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Abstract—An ideal simulator allows an architect to swiftly
explore design alternatives and accurately determine their impact
on performance. Design exploration requires simulators to be
easily modifiable, and accurate performance estimates require
detailed models. Unfortunately, detailed modeling not only impacts
the ease with which a simulator can be modified, but also the speed
at which it can be executed, resulting in fidelity being traded
for simulation speed. Although FPGA-based simulators have
dramatically higher speed than software simulators, sacrificing
fidelity is still common.

In this paper we present Arete, an FPGA-based processor
simulator, which offers high performance along with accuracy
and modifiability. We begin with a cycle-level specification of a
multicore architecture which includes realistic in-order cores and
detailed models of shared, coherent memory and on-chip network.
We then describe how this specification is implemented faithfully
and efficiently on FPGAs. Arete delivers a performance of up to
11 MIPS per core. We run a subset of the PARSEC benchmark
suite on top of off-the-shelf SMP Linux, and achieve an average
performance of 55 MIPS for an 8-core model. We also describe two
significant architectural explorations: one involving three different
branch predictors and the other requiring major modifications to
the cache-coherence protocol.

I. INTRODUCTION

Performance modeling plays a critical role in the design
and development of microprocessors. There is an ever-rising
need for fast, accurate and flexible simulators to explore new
architectural ideas and evaluate their impact on performance.
Unfortunately, as processor architectures get more complex,
it becomes more difficult to implement processor simulators
which are both accurate and have high performance. The result
is that simulators often sacrifice accuracy or performance,
giving users the choice between an accurate simulator that takes
days to execute a workload, and a high performance simulator
that does not accurately reflect real hardware. The move to-
wards complicated multicore architectures with shared memory
and on-chip network architectures has only exacerbated this
problem.

Over the last few years, the availability of large FPGAs and
new high-level synthesis tools has provided a new opportunity
for cycle-accurate simulations. It is now possible to do cycle-
accurate simulations of realistic designs, e.g., a small number of
out-of-order processors, on a single FPGA chip. These FPGA-
based cycle-accurate simulators are able to provide three-
orders of magnitude improvement in performance over software

simulators [1]–[4]. The initial effort to develop such FPGA
simulators is somewhat greater than that required for software
simulators, but it still is a far cry from the effort needed to
develop a processor chip. Also, it is possible to design these
FPGA simulators in such a way that they are amenable to
modular refinement, and facilitate the generation of simulators
for many different variants of a base architecture.

In this paper we present Arete, an FPGA-based cycle-
accurate simulator for a multicore PowerPC architecture. We
developed this simulator adhering to a cycle-level specifica-
tion of the architecture. For the purpose of efficient FPGA
implementation we used the LI-BDN technique [5] which
helps to improve the FPGA cycle time and to reduce the
FPGA resource requirements by using multiple FPGA cycles to
simulate one cycle of the target architecture. We boot off-the-
shelf SMP Linux and run applications such as the PARSEC
benchmark suite [6] on Arete. Our simulator is also suitable
for architectural exploration. We demonstrate this by evaluating
three different branch prediction schemes and by extending the
cache-coherence scheme to provide software with better control
over the contents of the caches. We have ported Arete to two
single-FPGA platforms (XUPv5 and ML605) and one multi-
FPGA platform (BEE3).

To our knowledge Arete is the first cycle-accurate FPGA-
based multicore processor simulator which includes both a re-
alistic core architecture and a detailed cache-coherence engine.
Along with modeling this level of detail, Arete delivers high
performance, viz, 55 MIPS while simulating eight cores on four
FPGAs and up to 11 MIPS while simulating one core on one
FPGA.

Paper organization: Section II discusses cycle-accurate model-
ing along with target simplifications and implementation refine-
ments. Section III describes the use of the LI-BDN technique
for implementing models on FPGAs. Section IV provides a
detailed description of Arete. Section V discusses some of the
architectural exploration that we have conducted on Arete, and
provides statistics on its performance and resource utilization.
Section VI discusses some of the related work in the areas
of multicore processor modeling and the use of FPGAs for
implementing these processor models. Section VII summarizes
our work and discusses some of the future avenues we are
planning to explore.
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II. CYCLE-ACCURATE SIMULATION, SIMPLIFICATIONS AND
REFINEMENTS

The term “cycle-accurate simulation” is used in literature
to characterize many different types of simulations. In this
paper we define it as a simulation that conforms to the cycle-
by-cycle behavior of the target design. The behavior may be
characterized in terms of the values of all the state elements
of a machine (registers, memories, etc.) for every clock cycle.
Sometimes it is sufficient to consider only a subset of the state
elements, e.g., the PC and the Register File, and ignore others,
e.g., the pipeline registers inside a multiplier.

