Endpoints: The client-side dae-
mon is implemented as a set of packet forwarding rules and
a packet encapsulation process. The daemon can capture
packets using general rules in LinuxIP-chains or FreeBSD
divert sockets. It processes them, using IP-IP encapsulation
to forward certain packets to the proxy and the remainder
unchanged back onto the normal network interface.

The daemon has two responsibilities: register the local
IP address as a routeable destination in the overlay and di-
vert appropriate outgoing traffic to the overlay. We expect IP
registration to occur when the daemon starts, as described
above. Since not all destinations will have made themselves
reachable through the overlay, the daemon monitors outgo-
ing traffic and selects flows for tunneling. This can be done
in a local, user-transparent fashion by hijacking all DNS re-
quests and new connection requests. We query the new IP
addresses to determine whether they are reachable via the
overlay, and cache the result. When the application starts a
connection to an address routeable by the overlay, the dae-
mon notifies the proxy, which locates the destination node’s

proxy identifier by performing aget (SHA-1(IP �	�
)).

Redundant Proxy Management:While the overlay pro-
vides a scalable way to route around failures in the network,
a proxy may still fail or become disconnected from the over-
lay or the destination nodes it is responsible for. We outline
three possible solutions. In each case, a legacy node� reg-
isters with a small number (�) of proxy nodes, sorted in
order by a policy-driven metric such as latency to�, avail-
able bandwidth, or proxy load (defined by node registrations
or bandwidth consumption). The overlay maps the destina-
tion IP to its set of destination proxy identifiers. The sender
proxy also caches this information during connection setup.

The naive solution assumes that the overlay returns an er-
ror for each undeliverable message, which are resent from
the sender-side proxy to the next entry on the destina-
tion’s identifier list. This solution requires buffering at the
sender’s proxy, and incurs a roundtrip delay after failure.
An alternate solution embeds the backup proxy identifiers
inside each message. As a message encounters a failed hop,
it replaces its destination with the next identifier from the
list, and tries to route to that proxy. The additional routing
logic can be implemented on top of the proposed common
up-call interface for structured P2P overlays [6].

An alternate solution is to use RAID-like striping to send
the data stream across multiple proxies. The source proxy
can send each of��
 sequential packets to proxies on the
identifier list, and a bit-wise XOR parity block to the�
�

proxy. Any missing packet can be reconstructed from the
remaining packets. This design provides fast and transpar-
ent recovery from single proxy failures at the cost of an ad-
ditional
����
� proportional bandwidth.

3.2. Challenges to Deployment

Finally, we consider issues that arise when deploying
fault-resilient overlays across the Internet. Since overlay
nodes function as application-level traffic routers, they re-
quire low-latency, high-bandwidth connectivity to the net-
work. We expect Internet Service Providers (ISPs) to de-
ploy these overlays on their internal networks and offer re-
silient traffic tunneling as a value-added service to their cus-
tomers. An ISP chooses the number and location of traf-
fic overlay nodes. Adding overlay nodes in the interior in-
creases the number of backup paths and overlay resiliency,
while placing nodes closer to customers reduces the likeli-
hood of failures between the client and the overlay.

One issue is that a deployed overlay is limited by the
reach of the ISP’s network. Connections that cross ISP
boundaries require a cross-domain solution. One possibility
is for smaller ISPs to “merge” their overlays with those of
larger ISPs, allowing them to fully share the namespace and
share routing traffic. A 160-bit namespace ensures that the
probability of namespace collisions will remain statistically

6

0

5

10

15

20

0 50 100 150 200 250

R
D

P
 (

m
in

, m
ed

ia
n,

 9
0th
 p

er
ce

nt
ile

)

Internode round-trip (ping) time (in 5 ms buckets)

median = 31.5, 90th percentile = 135

0

0.2

0.4

0.6

0.8

1

10 100 1000 10000

S
tr

es
s

S
av

in
gs

 p
er

 B
ea

co
n

P
er

io
d

Network Size (overlay nodes)

Savings by hopcount
Savings by latency

Figure 9. Tapestry Performance. Relative Delay Penalty (RDP)
for packets routing the Tapestry network on the PlanetLab
network testbed. Tapestry provides relatively low overhead
compared to IP in the wide area.

