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Abstract of “neighbor” entries, each of which contains the IP address

and DHT identifier of some other node. A DHT node must
Today an application developer using a distributed hash tamaintain its routing table, both populating it initially and
ble (DHT) withn nodes must choose a DHT protocol from ensuring that the neighbors it refers to are still alive.

the spectrum betweef¥(1) lookup protocols [9,18] and  Existing DHTS use routing table maintenance algorithms
O(log n) protocols [20-23,25, 260)(1) protocols achieve  that work best in particular operating environments. Some
low latency lookups on small or low-churn networks be- maintain small routing tables in order to limit the main-
cause lookups take only a few hops, but incur high main-tenance communication cost [11,20-23, 25, 26]. Small ta-
tenance traffic on large or high-churn networkglogn)  ples help the DHT scale to many nodes and limit the main-
protocols incur less maintenance traffic on large or high-tenance required if the node population increases rapidly.
churn networks but require more lookup hops in small net-The disadvantage of a small routing table is that lookups
works. Accordion is a new routing protocol that does not may take many time-consuming hops, typicalllog n)
force the developer to make this choice: Accordion adjustsp  system with, nodes.

itself to provide the best performance across a range of net- At the other extreme are DHTs that maintain a complete

work si_zes and churn rates while staying within a boundeqiSt of nodes in every node’s routing table [9, 18]. A large
bandwidth budget. ) . , routing table allows single-hop lookups. However, each
The key challenges in the design of Accordion are the,,4e must promptly learn about every node that joins or

algorithms that choose the routing table’s size and content, v es the system, as otherwise lookups are likely to expe-

Each Accordion node learns of new neighbors opportunisyignce frequent timeout delays due to table entries that point

tically, in a way that causes the density of its neighborsy, gead nodes. Such timeouts are expensive in terms of in-
to be inversely proportional to their distance in ID Space rgased end-to-end lookup latency [2, 16, 22]. The mainte-
from the node. This distribution allows Accordion to vary .-« traffic needed to avoid timeouts in such a protocol

the table size along a continuum while still guaranteeing a%ay be large if there are many unstable nodes or the net-
mostO(log n) lookup hops. The user-specified bandwidth \, 1o ¢ize is large.

budget controls the rate at which a node learns about new An application developer wishing to use a DHT must

neighbors. Each node limits its routing table size by evict- ; i
ing neighbors that it judges likely to have failed. High churn choose_a protocol between t_hese end pointsOAD) pro
tocol might work well early in the deployment of an ap-

(i.e.,, short node lifetimes) leads to a high eviction rate. The lication. when the number of nodes is small. but could

equilibrium between the learning and eviction processeso . ' o
determines the table size generate too much maintenance traffic as the application

. ! . o .. m lar or if churn incr . rting with an
Simulations show that Accordion maintains an ef'f|C|entbeco €s popufar o chd creases. Starting with a

. .~ "O(logn) protocol would result in unnecessarily low per-
lookup Iatency_versus _b_andW|dth ”"?‘d?Oﬁ over a W'derformance on small networks or if churn turns out to be low.
range of operating conditions than existing DHTSs.

While the developer can manually tunedlog n) proto-
col to increase the size of its routing table, such tuning is
difficult and workload-dependent [16].

1 Introduction This paper describes a new DHT design, called Accor-

Distributed hash tables maintain routing tables used Whelqlon’ that automatically tunes parameters such as routing

forwarding lookups. A node’s routing table consists of a sett"’_lble sizen _order to achieve the best performa_nce. Accor-
dion has a single parameter, a network bandwidth budget,

A A ducted - that allows control over the consumption of the resource
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The problems that Accordion must solve are how to arrivelatency depends largely on two factors: the average number
at the best routing table size in light of the budget and theof hops per lookup and the average number of timeouts in-
stability of the node population, how to choose the mostcurred during a lookup. A node can choose to spend its
effective neighbors to place in the routing table, and howbandwidth budget to aggressively maintain the freshness
to divide the maintenance budget between acquiring nevof a smaller routing table (thus minimizing timeouts), or
neighbors and checking the liveness of existing neighborsto look for new nodes to enlarge the table (thus minimiz-

Accordion solves these problems in a unique way. Un-ing lookup hops but perhaps risking timeouts). Nodes may
like other protocols, it is not based on a particular dataalso use the budget to issue lookup messages along multiple
structure such as a hypercube or de Bruijn graph that conpaths in parallel, to mask the effect of timeouts occurring
strains the number and choice of neighbors. Instead, eacbn any one path. Ultimately, the bandwidth budget’s main
node learns of new neighbors as a side-effect of ordinangffect is on the size and contents of the routing table.
lookups, but selects them so that the density of its neigh- Rather than explicitly calculating the best table size
bors is inversely proportional to their distance in ID spacebased on a given budget and an observed churn rate, Ac-
from the node. This distribution allows Accordion to vary cordion’s table size is the result of an equilibrium between
the table size along a continuum while still providing the two processes: state acquisition and state eviction. The state
same worst-case guarantees as traditigddbgn) pro-  acquisition process learns about new neighbors; the big-
tocols. A node’s bandwidth budget determines the rate ager the budget is, the faster a node can learn, resulting in a
which a node learns. Each node limits its routing table sizebigger table size. The state eviction process deletes routing
by evicting neighbors that it judges likely to have failed: table entries that are likely to cause lookup timeouts; the
those which have been up for only a short time or havehigher the churn, the faster a node evicts state. The next sec-
not been heard from for a long time. Therefore, high churntion investigates and analyzes budgeted routing table main-
leads to a high eviction rate. The equilibrium between thetenance issues in more depth.
learning and eviction processes determines the table size.

Performance simulations show that Accordion keeps it . .
maintenance traffic within the budget over a wide range os’r3 Table Maintenance AnajySl S
operating conditions. When bandwidth is plentiful, Accor-
dion provides lookup latencies and maintenance overhea
similar to that of OneHop [9]. When bandwidth is scarce,
Accordion has lower lookup latency and less maintenanc
overhead than Chord [5, 25], even when Chord incorpo- 1. How do nodes choose neighbors for inclusion in the
rates proximity and has been tuned for the specific work- routing table in order to guarantee at métlog n)
load [16]. lookups across a wide range of table sizes?

The next two sections outline Accordion’s design ap-
proach and analyze the relationship between maintenance“:
traffic and table size. Section 4 describes the details of the
Accordion protocol. Section 5 compares Accordion’s per-
formance with that of other DHTs. Section 6 presents re-

lated work, and Section 7 concludes. 3. How do nodes evict neighbors from the routing table
with the most efficient combination of active probing
and uptime prediction?

H1 order to design a routing table maintenance process that
makes the most effective use of the bandwidth budget, we
Ppave to address three technical questions:

How do nodes choose between active exploration
and opportunistic learning (perhaps using parallel
lookups) to learn about new neighbors in the most ef-
ficient way?