Cycle-accurate simulators tend to be both slow and complex.
To overcome these obstacles, architects often simplify the target
design. For instance, when one wants to only study the on-chip
network and the memory subsystem of a multicore processor,
the details in the architecture of the core will typically be
omitted – the core will be simplified to magically execute one
instruction every clock cycle, while the on-chip network and
the memory subsystem will be modeled very accurately. We
use the term target simplifications in order to describe such
simplifications of the target design. The performance estimates
obtained from a simulator that uses target simplifications may
not be fully accurate; the ability to choose a target simplification
that does not skew performance estimates comes mainly from
experience.

Once the cycle-by-cycle behavior of a model (which may
include target simplifications) has been specified, the spec-
ification can be transformed into a netlist. This netlist can
be used to program an FPGA, but it may require too many
FPGA resources or present an unacceptably long critical path.
In order to reduce the resource requirements and shorten the
critical path, an implementation may use several FPGA cycles
to simulate one model cycle while preserving model timing
accuracy.

As an example, consider a model of a target ALU design
which includes a single-cycle multiplier. When this model is
implemented on FPGA, we may choose to replace the single-
cycle multiplier with a 4-cycle unpipelined multiplier in order
to improve the FPGA clock speed and to reduce the resource
requirements. This replacement may be achieved through a
target simplification where the ALU specification is changed
to accommodate a 4-cycle multiplier. The overall performance
of the modified ALU may not differ much from that of the
original ALU as the multiplier may be used infrequently.

Another way to replace the single-cycle multiplier with a 4-
cycle multiplier is to change the implementation of the model
in such a way that when the 4-cycle multiplication takes place,
the rest of the model remains frozen. We call such a 4-
cycle multiplier an implementation refinement of the single-
cycle multiplier. Implementation refinements enable an efficient
implementation of the model while preserving its cycle-level
behavior.

We maintain a clear distinction between target simplifications
and implementation refinements, and do not simplify the target
specification to meet FPGA resource constraints.

III. IMPLEMENTATION METHODOLOGY

In the last few years many FPGA-based simulators have been
built, and consequently, a number of techniques have been
developed to make efficient use of FPGA resources without
compromising the functionality or the timing of the model [3]–
[5], [7]. All these techniques trade time for resources, i.e.,
permit several FPGA cycles to simulate the behavior of one
model cycle, while reducing the resource consumption of the
model. We employ the LI-BDN [5] technique to implement our
model on FPGA because it enables the use of implementation
refinements while preserving the cycle-accuracy of the model
and guaranteeing the absence of deadlocks from the imple-
mentation. Moreover, it does not force the use of any target
simplifications.

A. Overview of the LI-BDN technique

We give a brief overview of the LI-BDN technique using the
example in Figure 1. We start with a cycle-level specification
of a module which has 3 input ports, 2 output ports, some
state, and some logic, as shown in Figure 1(a). We transform
the specification into an LI-BDN by first attaching FIFOs to
all the ports and done flags to all the output ports, as shown in
Figure 1(b). Now, as Figure 1(c) depicts, the top output depends
only on the top input, which is available. So we produce the
top output and set its done flag. Similarly, we also produce the
bottom output and set its done flag because it depends only on
the bottom input, which is also available. Finally, after all the
outputs have been produced and all the inputs are available,
we update the state, dequeue all the input FIFOs and clear
all the done flags, as shown in Figure 1(d). The conversion
from a specification into an LI-BDN is what we call the LI-
BDN transformation of a module. The two requirements, that an
output waits only for the inputs that it depends on, and that all
the input FIFOs are dequeued when all the inputs are available
and all the outputs have been produced, together guarantee the
absence of deadlocks from the LI-BDN transformation.