Figure 10. Maintenance Advantage of Proximity (Simulation).
Proximity reduces relative bandwidth consumption (TBC) of
beacons over randomized, prefix-based routing schemes.

insignificant. A second solution is to set up well defined
peering points between each ISP’s overlay by using wide-
area routing similar to that proposed by the Brocade interdo-
main overlay work [30]. Peering points can form their own
overlay and advertise local addresses as objects on the sec-
ondary overlay. The resulting hierarchy has properties sim-
ilar to BGP. Further comparisons are beyond the scope of
this paper.

4. Evaluation of Adaptive Mechanisms

To explore the potential for adaptive fault tolerance as
described in previous sections, we present simulation re-
sults as well as measurements from a functioning Tapestry
system [32]. Tapestry comprises 55,000 lines of Java writ-
ten in event-driven style on top of SEDA [28] for fast,
non-blocking I/O. This version of Tapestry1 includes all
of the mechanisms of Section 2, including components for
beacon-based fault detection across primary and backup
paths, first-reachable link selection (FRLS), and constrained
multicast with duplicate packet detection.

In this section, we take an in-depth look at the impact
of the adaptive mechanisms proposed in this paper. Starting
with baseline Tapestry, we examine the impact of the pro-
posed routing policies through both simulation and experi-
mental measurements. We also test Tapestry’s ability to ex-
ploit underlying network redundancy, and explore the trade-
off between beacon rate and responsiveness to failures.

Tapestry has been deployed on the PlanetLab
testbed [20], a network of 160 machines at 65 sites
worldwide. To gain additional nodes, we invoke multi-
ple virtual nodes per physical node. Figure 9 illustrates
the basic routing performance of the Tapestry implemen-
tation by measuring the increase in latency that a packet

1 The Tapestry implementation is available for public download at
http://oceanstore.cs.berkeley.edu/.

experiences when tunneling through the overlay. The la-
tency overhead is low, particularly for wide-area routes.
The high variability on short routes is due to a combina-
tion of virtual nodes competing for highly loaded CPUs
and queuing delays in the event handling layer [32].

4.1. Analysis and Simulation

To evaluate the potential for adaptation, we start by ex-
amining several microbenchmarks in simulation. To do this,
we implemented a network simulator using the Stanford
Graph Base libraries [14]. In the following measurements,
we utilize seven different 5000-node transit stub topologies;
unless otherwise specified, we then construct Tapestry over-
lay networks of size 4096 nodes against which to measure
our results.

Proximity Routing and TBC: As mentioned previously,
Tapestry provides proximity routing. We start by illustrating
the advantage of proximity-based structures in reducing the
Total Bandwidth Consumption (TBC) of monitoring bea-
cons2. To perform the comparison, we construct overlays
of different sizes both with and without proximity; with-
out proximity means that we construct random topologies
that adhere to the basic prefix-routing scheme but which
do not utilize network proximity in their construction. The
TBC saving with a proximity-enabled overlay is plotted in
Figure 10. We see that maintenance traffic with proximity
routing provides a significant reduction (up to 50%) in re-
sources. Section 4.2 will explore the absolute amount of
maintenance traffic.

Overhead of FRLS:To ensure our resilient routing policies
do not impose unreasonable overhead on tunneled traffic,
we simulate their impact on end-to-end latency and band-
width consumption through simulation. We first measure

2 Recall from Section 2.2 that the TBC is computed by multiplying the
beacon bit rate by distance—either in number of IP hops or latency.