2 Design Challenges

A DHT'’s routing table maintenance traffic must fit within 31 Routing State Distribution
the nodes’ access link capacities. Most existing design&ach node in a DHT has a unique identifier, typically 128 or
do not live within this physical constraint. Instead, the 160 random bits generated by a secure hash function. Struc-
amount of maintenance traffic they consume is determinedured DHT protocols use these identifiers to assign respon-
as a side effect of the total number of nodes and the ratgibility for portions of the identifier space. A node keeps
of churn. While some protocol®.§., Bamboo [22] and  a routing table that points to other nodes in the network,
MSPastry [2]) have mechanisms for limiting maintenanceand forwards a query to a neighbor based on the neighbor’s
traffic during periods of high churn or congestion, one of identifier and the lookup key. In this manner, the query gets
the goals of Accordion is to keep this traffic within a bud- “closer” to the node responsible for the key in each succes-
get determined by link capacity or user preference. sive hop.

Once a DHT node has a maintenance budget, it must de- A DHT’s routing structure determines from which re-
cide how to use the budget to minimize lookup latency. Thisgions of identifier space a node chooses its neighbors. The



ideal routing structure is both flexible and scalable. With are uniformly distributed, the querying node would com-
a flexible routing structure, a node is able to expand andnunicate with nodes in a uniform distribution rather than a
contract the size of the routing table along a continuum in% distribution.
response to churn and bandwidth budget. With a scalable With recursive routing, on the other hand, intermediate
routing structure, even a very small routing table can leachops of a lookup forward the lookup message directly to the
to efficient lookups in a few hops. However, as currently next hop. This means that nodes communicate only with
defined, most DHT routing structures are scalable but noexisting neighbors from their routing tables during lookups.
flexible and constrain which routing table sizes are possiif each hop of a recursive lookup is acknowledged, then a
ble. For example, a Tapestry node with a 160-bit identifiernode can check the liveness of a neighbor with each lookup
of baseb maintains a routing table W|th— levels, each it forwards, and the neighbor can piggyback information
of which containb — 1 entries. In practlce few of these aboutits own neighbors in the acknowledgment.
levels are filled, and the expected number of neighbors per If lookup keys are uniformly distributed and the nodes
node in a network oft DHT nodesigb—1) log, n. The pa-  already have routing tables following a small-world distri-
rameter baseb] controls the table size, but it can only take bution, then each lookup will involve one hop at exponen-
values that are powers Bf making it difficult to adjust the tially smaller intervals in identifier space. Therefore, a node
table size smoothly. forwards lookups to next-hop nodes that fit its small-world
Existing routing structures are rigid in the sense that theydistribution. A node can then learn about entries immedi-
reguire neighbors from certain regions of ID space to be ately following the next-hop nodes in identifier space, en-
present in the routing table. We can relax the table structursuring that the new neighbors learned also follow this dis-
by specifying only the distribution of ID space distances tribution.
between a node and its neighbors. Viewing routing struc- In practice lookup keys are not necessarily uniformly
ture as a probabilistic distribution gives a node the flexi-distributed, and thus Accordion devotes a small amount of
bility to use a routing table of any size. We model the dis-its bandwidth budget to actively exploring for new neigh-
tribution after proposed scalable routing structures. The IDbors according to the small-world distribution.
space is organized as a ring as in Chord [25] and we define A DHT can learn even more from lookups if it performs
the ID distance to be the clockwise distance between twgarallel lookups, by sending out multiple copies of each
nodes on the ring. lookup down different lookup paths. This increases the op-
Accordion uses % distribution to choose its neighbors: portunity to learn new information, while at the same time
the probability of a node selecting a neighbor with dis- decreasing lookup latency by circumventing potential time-
tancez from itself in the identifier space from itself is outs. Analysis of DHT design techniques show that learn-
proportional to%. This distribution causes a node to pre- ing extra information from parallel lookups is more effi-
fer neighbors that are closer to itself in ID space, ensur<ient at lowering lookup latencies than checking existing
ing that as a lookup gets closer to the target key there isieighbor liveness or active exploration [16]. Accordion ad-
always likely to be a helpful routing table entry. Thjﬂs justs the degree of lookup parallelism based on the current
distribution is the same as the “small-world” model pro- lookup load to stay within the specified bandwidth budget.
posed by Kleinberg [13], previously used by DHTs such
as Symphony [19] and Mercury [1]. Thg distribution is

also scalable and results @ 22&2eloe ) jookup hops if 3.3 Routing State Freshness
each node has a table sizespthis result follows from an A DHT node must strike a balance between the freshness
extension of Kleinberg’s analysis [13]. and the size of its routing table. While parallel lookups can
help mask timeouts caused by stale entries, nodes still need
to judge the freshness of entries to decide when to evict
nodes, in order to limit the number of expected lookup
A straightforward approach to learning new neighbors is totimeouts.
search actively for nodes with th% distribution. A more Timeouts are expensive as nodes need to wait multiple
bandwidth-efficient approach, however, is to learn aboutround trip times to declare the lookup message failed be-
new neighbors, and the liveness of existing neighbors, afore re-issuing it to a different neighbor [2, 22]. In order to
a side-effect of ordinary lookup traffic. avoid timeouts, most existing DHTs [2, 5, 20, 26] contact
Learning through lookups does not necessarily yieldeach neighbor periodically to determine the routing entry’s
useful information about existing neighbors or about newliveness. In other words, a node can control its routing state
neighbors with the desired distribution in ID space. Forfreshness by evicting neighbors from its routing table that
example, if the DHT usedterative routing [25] during it has not successfully contacted for some interval. If the
lookups, the original querying node would talk directly to bandwidth budget were infinite, the node could ping each
each hop of the lookup. Assuming the keys being looked umeighbor often to maintain fresh tables of arbitrarily large

3.2 Routing State Acquisition



estimation ofpresh assuming a Pareto distribution for node
lifetimes.

Let Atgive be the time for which the neighbor has been
a member of the DHT, measured at the time it was last
heard,Atgnce SEeCONds ago. The conditional probability of
a neighbor being alive, given that it had already been alive
for Ataive SECONS, IS

CDF

p = Pr(lifetime > (Ataive + Atsince) | lifetime > Ataive)

Measured Gnutella Distribution
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Figure 1:Cumulative distribution of measured Gnutellanode up- ~ Therefore,Atgnce = Ataive(p~ = — 1). Since At?live
time [24] compared with a Pareto distribution using= 0.83 and  follows a Pareto distribution, the median lifetime2is 5.

1 _1
B = 1560 sec. Therefore, withinAtsne = 2% (g2, — 1) Seconds, half
of the routing table should be evicted with the eviction
threshold set abresn- If stor IS the total routing table size,

size. However, with a finite bandwidth, a DHT node must (€ eviction rate is approximatebyie—. _
somehow make a tradeoff between the freshness and the Since nodes aim to keep their maintenance traffic be-
size of its routing table. This section describes how to preJOW & certain bandwidth budget, they can only refresh or

dict the freshness of routing table entries so that entries calf@m about new neighbors at some finite rate determined
be evicted efficiently. the budget. For example, if a node’s bandwidth budget is

20 bytes per second, and learning liveness information for
a single neighbor costs 4 bytesd;, the neighbor’s IP ad-
3.3.1 Characterizing Freshness dress), then at most a node could refresh or learn routing
) . table entries for 5 nodes per second.
The freshness of a routing table entry can be characterized Suppose that a node has a bandwidth budget such that it