The time duration between the enqueuing of the output
FIFOs and the dequeuing of the input FIFOs comprises one
model cycle. During one model cycle, the implementation can
use any number of FPGA cycles to produce the outputs or
to update the state. In this manner, we decouple the model
cycle from the FPGA cycle and enable an efficient FPGA
implementation of the model through the use of various im-
plementation refinements. For example, a multi-ported register
file which consumes many LUTs (a scarce FPGA resource) can
be implemented using a dual-ported block RAM (a plentiful
FPGA resource). The LI-BDN technique allows us to simulate
the many ports and the combinational reads of the register file
using the two ports and the one-cycle-latency reads of the block
RAM. Similarly, a single-cycle 64-bit divider which runs at
4 MHz can be implemented using a 32-cycle divider which
runs at 140 MHz. We use the LI-BDN technique to simulate
a single-cycle divider from the 32-cycle divider, and since the
divider is infrequently used, we obtain an overall improvement
in performance.
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Fig. 1. Transforming a cycle-level specification into an LI-BDN

B. Debugging using the LI-BDN technique

The major requirement for debugging a large and complex
model is to have the ability to freeze it in a particular model
cycle so that a precise snapshot of all the state can be obtained.
Such an ability is similar to taking a snapshot of the architec-
tural state of an out-of-order processor for precise exceptions.
The use of the LI-BDN technique allows us to provide this
functionality at the granularity of modules that make up a
model. One can also choose to freeze the entire model by
freezing all the modules in the same model cycle.

We make use of the module from Figure 1(a) to demonstrate
how its LI-BDN implementation can facilitate debugging. Con-
sider a model which is comprised of many such modules. If we
need to gain precise read and write access to the state inside
a module during simulation, we add a 1-bit input port and a
1-bit output port to the module, as shown in Figure 2(a). Every
model cycle, the module produces 1 or 0 on the new output
port, and ignores the new input port. We then transform the
module into an LI-BDN and attach the external interface of the
new ports to some logic, as shown in Figure 2(b). The logic
can freeze the module in model cycle n by dequeuing n times
from the FIFO attached to the new output port, and enqueuing
n − 1 times into the FIFO attached to the new input port. A
debugger can now either read or assign the value of the state in
the nth model cycle. Also, any such transformed module can
be frozen independently of the rest of the model.

IV. FLEXIBLE SIMULATION PLATFORM

The design and implementation of Arete provides simulation
speed and accuracy along with ease of modification and porta-
bility. We started by writing a cycle-level specification of the
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Fig. 2. Decoupled debugging enabled by the use of the LI-BDN technique

processor, and then employed the LI-BDN technique described
in section III to incorporate various implementation refinements
which helped achieve an efficient FPGA implementation. In the
process, we built a library of components which may be used
for FPGA implementations of other models. We used Bluespec
System Verilog (BSV) [8] to develop Arete.

In this section we describe the architecture of the processor
being modeled, along with the flexibility of the model, and its
portability to various FPGA platforms.

A. Processor Architecture

The processor makes use of a tiled architecture where the
number of tiles is a synthesis parameter that is specified
according to the resources available on a particular FPGA
platform. As shown in Figure 3, each tile is composed of a
parameterized number of cores, a shared L2 cache, a cache-
coherence engine and a network controller. Each tile directly
accesses a region of DRAM memory, the size of which is
platform dependent. A network layer connects all the tiles in
the processor.

1) Core: The core comprises of a 64-bit, in-order PowerPC
pipeline and implements the Power ISA—Embedded Environ-
ment [9]. Figure 4 shows the microarchitecture of the core. The
pipeline is designed to provide a high degree of flexibility, and
includes the following features.

(I) Pipeline stages can be split or combined without mod-
ifying the rest of the pipeline because the stages are
designed to be latency-tolerant.

PowerPC

Core

DRAM

Dir

Ctrl
L2$

PowerPC

Core

Network Controller

Fig. 3. Architecture of a processor tile
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Fig. 4. Architecture of an in-order PowerPC core

(II) The mechanism to handle change in instruction flow
allows any stage to perform branch prediction, branch
resolution or exception handling.

(III) Any stage can read the register file and the various special
purpose registers, but only the last stage updates them
when committing instructions. Updated register values
are fully bypassed, but the pipeline may still stall due to
read-after-write hazards.

Each core has private instruction and data L1 caches with
a pipelined hit latency of 1 model cycle. These caches are
parameterized for associativity, line size, number of entries and
replacement policy. The tag and data arrays of the L1 caches are
implemented on block RAMs. The core also has a TLB which
is parameterized for number of entries, and is implemented
using a combination of block and distributed RAMs. It provides
multi-ported combinational access for instruction and data
address translation.

One of the key features of the core’s design is its modularity.
It can support a completely different RISC ISA with appropriate
modifications confined to the decode and the MMU modules.

2) Shared memory and cache-coherence: Figure 5 shows
the hierarchical structure of the shared, coherent memory ar-
chitecture which forms the backbone of the multicore processor.
We have designed and implemented a hierarchical, directory-
based MSI protocol to provide cache-coherence. The protocol
maintains a set of invariants which guarantee the absence of
deadlocks.