7

0

0.5

1

1.5

2

2.5

20 40 60 80 100 120 140 160 180

P
ro

po
rt

io
na

l L
at

en
cy

 O
ve

rh
ea

d
 o

f B
ac

ku
p

P
at

h

Latency from Source to Destination (ms)

Hop 0
Hop 1
Hop 2
Hop 3
Hop 4

1

1.2

1.4

1.6

1.8

2

2.2

2.4

1 2 3 4 5 6 7 8 9

O
ve

rla
y

ho
ps

 to
 c

on
ve

rg
e

Length of overlay path in IP hops

Hop 0
Hop 1
Hop 2
Hop 3

Figure 11.Latency Cost of Backup Paths (Simulation). Here we
show the end-to-end proportional increase in routing latency
when Tapestry routes around a single failure.

Figure 12.Convergence Rate (Simulation). The number of over-
lay hops taken for duplicated messages in constrained multi-
cast to converge, as a function of path length.

0

0.2

0.4

0.6

0.8

1

20 40 60 80 100 120 140 160

P
ro

po
rt

io
na

l I
nc

re
as

e
in

 B
an

dw
id

th

Latency from Source to Destination (ms)

Hop 0
Hop 1
Hop 2
Hop 3
Hop 4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.05 0.1 0.15 0.2
P

er
ce

nt
ag

e
of

 A
ll

P
ai

r-
w

is
e

R
ou

te
s

Percentage of Broken Links

No Working Route

Route Exists, IP/T both fail

T succeeds, IP fails

IP succeeds, T fails

Both IP/T succeed

Figure 13.Bandwidth Overhead of Constrained Multicast (Sim-
ulation). The proportional increase in bandwidth consumed by
using a single constrained multicast.

Figure 14. Routing Around Failures with FRLS. Simulation of
the routing behavior of a Tapestry overlay (2 backup routes)
and normal IP on a transit stub network (4096 overlay nodes
on 5000 nodes) against randomly placed link failures.

the increase in latency we incur by using FRLS to route
around a failure. We expect that by taking locally subop-
timal backup routes, we are increasing end-to-end routing
latency. Figure 11 shows the proportional increase in rout-
ing latency when routing around a single failure. We see
that when backup routes are taken closer to the destination
(��� or �
� on a 6 hop overlay path), the overhead incurred
is higher. Overall, the latency cost is generally very small
(� 20% of the end-to-end path latency).

Constrained Multicast and Path Convergence:We con-
tinue by quantifying the expected bandwidth cost of
constrained multicast, assuming a protocol with path con-
vergence. First, we verify that Tapestry routing pro-
vides path convergence. Path convergence allows us to
limit the amount of bandwidth consumed by duplicate mes-
sages in constrained multicast. As Figure 12 shows,
duplicate messages generally converge with the original af-
ter 1 hop, minimizing additional bandwidth used.

Next, Figure 13 measures the additional bandwidth con-
sumed by the duplicated packets, assuming they are
dropped when they converge paths with the originals. The
additional bandwidth is plotted as a ratio to the end-to-end
bandwidth consumed. Again, failures closer to the des-

tination are more costly, but the bandwidth overhead is
generally low (� 20%).

Reachability Simulation: In this experiment, we simulate
the impact of random link failures on a structured overlay in
the wide area. We construct a 4096 node Tapestry topology
on a 5000-node transit stub network, using base 4 digits for
prefix routing and 2 backups per routing entry.

We monitor the connectivity of pair-wise paths between
all overlay nodes, and incrementally inject randomly placed
link errors into the network. After each new set of failures
is introduced, we measure the resulting connectivity of all
paths routed through IP (estimated by the shortest path) and
through Tapestry with FRLS. We assume a time frame of
one or two seconds, tolerable delay for buffered multime-
dia applications, but insufficient time for IP level route con-
vergence. We plot the results in Figure 14 as a probability
graph, showing the proportion of all paths which succeed
or fail under each protocol. The results show that Tapestry
routing performs almost ideally, succeeding for the large
majority of paths where connectivity is maintained after
failures. Cases where Tapestry routing fails to find an ex-
isting path are rare.