V_Vith p. the prc(Jjb?bility ofa _n(;ighb(f)r beir;}g a"\t’j' 'I_'fhehevic- .can afford to refresh/learn aboBt nodes per second. The
tion process e etes a neighbor from the table It the eSt"routing table sizesi at the equilibrium between eviction
mated probability of it being alive is below some thresh- and learning is:

old piresn- Therefore, we are interested in finding a value Stot

for piesh such that the total number of lookup hops in- WA lsme
cluding timeout retries are minimized. If node lifetimes
follow a memoryless exponential distributiop,is deter- = Stot = 2B Atsince = QB(Qé)ﬁ(pt;éSh -1)

mined only byAtgnce, Where Atgnee IS the time interval

since the neighbor was last known to be alive. HoweverHowever, some fraction of the table points to dead neigh-
in real systems, the distribution of node lifetimes is oftenbors and therefore does not contribute to lowering lookup
heavy-tailed: nodes that have been alive for a long time ardops. Theeffective routing table size, then, is = s -
more likely to stay alive for an even longer time. In a heavy- Pthresh-

tailed Pareto distribution, for example, the probability of a

node dying before timeis 3.3.2 Choosing the Best Eviction Threshold

Our goal is to choose giresn that will minimize the ex-
pected number of hops for each lookup. We know from
Section 3.1 that the average number of hops per lookup in
wherea and 5 are the shape and scale parameters of the static network i@(%); under churn, however,
distribution, respectively. Saroiu et al. measure such a diseach hop successfully taken has an extra cost associated
tribution in a study of the Gnutella network [24]; in Fig- with it, due to the possibility of forwarding lookups to dead
ure 1 we compare their measured Gnutella lifetime dis-neighbors. When each neighbor is alive with probability at
tribution with a synthetic heavy-tailed Pareto distribution leastpyresn, the upper bound on the expected number of tri-
(usingae = .83 and3 = 1560 sec). In a heavy-tailed dis- als per successful hop takenl—jié; (for now, we assume no
tribution, p is determined by both the time when the node parallelism). Thus, we can approximate the expected num-

joined the networkAt give, andAtgnce. We will presentour  ber of actual hops per lookup, by multiplying the number

Pr(lifetime < t) =1 — <§)a



Pthresh DECOMES even larger and approachethe number

4
35 of hops actually increases due to a limited table size. The
Piresh that minimizes lookup hops lies somewhere between
37 .7 and.9 for all curves. Figure 2 also shows that&g in-
% 25 creases, thgmesn that minimizesh* increases as well, but
(=X .
e 2 only slightly. In fact, for any reasonable value B3, h*
e 15 | varies so little around its true minimum that we can ap-
proximate the optimapiresn for any value of Bg to be
Ly .9. A similar analysis shows the same results for reason-
0.5 ablea values. For the remainder of this paper, we assume
T Prresh = .9, because even though this may not be precisely
0 010203040506070809 1 optimal, it will produce an expected number of hops that is

Node liveness probability threshold nearly minimal in most deployment scenarios.

The above analysis fQ¥resh assumes no lookup par-
allelism. If lookups are sent down multiple paths concur-
rently, nodes can use a much smaller valuepf@fes, be-
cause the probability will be small thall of the next-hop
messages will timeout. Using a smaller value fQfesn
leads to a larger effective routing table size, reducing the
average lookup hop count. Nodes can chogsga value
such that the probability that at least one next-hop message
log nloglogn 1 will not fail is at least.9.

Figure 2:The functionh* (Equation 4) with respect t@resh, for
different values ofB3 and fixeda = 1. h* goes to infinity as
Pthresh @pProaches.

of effective lookup hops with the expected number of trials
needed per effective hop:

log s Pthresh

We then substitute the effective table sizith sir-pivesn, 333 Calculating Entry Freshness

using Equation 2:

Nodes can use Equation 1 to calculatéhe probability of a
. . 3) neighbor being alive, and then evict entries witk p tres-

10g(2BB(2% ) (Pyyesy — 1) - Ditvesn)  Pthresh Calculatingp requires estimates of three valugg:qjive and

The numerator of Equation 3 is constant with respectAtS‘”‘:e for the given neighbor, along with the shape pa-

: ametera of the Pareto distribution. Interestingly,does
t0 pihresh, @and therefore can be ignored for the purposes o . -
e not depend on the scale parametewhich determines the
minimization. It usually takes on the order of a few round- . o . o .
o ; . ...~ median node lifetime in the system. This is counterintu-
trip times to detect lookup timeout and this multiplicative

. . . itive; we expect that smaller median node lifetimes.(
timeout penalty can also be ignored. Our task now is to . . o

o T Y faster churn rates) will decreageand increase the eviction
choose @resh that will minimize:

rate. This median lifetime information, however, is implic-
1 itly present in the observed values fAr 5ive and Atgnce,
K= log(2BA(2%)( - 1) ). ) sog is not explicitly required to calculage
8 Pvesn Phresh ) Pihresh Equation 1, as stated, still requires some estimatefor
The minimizingpwresh depends on the constartBj) - which may be difficult to observe and calculate. To simplify
(Qi) ando. If pwres varied widely given different values of  this task, we define an indicator variabl®or each routing
Bp anda, nodes would constantly need to reassess their egable entry as follows:
timates ofpyresh USING rough estimates of the current churn
rate and the bandwidth budget. Fortunately, this is not the i — Atalive )
case.  Ataive + Atsince
Figure 2 plotsh* with respect t@ynresn, fOr various val-
ues of BG and a fixedx. We consider only values aBj Sincep = i“, a monotonically increasing function of
large enough to allow nodes to maintain a reasonable nunthere exists soménes such that any routing table entry
ber of neighbors under the given churn rate. For examplewith i < iresh Will @also have g < puresn- Thus, if nodes
if nodes have mean lifetimes of 10 seconds=£ 5 sec, can estimate the value &f,es, corresponding t@hresh, NO
a = 1), but can afford to refresh/learn one neighbor perestimate ofy is necessary. All entries withless thari e
second, no value gfiresn Will allow s to be greater than 2. will be evicted. Section 4.6 describes how Accordion esti-
Figure 2 shows that agiresn iNncreases the expected mates an appropriatgres, for the observed churn, and how
lookup hops decreases due to fewer timeouts; however, asodes learn\tgive andAtgnce for each entry.

lognloglogn 1

h




4 The Accordion Protocol size of one exploration packet divided by,q). Whenever

bavail 1S pOSitive, the node sends one exploration packet, ac-
Accordion uses consistent hashing [12] in a circular iden-cording to the algorithm we present in Section 4.4. Nodes
tifier space to assign keys to nodes. Accordion borrowslecrementba,i down to a minimum of—by,g. While
Chord’s protocols for maintaining a linked list from each b, = —bpurg, Nodes immediately stop sending all low
node to the ones immediately following in ID space priority traffic (such as redundant lookup traffic and explo-
(Chord’s successor lists and join protocol). An Accordion ration traffic). Thus, nodes send no exploration traffic un-
node’s routing table consists of a set of neighbor entries|ess the average traffic over the lagt«/rag Seconds has
each containing a neighboring node’s IP address and ID. been less thang.