The L2 cache is inclusive and is shared by all the cores in
a tile. It is parameterized for associativity, line size, number of
entries, replacement policy and access latency. Access latency
is a runtime parameter while the rest of the parameters have to
be specified before synthesis. The tag arrays and the directory
state in the L2 cache are implemented on block RAMs, while
the data arrays are mapped to a private region of DRAM.

We have arranged the main memory in a distributed and
shared manner where each tile has fast access to the region of
main memory to which it is directly connected, but it has to

L2$

I$ D$ I$ D$

L2$

I$ D$ I$ D$… …

…

Distributed Shared Memory…

Fig. 5. Shared memory architecture

traverse the network layer to access those regions which are
connected to other tiles. Off-chip main memory is incorporated
into Arete as an LI-BDN module. This enables us to model
its access latency which is another runtime parameter of the
model. A private region of DRAM is used to implement the
directory state in the main memory which provides cache-
coherence among L2 caches.

Just like the core, the memory subsystem is designed to
be quite flexible. One can implement a new cache-coherence
protocol by modifying the cache-coherence engine alone. Sim-
ilarly, memory organization can be completely altered without
modifying the rest of the system, namely the core and the on-
chip network.

3) On-Chip network: The current implementation of the
network architecture supports a bidirectional, all-to-all topol-
ogy. It is capable of handling four types of traffic: cache-
coherence, inter-core messaging, debugging and display, as
shown in Figure 6. All messages received by the network layer
are first packetized, and then each packet is broken down into
flits with parameterized bit width, before being sent across
the network. We provide virtual channels for the four kinds
of traffic and for each pair of nodes. These virtual channels
include appropriate amount of buffering and utilize flow control
mechanisms to ensure a deadlock-free network. The network
model can be modified in isolation to support various other
topologies as well as routing algorithms.

4) Message-passing support: We have added a message-
passing layer to the model which allows any core in the
processor to communicate with all other cores via messages
defined by the Power ISA. The message-passing layer supports

Display

Physical Network

Debugging

Inter-core Messaging

Cache Coherence

Fig. 6. Various types of traffic supported by the on-chip network
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Fig. 7. A complete view of the FPGA implementation of Arete

both unicast and multicast messages. These messages are used
either by the primary core to wake up the secondary cores or
by any core to raise a doorbell interrupt in another core.

B. Flexibility

Due to our platform’s modularity and parameterization, we
were able to conduct two significant and distinct architectural
explorations on Arete with limited effort. The design, ver-
ification and evaluation of three different branch prediction
schemes required only 2 man-days worth of work. A significant
overhaul of the cache-coherence protocol to support software
management of caches was carried out in 30 man-days.

C. Portability

As shown in Figure 7, the model communicates with three
external resources: a Xilinx multi-ported memory controller
(MPMC) which provides access to DRAM, a Microblaze soft
core which runs debugging software, and a PC which provides
access to a text terminal. For a particular FPGA platform, we
wrap the interfaces to the three resources in order to present
latency-insensitive, request-response interfaces to the model.
We have ported Arete to three FPGA boards: XUPv5, ML605
and BEE3. This portability does not require any modifications
to the design of the model; one only needs to specify appro-
priate values of certain parameters before synthesis.

When porting a model to a multi-FPGA platform several
issues arise. One of the main issues is that the model has to be
explicitly partitioned, and a different configuration file has to be
generated for each FPGA, which can become tedious. We have
made use of functionally-identical partitions and a distributed
protocol for assigning identifiers. Together they enable one
configuration file to program all the FPGAs.

Another issue is that implementing a model on multiple
FPGAs can alter its timing behavior. We, however, are able
to preserve the timing behavior through the use of the LI-BDN
technique.

D. Simulation infrastructure

We have attempted to provide a comprehensive simulation
infrastructure for architectural exploration and verification. We
make use of the debugging feature enabled by the use of

Prototype LI-BDN

LUTs 105104 24153
Flip Flops 638678 16165
Block RAMs 0 43
DSP Slices 12 12
FPGA Freq (MHz) 4.8 110
FMR 1 9
Eff Freq (MHz) 4.8 12.2

Fig. 8. Comparison of the prototype and the refined LI-BDN implementations
of PowerPC on the XUPv5 board. Model parameters: 1 tile, 1 in-order 10-stage
core, 64 KB 4-way associative L1, 512 KB 4-way associative L2, 512MB
DRAM

the LI-BDN technique to build a debugging environment for
Arete. A Microblaze soft core runs debugging software, written
in C, which provides a GDB-like interface to the user. The
debugging software handles low-level model initialization and
provides access to all model state during simulation. Linux
2.6.32 boots on Arete and we use Buildroot [10] to generate a
cross-compilation toolchain for the PowerPC architecture, and
a root filesystem. We also run the BusyBox package [11] which
provides many common UNIX utilities.