8

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 5 10 15 20 25 30

E
st

im
at

ed
 L

in
k

Q
ua

lit
y

fr
om

 H
ea

rt
be

at
s

of Measurement Periods after Failure

α=0.1, 50% loss
α=0.2, 50% loss
α=0.4, 50% loss

α=0.1, Fail
α=0.2, Fail
α=0.4, Fail

0

500

1000

1500

2000

2500

3000

0 200 400 600 800 1000

S
w

itc
h

T
im

e
in

 m
s

(m
in

, m
ed

ia
n,

90

th
 p

er
ce

nt
ile

)

Probing Period (ms)

α=0.2
α=0.4

Figure 15. Hysteresis Tradeoff. A simulation of the adaptivity
of a function to incorporate hysteresis in fault estimation using
periodic beacons. Curves show response time after both a link
failure and a loss event causing 50% loss.

Figure 16. Route Switch Time vs. Probing Frequency. Mea-
sured time between failure and recovery is plotted against the
probing frequency. For this experiment, the hysteresis factors
� � ��� and� � ��� are shown.

4.2. Microbenchmarks of a Deployed System

Next, we use microbenchmarks to illustrate properties
of the Tapestry implementation deployed on PlanetLab. To
probe Tapestry’s adaptation behavior, we implemented a
fault-injection layer that allows a centralized controller to
inject network faults into running nodes. Nodes can be in-
structed to drop some or all incoming network traffic based
on message type (e.g. data or control) and message source;
we then report the results. In general, we present median
values, with error bars representing��
� percentile and
minimum values. We use the��
� percentile values to re-
move outlier factors such as garbage collection and virtual-
ization scheduling problems.

Failover Time: Our first microbenchmark measures the
correlation between fail-over time and length of the bea-
con period. We start by selecting an appropriate hysteresis
factor� for link quality estimation (Equation 2). Figure 15
illustrates how quickly estimated values converge to actual
link quality for different values of� and link loss rate. Us-
ing this, we can see that an� value between 0.2 and 0.4 pro-
vides a reasonable compromise between response rate and
noise tolerance.

For the experiment, we deploy a small overlay of 4
nodes, including nodes at U.C. Berkeley, U. Washington,
U.C. San Diego and MIT. NodeIDs are assigned such that
traffic from Berkeley routes to MIT via Washington, with
UCSD as backup. The round-trip distance of the failing link
(Berkeley-Washington) is approximately 30ms.

Using hysteresis factors of 0.2 and 0.4, we inject faults
at random intervals, and measure the elapsed time to de-
tect and redirect traffic around the fault. Figure 16 plots
the min, median and��
� percentile values against the bea-
con period. As expected, switch-over time scales linearly to
the probing period with a small constant. With a reasonable
beaconing period of 300ms, response times for both� val-
ues (660ms and 580ms) are well within the acceptable lim-

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0 1 2 3 4 5

O
ve

rh
ea

d
(m

in
, m

ed
ia

n,

90
th

 p
er

ce
nt

ile
)

Position of Detour on Overlay Path

Figure 17. Overhead of Fault-Tolerant Routing. The increase
in latency incurred when a packet takes a backup path. Data
separated by which overlay hop encounter the detour. Pair-
wise overlay paths are taken from PlanetLab nodes, and have
a maximum hop count of six.

its of interactive applications, including streaming multime-
dia. No messages were lost after traffic was redirected.

Redirection Penalty: To quantify the latency cost in redi-
recting traffic onto a backup path, we deploy a Tapestry net-
work of 200 nodes using digits of base 4 across the Plan-
etLab network. We probe all pair-wise paths to select a
random sample of source-destination pairs with sufficiently
distinct IDs to require five overlay hops. On each path, we
measure the change in latency resulting from taking a sin-
gle backup path, plotted against the hop where the backup
path was taken. The results are shown in Figure 17.