An Accordion lookup for a key finds the key’'s succes- The bandwidth budget controls the maintenance traffic
sor: the node whose ID most closely follows the key in ID sent by an Accordion node, but does not give the node di-
space. When node, starts a query for ke¥, no looks in  rect control over all incoming and outgoing traffic. For ex-
its routing table for the neighbar; whose ID most closely ample, a node must acknowledge all traffic sent to it from
precedeg, and sends a query packette. That node fol-  its predecessor regardless of the valué f; otherwise,
lows the same rule: it forwards the query to the neighbor  its predecessor may think it has failed and the correctness
that most closely precedésWhen the query reaches node of lookups would be compromised. The imbalance between
n; andk lies betweem,; and then;'s successor, the query a node’s specified budget and its actual incoming and out-
has finishedn; sends a reply directly back tey, with the  going traffic is of special concern in scenarios where nodes
identity of its successor (the node responsiblekfor have heterogeneous budgets in the system. To help nodes
with low budgets avoid excessive incoming traffic from
. nodes with high budgets, an Accordion node biases lookup
4.1 Bandwidth Budget and table exploration traffic toward neighbors with higher

Accordion’s Strategy for using the bandv\”dth budget is to budgetS. SeCtion 45 describes the details Of thIS biaS.

use as much bandwidth as possible on lookups by exploring

multiple paths in parallel [16]. When some bandwidth is 4.2 L ear ning from L ookups

left over (perhaps due to bursty lookup traffic), Accordion

uses the rest to explore; that is, to find new routing entriesVhen an Accordion node forwards a lookup (see Fig-
according to a small-world distribution. ure 4.2), the immediate next-hop node returns an acknowl-

This approach works well because parallel lookups servedgment that includes a set of neighbors from its rout-
two functions. Parallelism reduces the impact of timeoutsing table; this acknowledgment allows nodes to learn from
on lookup latency because one copy of the lookup may proJOOkupS. The acknowledgment also serves to indicate that
ceed while other copies wait in timeout. Parallel lookupsthe next-hop is alive.
also allow nodes to learn about new nodes and about the If n; forwards a lookup for key: to ns, ny returns a
liveness of existing neighbors, and as such it is better teet of neighbors in the ID range between and k. Ac-
learn as a side-effect of lookups than from explicit probing. quiring new entries this way allow nodes to preferentially
Section 4.3 explains how Accordion controls the degree oflearn about ID spaces close-by to itself, the key characteris-
lookup parallelism to try to fill the whole budget. tic of a small-world distribution. Additionally, the fact that

Accordion must also keep track of how much of the bud- 71 forwarded the lookup ta indicates that:; does not
get is left over and available for exploration. To control know of any nodes in the ID gap between andk, andn
the budget, each node maintains an integer variahlg,, IS well-situated to fill this gap.
which keeps track of the number of bytes available to the
r}ode for exploration traffic, based on rgcent activity. Each 4.3 Parallel Lookups
time the node sends a packet or receives the correspond-
ing acknowledgment (for any type of traffic), it decrements An Accordion node increases the parallelism of lookups it
bavail DY the size of the packet. It does not decrentgnd; initiates and forwards until the point where the lookup traf-
for unsolicited incoming traffic, or for the corresponding fic nearly fills the bandwidth budget. An Accordion node
outgoing acknowledgments. In other words, each packemust adapt the level of parallelism as the underlying lookup
only counts towards the bandwidth budget at one end. Perate changes, it must avoid forwarding the same lookup
riodically, the node incrementis,,; at the rate of the band- twice, and it must choose the most effective set of nodes
width budget. to which to forward copies of each lookup.

The user gives the bandwidth budget in two parts: the av- A key challenge in Accordion’s parallel lookup design
erage desired rate of traffic in bytes per secangy), and  is caused by its use of recursive routing. Previous DHTs
the maximum burst size in bytey(,«). Everytinc Seconds,  with parallel lookups use iterative routing: the originating
the node incrementsayai by ray - tine (Wheretin is the  node sends lookup messages to each hop of the lookup in



procedure NEXTHOP(lookup_request q)
if this node owng.key then {
reply to lookup source directly
return (NULL)

}

notincreasev, above some maximum value, as determined
by the maximum burst sizép,<. A node forwards thev
copies of a lookup to thev, neighbors whose IDs most
closely precede the desired key in ID space.

When a node originates a query, it marks one of the par-

/I use bias to pick best predecessor (Section 4.5)
nexthop «— routetable. BESTPRED(q.key)

/I forward query to next hop

/I and wait for ACK and learning info

nextreply < nexthop.NEXTHOP(q)

put nodes ofiextreply in routetable

/l find some nodes between this node

/I and the key, and return them

return (GETNODES(q.lasthop, q.key))

allel copies with a “primary” flag which gives that copy

high priority. Intermediate nodes are free to drop non-
primary copies of a query if they do not have sufficient

bandwidth to forward the query, or if they have already seen
a copy of the query in the recent past. If a node receives
a primary query, it marks one forwarded copy as primary,
maintaining the invariant that there is always one primary
copy of a query. Primary lookup packets trace the path a
non-parallel lookup would have taken, while non-primary

traffic copies act as optional traffic to decrease timeout la-

rocedure GETNODEY(src, end ) . .
P S(sre, ) tency and increase information learned.

s «+ neighbors betweeme andend

/' m is some constant (e.g., 5)

if s.51ZE() < m thenv «— s

elsev «— m nodes ins nearest tarc w.r.t. latency
return (v)

4.4 Routing Table Exploration

When lookup traffic is bursty, Accordion might not be able
to accurately prediciy, for the next time period. As such,
parallel lookups would not consume the entire bandwidth
budget during that time period. Accordion uses this leftover
bandwidth to explore for new neighbors actively. Because
) o lookup keys are not necessarily distributed uniformly in
turn [15,20]. Iterative lookups allow the originating node to practice, a node might not be able to learn new entries with
explicitly control the amount of parallelism and the order in the correct distribution through lookups alone; explicit ex-
which paths are explored, since the originating node iss_ueﬁloration addresses this problem. The main goal of explo-
all messages related to the lookup. However, Accordion ;i is that it be bandwidth-efficient and result in learning

uses recursive routing to learn nodes with a small-worldy 465 yith the small-world distribution described in Sec-
distribution, and nodes forward lookups directly to the next;,\ 3 1

hop. To control recursive parallel lookups, each Accordion

de ind dently adiusts its look llelism to st For each neighbar ID-distance away from a node, the
hode independently adjusts its lookup paraflelism to s aygap between that neighbor and the next successive entry
within the bandwidth budget.

should be proportional to. A node with identifiera com-

If an Accordion node knew the near-term future rate atpares thescal ed gaps between successive neighbarsand
which it was about to receive lookups to be forwarded, ity to decide the portion of its routing table most in need
could divide the bandwidth budget by that rate to determineof exploration. The scaled gapbetween neighbors; and
the level of parallelism. Since it cannot predict the future, n, , is:

Accordi_on uses an adaptive algorithm to set the level c_)f d(ni, nis1)

parallelism based on the past lookup rate. Each node main- 9= W

tains aw, “parallelism window” variable that determines

the number of copies it forwards of each received or ini-whered(z, y) computes the clockwise distance in the cir-
tiated lookup. A node updates, everyt, seconds, where cular identifier space between identifierandy. When an

to = bourst/Tavg, Which allows enough time for the band- Accordion node sends an exploration query, it sends it to
width budget to recover from potential bursts of lookup the neighbor with the largest scaled gap between it and the
traffic. During each interval of, seconds, a node keeps next neighbor. The result is that the node explores in the
track of how many unique lookup packets it has origi- area of ID space where its routing table is the most sparse
nated or forwarded, and how many exploration packets itwith respect to the desired distribution.