V. EVALUATION

In this section we evaluate Arete in three ways. First we
determine the resource savings and performance improvements
obtained from using various implementation refinements en-
abled by the use of the LI-BDN technique. We then evaluate
the performance of Arete by running the PARSEC benchmark
suite on top of SMP Linux. Finally, we evaluate the flexibility of
Arete by presenting two projects which modified it significantly.

A. Synthesis statistics

In section III we described how a refined LI-BDN implemen-
tation of a cycle-level specification can achieve both higher
performance and reduced resource utilization on FPGAs. To
gauge the impact of the use of the LI-BDN technique and
implementation refinements, we synthesized both the cycle-
level specification of a single-core processor model, that we
call the prototype, and its transformed and refined LI-BDN
counterpart. The LI-BDN version of the model included such
implementation refinements as the 5-ported register file being
simulated by a dual-ported block RAM, and complex combi-
national logic with long critical path being simulated by its
multi-cycle counterpart.

Figure 8 shows the comparison between the two implemen-
tations. The refined LI-BDN implementation uses a fourth of
the LUT resources consumed by the prototype and provides
a twenty times speedup in the FPGA clock speed. The FMR
(FPGA to model cycle ratio) statistic listed in the table is the
average number of FPGA cycles used to simulate a model
cycle. As mentioned before, the multi-cycle implementation of
complex combinational logic is infrequently used. This results
in an FMR of 9 for the LI-BDN implementation, even though
it takes up to 32 FPGA cycles to simulate some combinational
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LUTs Flip Block DSP
Flops RAMs Slices

Branch Prediction 357 611 1 0
Decode 1016 392 0 0
ALU 11134 4426 0 12
L1 I-Cache 1982 1795 20 0
L1 D-Cache 2923 2203 20 0
TLB 2330 896 1 0
Miscellaneous 5165 6137 1 0

PowerPC Core 24907 16460 43 12
L2 Cache 4597 5407 24 0
Directory Controller 3238 3674 0 0
Network Layer 5653 6816 2 0
Peripherals 5980 7207 8 0

Overall 69282 56024 120 24
Utilization 71% 57% 56% 18%

Fig. 9. Resource utilization for the refined LI-BDN implementation of the
PowerPC model and peripherals on the BEE3 board. Model parameters: 1
tile, 2 in-order 10-stage cores, 64 KB 4-way associative L1, 512 KB 4-way
associative L2, 1GB DRAM

logic. The low FMR allows the LI-BDN implementation to
provide a 2.5× improvement in performance over the prototype.

Figure 9 provides a detailed breakdown of the resources used
by the various modules in the refined LI-BDN implementation
of a dual-core processor model on one FPGA chip of the
BEE3 board [12]. The first section of the table lists the major
components of the processor core, while the second section lists
the components of the tile.

B. Performance evaluation

We implemented an 8-core processor model on the BEE3
board, where each FPGA chip was programmed to simulate
one tile of the processor. The model was implemented with the
configuration provided below.

Tiles 4, all-to-all connected
Cores 8, in-order, 10-stage
L1 ICache private, 64 KB, 4-way set-associative
L1 DCache private, 64 KB, 4-way set-associative
L2 Cache shared, 512 KB, 4-way set-associative
DRAM distributed, shared, 4GB

We ran a subset of the PARSEC benchmark suite on top
of SMP Linux, and calculated the performance using counters
built into the model. Figure 10 shows the speedup for the
various benchmarks as the number of allocated cores increases
from 1 to 8. For each benchmark, the speedup is normalized
with respect to single-core performance. Ferret, which is very
communication intensive, and Freqmine, which is parallelized
with OpenMP, exhibit almost no speedup. The remaining
benchmarks are parallelized using the Pthreads library, and
scale between 4× to 8× from 1 to 8 cores. When all the 8
cores were allocated, the processor model was able to achieve
a performance of 55 MIPS on average.
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Fig. 10. Performance evaluation using the PARSEC benchmark suite running
on top of SMP Linux. Model parameters: 4 tiles, 8 in-order 10-stage cores, 64
KB 4-way associative L1, 512 KB 4-way associative L2, 4GB DRAM

C. Comparing branch predictors

While designing the processor pipeline, we considered three
branch prediction schemes. The first scheme simply predicts
every branch to be not taken (the ANT scheme). The second
scheme predicts the direction of the branch using a 2-bit,
1K-entry branch history table which is added to the branch
prediction stage (the BHT scheme). The third scheme adds a 4-
way set-associative, 1K-entry branch target buffer to the fetch-1
stage (the BTB scheme).