The results mirror results shown in Figure 11, and con-
firm that taking a single backup path has little impact on
end-to-end routing latency. In fact, because of the small
number of nodes in our PlanetLab overlay, taking an alter-
nate path can sometimes shorten the number of hops and re-
duce overall latency. For example, given 3 nodes at Duke
(000), Georgia Tech (213) and MIT (222), a route from
Duke to MIT would point to Georgia Tech as the optimal
first hop and keep MIT as a backup. If a failure occurs on

9

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5

R
el

at
iv

e
O

ve
rh

ea
d

(m
in

, m
ed

ia
n,

90

th
 p

er
ce

nt
ile

)

Position of Detour on Overlay Path

0

1

2

3

4

5

6

7

0 50 100 150 200 250

B
an

dw
id

th
 p

er
 N

od
e

(K
B

yt
es

/s
)

Network Size (# of Nodes)

Beacon Period=300ms
Beacon Period=600ms

Figure 18. Overhead of Constrained Multicast. The total band-
width penalty for sending a duplicate message when loss is de-
tected at the next hop, plotted as a fractional increase over nor-
mal routing. Data separated by which overlay hop encounters
the split.

Figure 19. Cost of Monitoring. Here we show bandwidth used
for fault-detection as a function of overlay network size. In-
dividual curves represent different monitoring periods, and
bandwidth is measured in kilobytes per second per node.

the primary route, a message will use the backup path and
route directly to MIT, improving end-to-end latency. This
explains the low minimum values in Figure 17.

Constrained Multicast Penalty: To characterize the cost
of constrained multicast, we start with a deployed network
of 200 nodes on PlanetLab. We select a group of paths with
5 overlay hops, and plot the bandwidth overhead as a func-
tion of the hop where the duplicate message was sent out.
Without knowledge of IP level routers under PlanetLab, we
approximate the TBC metric by using the bandwidth la-
tency product. Figure 18 shows that our deployed proto-
type performs as expected, with duplicate messages incur-
ring less than 30% of the end-to-end bandwidth consump-
tion. This figure reports the proportional increase in total
bandwidth consumption (TBC) over the original path and
can be compared with simulation results in Figure 13.

Beaconing Overhead:We quantify the periodic beaconing
overhead of our Tapestry implementation by measuring the
total bandwidth used by beacon messages, and plotting that
against the size of the overlay network. Figure 19 shows the
result as kilobytes per second sent by each node in the over-
lay, using a beacon period of 300ms. Each routing entry has
two backups, each beaconed every 600ms. The bandwidth
used is low and scales logarithmically with the network size.
Furthermore, our measurements are consistent with band-
width estimates in Section 2.2. Note that along with Fig-
ure 16, this figure shows that moderate to large overlays can
respond to link failures in under 700ms, while keeping bea-
coning traffic low (�7KB/s).

4.3. The Importance of Self-Repair

While low-rate transient failures can be handled with
techniques from Section 2, long term stability depends cru-
cially on mechanisms thatrepair redundancy andrestore lo-

cality. Without continuous “precomputation” and path dis-
covery, path redundancy will slowly degrade as backup
routes fail over time. In the case of Tapestry, this means
that entries in the routing table must be refreshed at a rate
that keeps ahead of network failures and changes.

To illustrate this point, we deploy Tapestry nodes in a
LAN cluster and subject them to abrupt and continuous
change; since this experiment focuses on fault resilience and
not latency, we do not impose a network topology or packet
delay on the system. We then measure overlayconnectiv-
ity by measuring the rate of success in routing requests be-
tween random pairs of IDs in the namespace. The result is
shown in Figures 20 and 21.

Both of these figures illustrate an experiment that initial-
izes the network with 150 nodes, then introduces a massive
failure event at T=5 minutes by manually killing (kill -9) 30
nodes. At T=10 minutes, we add 75 nodes to the network
in parallel. Finally, at T=15 minutes, all nodes in the over-
lay begin to participate in a random churn test, where ev-
ery 10 seconds nodes enter and leave the network according
to a randomized stochastic process, each with a mean dura-
tion of 2 minutes in the network.