has sent. If more exploration packets have been sent than An exploration message from nodeasks neighborn ;

the number of lookups that have passed through this noddor m neighbor entries between; andn;;, wherem is

wp increases byl. Otherwisew, decreases by half. This some small constang.g., 5).n; retrieves these entries from
additive increase/multiplicative decrease (AIMD) style of both its successor list and its routing tabig.uses Vivaldi
control ensures a prompt responseupoverestimation or  network coordinates [4] to find the nodes in this gap with
sudden changes in the lookup load. Additionally, nodes dahe lowest predicted network delaydolf »; returns fewer

Figure 3: Learning from lookups in Accordion.



thanm entries, node will not revisit n; again until it has
explored all other neighbors.
The above process onbpproximates a % distribution;
it does not guarantee such a distribution in all cases. Such o5 1" %2° 07 64 6.5 06« 07 058 695 10
a guarantee would not be flexible enough to allow a full &+ | i 1o
routing table when bandwidth is plentiful and churn is low.
Accordion’s exploration method results in;lcadistribution Figure 4:A list of contact entries, sorted by increasingalues.
when churn is high, but also achieves nearly full routing Up arrows indicate events where the neighbor was alive, and down

tables when the bandwidth budget allows. arrows indicate the opposite. A node estimate® be the mini-
mum: such that there are more th&d% (pwvesn) live contacts for
i > 1p, and then incorporates into its imresn €StiMate.

4.5 Biasing Traffic to High-Budget Nodes

Because nodes have no direct control over their incom-
ing bandwidth, in a network containing nodes with di- the lookup progresses at least halfway towards the key if
verse bandwidth budgets we expect that some nodes wilPossible.
be forced over-budget by incoming traffic from nodes with  To account for network proximity, Accordion further
bigger budgets. Accordion addresses this budgetary imbamweights thev; values by the estimated network delay to
ance by biasing lookup and exploration traffic toward nodesthe neighbor based on network coordinates. With this ex-
with higher budgets. Though nodes still do not have directtension,a chooses the neighbor with the largest value for
control over their incoming bandwidth, in the absence ofv; = vi/delay(a, n;). This is similar in spirit to traditional
malicious nodes this bias serves to distribute traffic in pro-proximity routing schemes [7].
portion to the bandwidth budgets of nodes.

When an Accordion node learns about a new neighborg g Estimating Liveness Probabilities
it also learns that neighbor’s bandwidth budget. Traditional
DHT protocols €g., Chord) route lookups greedily to the In order to avoid timeout delays during lookups, an Ac-
neighbor most closely preceding the key in ID space, be-cordion node must ensure that the neighbors in its routing
cause that neighbor is expected to have the highest deriable are likely to be alive. Accordion does this by estimat-
sity of routing entries near the key. We generalize this idednd each neighbor’s probability of being alive, and evict-
to consider bandwidth budget. Since the density of routingind neighbors judged likely to be dead. For any reason-
entries near the desired ID region increases linearly with2ble node lifetime distribution, the probability that a node
the node’s bandwidth budget but decreases with the node’®s alive decreases as the amount of time since the node was
distance from that region in ID space, neighbors shouldast heard from increases. Accordion attempts to calculate
forward lookup/exploration traffic to the neighbor with the this probability explicitly.
bestcombination of high budget and short distance. Section 3.3 showed that for a Pareto node lifetime distri-

Suppose a node decides to send an exp|0ration packet bution, nodes should evict all entries whose prObabl“ty of
to its neighbom, (with budgeth, ), to learn about new en- Peing alive is less than some threshplglesh so the prob-
tries in the gap betweem; and the following entry:o (as ability of successfully forwarding a lookup is greater than
discussed in Section 4.4). Letbe the distance in identi- -9 given the current lookup parallelismy (i.e, 1 — (1 —
fier space between; and the following entryno. Letn;  Ptvesh)* = 0.9). The valuel from Equation 5 indicates the
(Z =2, 3) be neighbors precedin@l in thea's routing probabllltyp ofa nEighbor being alive. The overall goal of
table, each with a bandwidth budgettof In Accordion’s Accordion’s node eviction policy is to estimate a value for
traffic biasing scheme; prefers to send the exploration ‘thresn, SUch that nodes evict any neighbor with an associ-
packet to the ne|ghb@f7 (Z — 17 2) with the |argest value ated: value beIOVW:thresh. See Section 3.3 for the definitions

for the following equation: of ¢ andiresn.
A node estimatesnes, as follows. Each time it contacts
o b; a neighbor, it records whether the neighbor is alive or dead
vi = d(ni,n1) +x and the neighbor’s current indicator valuePeriodically,

a node reassesses its estimationiypfs, using this list. It
wherex = d(n1,n0). In the case of making lookup for- first sorts all the entries in the list by increasinglue, and
warding decisions for some kéy = = d(n1, k) andn; is then determines the smallest valigesuch that the fraction
the entry immediately precedésn a’s routing table. For  of entries with an “alive” status and @n> i iS phresh. The
each lookup and exploration decision, an Accordion nodenode then incorporatég into its current estimate afqesh,
examines a fixed number of candidate neighbors (s8t to using an exponentially-weighted moving average. Figure 4
in our implementation) preceding, and also ensures that shows the correay, value for a given sorted list of entries.



To calculate for each neighbor using Equation 5, nodes simulator. Existing p2psim implementations of the Chord
must kKnowAt give (the time between when the neighbor last and OneHop DHTs simplified comparing Accordion to
joined the network and when it was last heard) &td.e  these protocols. The Chord implementation chooses neigh-
(the time between when it was last heard and now). Eaclibors based on their proximity [5, 7].
node keeps track of its owAtie based on the time of For simulations involving networks of less thdfi40
its last join, and includes its owAt?ive in every packet it  nodes, we use a pairwise latency matrix derived from mea-
sends. Nodes leartM zive, Atsince) iNformation associated suring the inter-node latencies tf40 DNS servers using
with neighbors in one of the following three ways: the King method [8]. However, because of the limited size

) ) _of this topology and the difficulty involved in obtaining
e When the node hears from a neighbor directly, it 5 |arger measurement set, for simulations involving larger
records the current local timestamptas in the rout-  petworks we assign each node a random 2D synthetic Eu-
ing entry for that neighbor, and resets an associatejigean coordinate and derive the network delay between a
Atsnce Value to 0 and setdtaive to the newly-received i of nodes from their corresponding Euclidean distance.
Ataiive value. The average round-trip delay between node pairs in both
« If a node hears information about a new neighbor in- 1€ Synthetic and measured delay matricds{sms. Since
directly from another node, it will save the supplied each lookup for a random ke_y starts and terminates at two
random nodes, the average inter-host latency of the topol-
ogy serves as a lower bound for the average DHT lookup
latency. By default, our experiments use a Euclidean topol-
¢ If a node hears information about an existing neigh-ogy of 3000 nodes, except when noted. p2psim does not
bor, it compares the receivefitg,e value with its  simulate link transmission rates or queuing delays. The ex-
currently recorded value for that neighbor. A smaller periments involve only key lookups; no data is retrieved.
receivedAtgnce indicates fresher information about  Each node alternately leaves and re-joins the network;
this neighbor, and so the node saves the correspondhe interval between successive events for each node fol-
ing (Ataive, Atsince) pair for the neighborinits routing  lows a Pareto distribution with median time of 1 houe.(
table. It also setsy to the current local timestamp. o = 1 andB = 1800 sec), unless noted. This choice of life-

time distribution is similar to past studies of peer-to-peer
Whenever a node needs to calculate a current value foﬁetworks as discussed in Section 3.3. Because 1 in