We plot the number of nodes in the system along with
average query latency and the success rate of routing re-
quests. Without repair, Figure 20 shows that routing suc-
cess rate quickly degrades after the massive fail event, and
never recovers. Furthermore, nodes in the churn test slowly
lose their redundant paths as neighbors leave the network,
leading to a steady decline in route connectivity. In con-
trast, Figure 21 shows that Tapestry with self-repair quickly
recovers after massive failure and join events to restore rout-
ing success to 100%. Even under constant churn, our algo-
rithms repair routes fast enough to maintain a high level of
routing availability. Note that the relatively low routing la-
tency shown in Figure 20 is due to the fact that inconsistent
routes lead to a portion of the massive join failing, result-

10

0
20
40
60
80

100

0 5 10 15 20 25 30
0

25

50

75

100

125

150

175

200

225

250
%

 S
uc

ce
ss

fu
l R

ou
te

 R
eq

ue
st

s

La
te

nc
y

(m
s)

 a
nd

 #
 o

f n
od

es

Time (minutes)

Constant Churn

of nodes

Massive JoinMassive Fail

Startup

Success Rate

Median Lat

0
20
40
60
80

100

0 5 10 15 20 25 30
0

25

50

75

100

125

150

175

200

225

250

%
 S

uc
ce

ss
fu

l R
ou

te
 R

eq
ue

st
s

La
te

nc
y

(m
s)

 a
nd

 #
 o

f n
od

es

Time (minutes)

Constant Churn

of nodes

Massive JoinMassive Fail

Startup

Success Rate

Median Lat

Figure 20. Pair-wise Routing without Repair. Success rate of
Tapestry routing between random pairs of nodes with self-
repair mechanisms disabled during massive failure, massive
join, and constant churn conditions.

Figure 21. Pair-wise Routing with Self-Repair. Success rate of
Tapestry routing between random pairs of nodes with self-
repair enabled during massive failure, massive join, and con-
stant churn conditions.

ing in shorter routes and lower latency for requests that suc-
ceed.

4.4. Putting It All Together

Experiments and analysis quantify the benefits of our
proposal, and verify its feasilibity. While simulations show
that FRLS exploits the majority of routing redundancy
present in a network, measurements show that our prototype
can adapt to failure in under 700 milliseconds, even with
a reasonable dampening� factor. Furthermore, the band-
width required to support such high adaptivity is low. Fi-
nally, we show that in addition to circumventing link fail-
ures in the network, the overlay self-repairs following node
failures in order to maintain high availability.

5. Related Work

Structured peer-to-peer overlays provide scalable, load-
balanced routing of messages to objects or endpoints. The
design of the first protocols ([21, 25, 27, 32]) have led to the
design of scalable wide-area applications ([4, 5, 24]) and
the development of new protocols with specialized proper-
ties [9, 12, 18, 29]. Our work requires only the key-based
routing API [6], and can be implemented on a number of
these protocols.

Resilient Overlay Networks (RON) allow application
traffic tunneling through a small number of overlay nodes
and demonstrates its feasibility [1]. Its pair-wise communi-
cation results in��� �� messages and limits its scale to tens
of nodes. The Internet Indirection Infrastructure (I�) uses
triggers embedded in the infrastructure to redirect applica-
tion level traffic for mobility and resilience. Unlike redirec-
tion points in our work, I�’s trigger placement is done manu-
ally. The Secure Overlay Services (SOS) [13] project places

protected servers inside the overlay domain, and filters tun-
neled application traffic at the edge nodes to prevent denial
of service attacks. The Detour project proposes a network
of deployed routers that direct tunneled traffic to study effi-
ciency and loss rates of Internet routing paths [26]. Detour
focuses on using routers to gather network information to
benefit the transport protocol, and does not provide scalable
methods for detecting faults and managing backup paths.

Previous research quantified the loss of network connec-
tivity on the wide-area network. Bharatet. al. performed a
quantitative analysis of service availability across a WAN
and developed a failure model parameterized by failure lo-
cation and failure duration [3]. This work focused on un-
derstanding the cause and consequences of BGP failures.
Labovitzet. al. examined the latencies in Internet path fail-
ure, fail-over, and repair resulting from the convergence
properties of BGP routing algorithms [15]. Recent work by
Mahajanet. al. quantified the occurence of BGP misconfig-
urations by measurement and by ISP surveys [17].

6. Conclusion

In this paper, we show that structured peer-to-peer (P2P)
overlay networks can provide efficient, responsive fault re-
silient routing to legacy applications. These overlays enable
precomputation of backup paths and efficient use of soft-
state beacons for fault detection. While we illustrate our
ideas using a prototype of the Tapestry overlay network, our
designs are directly applicable to other P2P protocols.

At each routing hop, Tapestry routing chooses between
optimal or near optimal local paths, while soft-state beacons
continuously probe the network to detect failures and main-
tain path redundancy. We showed that two simple routing
policies can be used to achieve near-optimal fault-resilience
while incurring low overhead in terms of latency and band-
width relative to a fault-free network. A moderate sized

11

overlay can respond to link failures in under 700 millisec-
onds while using less than 7 Kilobytes/second of beacon-
ing traffic, agile enough to support most streaming multi-
media applications. These techniques show great promise
for addressing the reliability and responsiveness needed by
today’s global-scale network applications.

7. Acknowledgements

We would like to thank Chen-nee Chuah for her helpful
insights on IS-IS, and Dennis Geels and Sean Rhea for al-
lowing us to use their BMark measurement suite. We also
want to thank the anonymous reviewers and Quyen Ta for
their feedback and suggestions.

References

[1] D. G. Andersen, H. Balakrishnan, M. F. Kaashoek, and
R. Morris. Resilient overlay networks. InProc. of SOSP.
ACM, Oct 2001.

[2] T. Bu, L. Gao, and D. Towsley. On routing table growth. In
Proc. of Global Internet Symposium. IEEE, 2002.

[3] B. Chandra, M. Dahlin, L. Gao, and A. Nayate. End-to-end
WAN service availability. InProc. of USITS. USENIX, Mar
2001.

[4] L. P. Cox, C. D. Murray, and B. D. Noble. Pastiche: Making
backup cheap and easy. InProc. of OSDI. ACM, Dec 2002.

[5] F. Dabek, M. F. Kaashoek, D. Karger, R. Morris, and I. Sto-
ica. Wide-area cooperative storage with CFS. InProc. of
SOSP. ACM, Oct 2001.

[6] F. Dabek, B. Zhao, P. Druschel, J. Kubiatowicz, and I. Sto-
ica. Towards a common API for structured P2P overlays. In
Proc. of IPTPS, Berkeley, CA, Feb 2003.

[7] N. Feamster, D. G. Andersen, H. Balakrishnan, and M. F.
Kaashoek. Measuring the effects of internet path faults on re-
active routing. InProc. of SIGMETRICS. ACM, June 2003.

[8] K. Gummadi, R. Gummadi, S. Gribble, S. Ratnasamy,
S. Schenker, and I. Stoica. The impact of DHT routing ge-
ometry on resilience and proximity. InProc. of SIGCOMM,
Karlsruhe, Germany, Sep 2003. ACM.

[9] N. J. Harvey, M. B. Jones, S. Saroiu, M. Theimer, and
A. Wolman. Skipnet: A scalable overlay network with prac-
tical locality properties. InProc. of USITS, Seattle, WA, Mar
2003. USENIX.

[10] K. Hildrum, J. D. Kubiatowicz, S. Rao, and B. Y. Zhao. Dis-
tributed object location in a dynamic network. InProc. of
SPAA, Winnipeg, Canada, Aug 2002. ACM.

[11] G. Iannaccone, C.-N. Chuah, R. Mortier, S. Bhattacharyya,
and C. Diot. Analysis of link failures in an IP backbone.
In Proc. of the Internet Measurement Workshop, Marseille,
France, Nov 2002. ACM.