Atsince (€ither to compare its freshness, to estima®@ 10 4| simulations involving a Pareto distribution, our imple-
passitto a different node), it adds the Sa\md:;’nce value  mentation of Accordion does not use thge-estimation
and the difference between the current local timestamp a”?echnique presented in Section 4.6, as it is more convenient

Atgnce Value in the new routing entry, and set the en-
try’s tjag Value to the current local timestamp.

biast: t0 Setithresh = Pihresh = -9 iNStead.
Nodes issue lookups with respect to two different work-
5 Evaluation loads. In thechurn intensive workload, each node issues a

lookup once every 10 minutes, while in thaokup inten-

This section demonstrates the important properties offv&Wworkload, each node issues a lookup once every 9 sec-
Accordion through simulation. It shows that Accordion ©Nds: Experiments use the churn intensive workload unless
matches the performance of existifigz n-routing-table ~ Oth€rwise noted. Each time a node joins, it uses a differ-
DHTs when bandwidth is scarce, and the performance ofNt IP @ddress and DHT identifier. Each experiment runs
large-table DHTs when bandwidth is plentiful under dif- for four _hours of simulated time; sta_’ustlcs are collected
ferent lookup workloads. Accordion achieves low latency ©Nly during the final half of the experiment and averaged
lookups under varying network sizes and churn rates witHOVer 5 simulation runs. All Accordion configurations set
bounded routing table maintenance overhead. Furthermoré?,burst = 1007avg-

Accordion’s automatic self-tuning algorithms approach the

best possible performance/cost tradeoff, and Accordion'sy 2 Comparison Framework

performance degrades only modestly when the node life-

times do not follow the assumed Pareto distribution. Ac-We evaluate the performance of the protocols using two
cordion stays within its bandwidth budget on average everiypes of metricsperformance andcost, following from the
when nodes have heterogeneous bandwidth budgets. ~ performance versus cost framework (PVC) we developed
in previous work [16]. Though other techniques exist for
comparing DHTs under churn [14,17], PVC naturally al-
lows us to measure how efficiently protocols achieve their
This evaluation uses an implementation of Accordion inperformance vs. cost tradeoffs.

p2psim, a publicly-available, discrete-event packet level We measure performance as the average lookup latency

5.1 Experimental Setup
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Figure 5:Accordion’s bandwidth vs. lookup latency tradeoff Figure 6:The average routing table size for Chord and Accor-

compared to Chord and OneHop, using080-node network and dion as a function of the average per-node bandwidth, using a

a churn intensive workload. Each point represents a particular pa8000-node network and a churn intensive workload. The routing

rameter combination for the given protocol. Accordion’s perfor-table sizes for Chord correspond to the optimal parameter combi-

mance matches or improves OneHop’s when bandwidth is plentirations in Figure 5. Accordion’s ability to grow its routing table

ful, and Chord’s when bandwidth is constrained. as available bandwidth increases explains why its latency is gen-
erally lower than Chord’s.

of correct lookupsi(e., lookups for which a correct answer 400
is returned), including timeout penalties (three times the g . | .
round-trip time to the dead node). All protocols retry failed g
lookups (.e,, lookups that time out without completing) for 3 39|
up to a maximum of four seconds. We do not include the & 250 t
latencies of incorrect or failed lookups in this metric, but ﬁ 200 L
for all experiments of interest these counted for less than < 150 |
5% of the total lookups for all protocols. 2 100 1
g Chord w/ proximity ——
. g 50 Accordion - 1

We measure cost as the average bandwidth consumed per < OneHop ~x--
node per alive second.€., we divide the total bytes con- 0 0 io éo 3;0 4‘0 5;0 60
sumed by the sum of times that each node was alive). The Average bytes per node per alive second

size in bytes of each message is counted as 20 bytes for

headers plugd bytes for each node mentioned in the mes-Figure 7: Accordion’s lookup latency vs. bandwidth overhead
sage for Chord and OneHop. Each Accordion node entry igradeoff compared to Chord and OneHop, usiri@24-node net-
counted a8 bytes due to additional fields on the bandwidth work and a lookup intensive workload.

budget, node membership tim&#iv), and time since last

contacted Atgnce) fOr each node entry.

For graphs comparing DHTs with many parametees, ( 5.3 Latency vs. Bandwidth Tradeoff
Chord and OneHop) to Accordion, we use PVC to explore
the parameter space of Chord and OneHop fully and scatA primary goal of the Accordion design is to adapt the
terplot the results. Each point on such a figure shows theouting table size to achieve the lowest latency depending
average lookup latency and bandwidth overhead measureon bandwidth budget and churn. Figure 5 plots the average
for one distinct set of parameter values for those protocolslookup latency vs. bandwidth overhead tradeoffs of Accor-
The graphs also have tkenvex hull segments of the proto- dion, Chord, and OneHop. In this experiment, we varied
cols, which show the best latency/bandwidth tradeoffs posAccordion’sra,g parameter between 3 and 60 bytes per sec-
sible with the protocols, given the many different config- ond. We plot measured actual bandwidth consumption, not
urations possible. Accordion, on the other hand, has onlythe configured bandwidth budget, along thexis. Thez-
one parameter, the bandwidth budget, and does not need taxis values include all traffic: lookups as well as routing
be explored in this manner. table maintenance overhead.
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Figure 8:The lookup latency of Chord, Accordion and One- Figure 9:The average bytes consumed per node by Chord, Ac-
Hop as the number of nodes in the system increases, using@rdion and OneHop as the number of nodes in the system in-
churn intensive workload. Accordion uses a bandwidth budget o€reases, from the same set of experiments as Figure 8.

6 bytes/sec, and the parameters of Chord and OneHop are fixed

to values that minimize lookup latency when consuniirend23

bytes/node/sec in2000-node network, respectively.

Accordion approximates the lookup latency of the bestsection evaluates the performance of Chord, OneHop, and
OneHop configuration when the bandwidth budget is large Accordion under dookup intensive workload. In this work-
and the latency of the best Chord configuration when bandload, each node issues one lookup every 9 seconds (almost
width is small. This is a result of Accordion’s ability to 70 times more often than in the churn intensive workload),
adapt its routing table size, as illustrated in Figure 6. Onwhile the rate of churn is the same as that in the previous
the left, when the budget is limited, Accordion’s table size section.

is almost as small as Chord’s. As the budgets grows, Accor- Figure 7 shows the performance results for the three
dion’s routing table also grows, approaching the number ofyotcols. Again, convex hull segments and scatter plots
live nodes in the system (on average, half of the 3000 nodegp aracterize the performance of Chord and OneHop, while
are alive in the system). _ _ Accordion’s latency/bandwidth curve is derived by vary-
As the protocols use more bandwidth, Chord cannot in-jnq the per-node bandwidth budget. As before, Accordion’s

crease its routing table size as quickly as Accordion, eVelyarformance approximates OneHop’s when bandwidth is
when optimally-tuned; instead, a node spends bandwidtlﬁigh_

on maintenance costs for its slowly-growing table. By in- | he churni ) Kioad. in the look

creasing the table size more quickly, Accordion reduces the ncqntrasttot ec urnm'tenswewor oad, in the lookup
number of hops per lookup, and thus the average Iookupla'—ntens've workload Accordion can operate at lower lev-
tency els of bandwidth consumption than Chord. With a low

Because OneHop keeps a complete routing table, all alJ_ookup rate as in Figure 5, Chord can be configured with

rival and departure events must be propagated to all node‘%Small base _(and thus S”T'a” routing tabl_e and_ more I(_)okup
in the system. This restriction prevents OneHop from beind;f)ps' accordingly) to achieve low latencies, with relatively
configured to consume very small amounts of bandwidth. 'gh Iolgkup Ia7ten0|'es. Howevltlerbwnh a r(‘:'ﬁh Loqkup ratr?
As OneHop propagates these events more quickly, the rou AS I Fgure 7, US'"_]g a small base In Lhord IS not the
ing tables are more up-to-date and both the expected ho est configuration: it has relatively high lookup latency,
count and timeouts per lookups decrease. Accordion, on th ut als(;) g?s ak Iargelzsoverhea: duedto tTe large numbe_r of
other hand, adapts its table size smoothly as its bandwidtfP"Varded lookups. Because Accordion learns new routing

budget allows, and can consistently maintain a fresher rout‘—antr'leS from Iookgp trafﬂc, a r;||gher ralt_e Of. Iofokupsl Ieids
ing table, and thus lower latency lookups, than OneHop. to a larger per-node routing table, resu t'r_'g In Tewer lookup
hops and less overhead due to forwarding lookups. Thus,

) Accordion can operate at lower levels of bandwidth than
5.4 Effect of a Different Workload Chord because it automatically increases its routing table

The simulations in the previous section featured a workloadsiZ€ Py leaming from the large number of lookups.
that waschurn intensive; that is, the amount of churn in the The rest of the evaluation focuses on the churn intensive
network was high in proportion to the lookup rate. This workload, unless otherwise specified.
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Figure 10:The lookup latency of Chord, Accordion and OneHop Figure 11:The average bytes consumed per node by Chord,

as median node lifetime increases (and churn decreases), usinghacordion and OneHop as median node lifetime increases (and
3000-node network. Accordion uses a bandwidth budge24df churn decreases), from the same set of experiments as Figure 10.
bytes/sec, and the parameters of Chord and OneHop are fixed to

values that minimize lookup latency when consumirigand23

bytes/node/sec, respectively, with median lifetime8asf0 sec.

5.5 Effect of Network Size width consumption varies widely and could at any one time

exceed a node’s desired bandwidth budget, while Accor-

This section investigates the effect of scaling the size ofion stays closer to its average bandwidth consumption.
the network on the performance of Accordion. Figures 8

and 9 show the average lookup latency and bandwidth cons
sumption of Chord, Accordion and OneHop as a function5'6 Effect of Churn
of the network size. For Chord and OneHop, we fix the Previous sections illustrated Accordion’s ability to adapt to
protocol parameters to be the optimal settings 80@0-  different bandwidth budgets and network sizes; this section
node networkice., the parameter combinations that pro- evaluates its adaptability to different levels of churn.
duce latency/overhead points lying on the convex hull seg- Figures 10 and 11 shows the lookup latency and band-
ments) for bandwidth consumptions bf bytes/node/sec  width overhead of Chord, Accordion and OneHop as a
and23 bytes/node/sec, respectively. For Accordion, we fix function of median node lifetime. Lower node lifetimes
the bandwidth budget att bytes/sec. With fixed parameter correspond to higher churn. Accordion’s bandwidth bud-
settings, Figure 9 shows that both Chord and OneHop incuget is constant &4 bytes per second per node. Chord and
increasing overhead that scaled@sn andn respectively,  OneHop uses parameters that achieve the lowest lookup la-
wheren is the size of the network. However, Accordion’s tency while consuming7 and23 bytes per second, respec-
fixed bandwidth budget results in predictable overhead contively, for a median node lifetime of one hour. While Accor-
sumption regardless of the network size. Despite using lesgion maintains fixed bandwidth consumption regardless of
bandwidth than OneHop and the fact that Chord’s bandchurn, both Chord and OneHop’s overhead grow inversely
width consumption approaches that of Accordion as theproportional to median node lifetime (proportional to churn
network grows, Accordion’s average lookup latency is con-rates). Accordion’s average lookup latency increases with
sistently lower than that of both Chord and OneHop. shorter median node lifetimes, as it maintains a smaller ta-
These figures plot the@verage bandwidth consumed ble due to higher eviction rates under high churn. Chord’s
by the protocols, which hides the bandwidth that is con-lookup latency increases due to a larger number of lookup
sumed on per-node or burst levels. Because Accordion cortimeouts, because of its fixed table stabilization interval.
trols bandwidth bursts, it keeps individual nodes within Accordion’s lookup latency decreases slightly as the net-
their bandwidth budgets. OneHop, however, explicitly dis- work becomes more stable, with consistently lower laten-
tributes bandwidth unevenly: slice leaders [9] typically usecies than both Chord and OneHop. OneHop has unusually
7 to 10 times the bandwidth of average nodes. OneHohigh lookup latencies under high churn as its optimal set-
is also more bursty than Accordion; we observe that theing for the event aggregation interval with mean node life-
maximum bandwidth burst observed for OneHop is 1200times of 1 hour is not ideal under higher churn, and as a
bytes/node/sec in#00-node network, more than 10 times result lookups incur more frequent timeouts due to stale
the maximum burst of Accordion. Thus, OneHop’s band- routing table entries.
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Figure 12:Bandwidth versus latency for Accordion and Stat- Figure 13The performance of Accordion on three different node

icAccordion, using al024-node network and a churn inten- lifetime distributions, and of Chord on an exponential distribu-

sive workload. Accordion tunes itself nearly as well as the bestion, using a3000-node network and a churn intensive workload.

exhaustive-search parameter choices for StaticAccordion. Though Accordion works best with a Pareto distribution, it still
outperforms Chord with an exponential node lifetime distribution
in most cases.

Parameter Range

Exploration interval 2-90 sec

Lookup parallelismo, | 1,2,4,6 burst of traffic. However, Accordion will reduce the lookup
Eviction threshold resn | .6 —.99 parallelismwy, to try to stay with the maximum burst size.