[12] F. Kaashoek and D. R. Karger. Koorde: A simple degree-
optimal hash table. InProc. of IPTPS, Berkeley, CA, Feb
2003.

[13] A. Keromytis, V. Misra, and D. Rubenstein. SOS: Secure
overlay services. InProc. of SIGCOMM, Pittsburgh, PA, Aug
2002. ACM.

[14] D. E. Knuth.The Stanford GraphBase: A Platform for Com-
binatorial Computing. ACM Press and Addison-Wesley,
New York, 1993.

[15] C. Labovitz, A. Ahuja, A. Abose, and F. Jahanian. Delayed
internet routing convergence. InProc. of SIGCOMM. ACM,
Aug 2000.

[16] C. Labovitz, A. Ahuja, R. Wattenhofer, and S. Venkatachary.
The impact of internet policy and topology on delayed rout-
ing convergence. InProc. of INFOCOM. IEEE, 2001.

[17] R. Mahajan, D. Wetherall, and T. Anderson. Understanding
BGP misconfiguration. InProc. of SIGCOMM, Pittsburgh,
PA, Aug 2002. ACM.

[18] D. Malkhi, M. Naor, and D. Ratajczak. Viceroy: A scalable
and dynamic emulation of the butterfly. InProc. of PODC.
ACM, 2002.

[19] P. Maymounkov and D. Mazieres. Kademlia: A peer-to-peer
information system based on the XOR metric. InProc. of
IPTPS, Mar 2002.

[20] L. Peterson, T. Anderson, D. Culler, and T. Roscoe. A
blueprint for introducing disruptive technology into the in-
ternet. InProc. of HotNets-I. ACM, 2002.

[21] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and
S. Schenker. A scalable content-addressable network. In
Proc. of SIGCOMM. ACM, Aug 2001.

[22] Y. Rekhter and T. Li.An Architecture for IP Address Allo-
cation with CIDR. IETF, 1993. RFC 1518,http://www.
isi.edu/in-notes/rfc1518.txt.

[23] Y. Rekhter and T. Li. A border gateway protocol 4 (BGP-4).
IEEE Micro, 19(1):50–59, Jan. 1999. Also IETF RFC 1771.

[24] S. Rhea, P. Eaton, D. Geels, H. Weatherspoon, B. Zhao, and
J. Kubiatowicz. Pond: The OceanStore prototype. InProc.
of FAST, San Francisco, Apr 2003. USENIX.

[25] A. Rowstron and P. Druschel. Pastry: Scalable, distributed
object location and routing for large-scale peer-to-peer sys-
tems. InProc. of Middleware. ACM, Nov 2001.

[26] S. Savage et al. Detour, a case for informed internet routing
and transport.IEEE Micro, 19(1):50–59, Jan 1999.

[27] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Bal-
akrishnan. Chord: A scalable peer-to-peer lookup service for
internet applications. InProc. of SIGCOMM. ACM, Aug
2001.

[28] M. Welsh, D. Culler, and E. Brewer. SEDA: An architecture
for well-conditioned, scalable internet services. InProc. of
SOSP, Banff, Canada, Oct 2001. ACM.

[29] U. Wieder and M. Naor. A simple fault tolerant distributed
hash table. InProc. of IPTPS, Berkeley, CA, Feb 2003.

[30] B. Y. Zhao, Y. Duan, L. Huang, A. Joseph, and J. Kubiatow-
icz. Brocade: Landmark routing on overlay networks. In
Proc. of IPTPS, Mar 2002.

[31] B. Y. Zhao, L. Huang, J. D. Kubiatowicz, and A. D. Joseph.
Exploiting routing redundancy using a wide-area overlay.
Technical Report CSD-02-1215, U. C. Berkeley, Nov 2002.

[32] B. Y. Zhao, L. Huang, S. C. Rhea, J. Stribling, A. D. Joseph,
and J. D. Kubiatowicz. Tapestry: A global-scale overlay for
rapid service deployment.IEEE J-SAC, 2003. Special Issue
on Service Overlay Networks, to appear.

12