Therefore, StaticAccordion can keep its lookup parallelism
constant to achieve lower latencies (by masking more time-
outs) than Accordion, though the average bandwidth con-
sumption will be the same in both cases. As such, if con-
5.7 Effectiveness of Self-Tuning trolling bursty bandwidth is a goal of the DHT application
developer, Accordion will control node bandwidth more
Accordion adapts to the current churn and lookup rate byconsistently than StaticAccordion, without significant ad-
adjustingwp and the frequency of exploration, in order to ditional lookup latency.
stay within its bandwidth budget. To evaluate the quality of
the adjustment algorithms, we compare Accordion with a
simplified version (called StaticAccordion) that uses fixed
wp, ithresh @Nd active exploration interval parameters. Sim- Accordion’s algorithm for predicting neighbor liveness
ulating StaticAccordion with a range of parameters, andprobability assumes a heavy-tailed Pareto distribution of
looking for the best latency vs. bandwidth tradeoffs, indi- node lifetimes (see Sections 3.3 and 4.6). In such a dis-
cates how well Accordion could perform with ideal param- tribution, nodes that have been alive a long time are likely
eter settings. Table 1 summarizes StaticAccordion’s paramto remain alive. Accordion exploits this property by pre-
eters and the ranges explored. ferring to keep long-lived nodes in the routing table. If the
Figure 12 plots the latency vs. bandwidth tradeoffs of distribution of lifetimes is not what Accordion expects, it
StaticAccordion for various parameter combinations. Themay make more mistakes about which nodes to keep, and
churn and lookup rates are the same as the scenario in Fighus suffer more lookup timeouts. This section evaluates
ure 5. The lowest StaticAccordion points, and those far-the effect of such mistakes on lookup latency.
thest to the left, represent the performance Accordion could Figure 13 shows the latency/bandwidth tradeoff with
achieve if it self-tuned its parameters optimally. Accordion node lifetime distributions that are uniform and exponen-
approaches the best static tradeoff points, but has highdral. The uniform distribution chooses lifetimes uniformly
latencies in general for the same bandwidth consumptionat random between six minutes and nearly two hours, with
This is because Accordion tries to control bandwidth over-an average of one hour. In this distribution, nodes that have
head, such that it not exceed the maximum-allowed bursbeen part of the network longer arere likely to fail soon.
size if possible (where we lébys = 100rag). StaticAc-  In the exponential distribution, node lifetimes are exponen-
cordion, on the other hand, does not attempt to regulateially distributed with a mean of one hour; the probability
its burst size. For example, when the level of lookup par-of a node being alive does not depend on its join time.
allelism is high, a burst of lookups will generate a large Figure 13 shows that Accordion’s lookup latencies are

Table 1:StaticAccordion parameters and ranges.

5.8 Lifetime Distribution Assumption
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Figure 14:Accordion’s bandwidth consumption vs. lookup rate, Figure 15:Bandwidth consumption of Accordion nodes in a
using a3000-node network and median node lifetimes of one 3000-network using a churn intensive workload where nodes have
hour. All nodes have a bandwidth budget of 6 bytes/sec. Nodeketerogeneous bandwidth budgets, as a function of the largest
stay within the budget until the lookup traffic exceeds that budgetnode’s budget. For each experiment, nodes have budgets uni-
formly distributed between 2 and thevalue. This figure shows
the consumption of the nodes with both the minimum and the
maximum budgets.

higher with uniform and exponential distributions than they

are with Pareto. However, Accordion still provides lower

lookup latencies than Chord, except when bandwidth isbudget. If different nodes have different bandwidth bud-

very limited. gets, it might be the case that nodes with large budgets
force low-budget nodes to exceed their budgets. Accordion
addresses this issue by explicitly biasing lookup and ex-

5.9 Bandwidth Control ploration traffic towards neighbors with high budgets. Fig-

. . ure 15 shows the relationship between the spread of bud-

An Accordion node does not have direct control over all gets and the actual incoming and outgoing bandwidth in-

of the network traffic it 'ge.ne.rates and. receives, and thu%urred by the lowest- and highest-budget nodes. The node
does not always keep within its bandwidth budget. A ”Odebudgets are uniformly spread over the rargje;] wherez

must always forward primary lookups, and must acknowl-jq the maximum budget shown on the x-axis of Figure 15.

edge all exploration packets and lookup requests in ordegq \re 15 shows that the bandwidth used by the lowest-

to avoid appearing to be Qead. This section evaluates ho‘%udget node grows very slowly with the maximum budget

mugh Accordion exceeds_, its budget. ] in the system; even when there is a factobofifference
Figure 14 plots bandwidth consumed by Accordion as apetween the highest and lowest budgets, the lowest-budget

function of lookup traffic rate, when all Accordion nodes po4e exceeds its budget only by a factor of 2. The node with
have a b_andW|dth budget of 6 bytes/sec. The flggre shoWghe maximum budget stays within its budget on average in
the median of the per-node averages over the life of they| cases.

experiment, along with th&0** and 90" percentiles, for

both incoming and outgoing traffic. When lookup traffic

is low, nodes achieve exactly 6 bytes/sec. As the rate 0§ Related Wor k

lookups increases, nodes explore less often and issue fewer

parallel lookups. Once the lookup rate exceeds one everynlike other DHTSs, Accordion is not based on a particu-

25 seconds there is too much lookup traffic to fit within the lar data structure and as a result it has great freedom in

bandwidth budget. Each lookup packet and its acknowledgehoosing the size and content of its routing table. The only

ment cost approximatefy0 bytes in our simulator, and our constraint it has is that the neighbor identifiers adhere to

experiments show that at high lookup rates, lookups takehe small-world distribution [13]. Accordion has borrowed

nearly 3.6 hops on average (including the direct reply torouting table maintenance techniques, lookup techniques,

the query source). Thus, for lookup rates higher thad and inspiration from a number of DHTs [9-11, 20, 23, 25],

lookups per second, we expect lookup traffic to consumeand shares specific goals with MSPastry, EpiChord, Bam-

more tharb0 - 3.6 - 0.04 = 7.2 bytes per node per second, boo, and Symphony.

leading to the observed increase in bandwidth. Castro et al. [2] present a version of Pastry, MSPastry,
The nodes in Figure 14 all have the same bandwidththat self-tunes its stabilization period to adapt to churn and



achieve low bandwidth. MSPastry also estimates the curtunistically through lookups and active search, and evict-
rent failure rate of nodes, using historical failure observa-ing state based on liveness probability estimates, Accordion
tions. Accordion shares the goal of automatic tuning, butadapts its routing table size to achieve low lookup latency
focuses on adjusting its table size as well as adapting thevhile staying within a user-specified bandwidth budget.
rate of maintenance traffic. A self-tuning, bandwidth-efficient protocol such as Ac-
Instead of obtaining new state by explicitly issuing cordion has several benefits. Users often don’t have the ex-
lookups for appropriate identifiers, Accordion learns infor- pertise to tune every DHT parameter correctly for a given
mation from the routing tables of its neighbors. This form operating environment; by providing them with a single,
of information propagation is similar to classic epidemic intuitive parameter (a bandwidth budget), Accordion shifts
algorithms [6]. EpiChord [15] also relies on epidemic prop- the burden of tuning from the user to the system. Further-
agation to learn new routing entries. EpiChord uses paralmore, by remaining flexible in its choice of routing table
lel iterative lookups, as opposed to the parallel recursivesize and content, Accordion can operate efficiently in a
lookups of Accordion, and therefore is not able to learnwide range of operating environments, making it suitable
from its lookup traffic according to the identifier distribu- for use by developers who do not want to limit their appli-
tion of its routing table. cations to a particular network size, churn rate, or lookup
Bamboo [22], like Accordion, has a careful routing table workload.
maintenance strategy that is sensitive to bandwidth-limited Currently, we are instrumenting DHash [5] to use Accor-
environments. The authors advocate a fixed-period recovdion. Our p2psim version of Accordion is available at:
ery algorithm, as opposed to the more traditional method ofit t p: / / pdos. | cs. mi t . edu/ p2psi m
recovering from neighbor failures reactively, to cope with
high churn. Accordion uses an alternate strategy of activerA
requesting new routing information only when bandwidth
allows. Bamboo also uses a lookup algorithm that attempt
to minimize the effect of timeouts, through careful timeout
tuning. Accordion avoids timeouts by predicting the live-
ness of neighbors and using parallel lookups.
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