The three variants of the single-core model were imple-
mented on an XUPv5 board. Figure 11 shows the IPCs of each
of these variants for booting Linux and running 5 benchmarks
selected from the SPECINT2000 suite. This graph and the
synthesis statistics obtained from Xilinx tools show that the
BHT scheme provides a 7% to 20% improvement in IPC over
the ANT scheme while adding 1 block RAM, and increasing
LUT utilization by 2% and flip flop utilization by 1%. The BTB
scheme provides an additional 0.5% to 12.5% improvement
over the BHT scheme, but it adds another 8 block RAMs and
increases LUT utilization by 5% and flip flop utilization by 3%.

The use of an accurate, full-system simulator to conduct these
experiments provided insight into the impact of the architectural
changes on the system as a whole. Not only were we able to
explore and understand the reasons behind the improvement in
performance, we also gained an appreciation for the hardware
constraints, namely, limited resources and short critical paths.

D. Data movement control

Software performance is often dependent on the performance
of the cache-coherence engine and the latencies of the inter-
connect. We extended the cache-coherence engine in Arete
to explore if performance could be improved by providing
software with more control over the contents of the caches.
We refer to the extensions as Data Movement Control (DMC)
and they are in the form of three new instructions: a) cpush,
which allows a thread running on one core to move cache
lines into another core’s cache, b) clookup, which returns
the location of a cache line and c) cmsg, which provides an
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Fig. 11. Effect of different branch prediction schemes on IPC. Model
parameters: 1 tile, 1 in-order 10-stage core, 64 KB 4-way associative L1, 512
KB 4-way associative L2, 512MB DRAM

efficient mechanism for software to send an active message [13]
to a remote core, allowing a thread to efficiently manipulate
data in the remote core’s cache. Collectively, these instructions
address some of the shortcomings of previous software-only
cache management solutions.

The majority of our modifications to Arete were isolated to
the cache-coherence engine. We did, however, modify the in-
struction decoder to add support for the new DMC instructions
and made few minor modifications to the ALU to improve the
efficiency of cmsg. On the software side, we developed a DMC
run-time, which includes threads, a thread stealing scheduler,
locks, a linked list implementation, and a memory allocator.

We evaluated the DMC extensions using a dual-core proces-
sor model implemented on the BEE3 FPGA board. The model
included 64 KB L1 caches and a 512 KB shared L2 cache. The
access latency for L2 cache was 32 cycles while that for DRAM
was 256 cycles. We used microbenchmarks, programmed to
run with and without making use of the DMC instructions, to
measure performance.

To evaluate the potential performance improvement from
using cpush we wrote a microbenchmark that repeatedly
migrates a thread between two cores and measures the average
round-trip time. When the source core migrates the thread to
the destination core, it uses cpush to move the thread context
to the destination core’s cache. This reduces cache misses when
the destination core starts executing the thread.

Figure 12(a) presents the results from the thread migration
microbenchmark. The x-axis shows the number of cache lines
in the thread context that the benchmark uses cpush to move
from the source to the destination core. The y-axis measures the
round-trip time in cycles to migrate a thread from the source to
the destination and back to the source. As the benchmark uses
cpush to move more cache lines the round-trip time reduces
steadily up to 6 cache lines, where the round-trip time is 831
cycles. Pushing more than 6 cache lines does not decrease the
round-trip time further because the network buffers become full.

One of the performance bottlenecks of many Linux kernel

subsystems lies in the updates to linked lists that are protected
by spin locks [14]. Often a thread will acquire a spin lock,
update the linked list and some metadata associated with the
linked list, then release the spin lock. We wrote a linked
list microbenchmark to measure the potential improvement
in performance from using cmsg. The microbenchmark uses
cmsg to update the linked list, and the associated metadata on
the core that caches them.

The benchmark initializes the list by inserting some elements
into the list. It then creates two threads that insert into or remove
from the list. For each insertion or deletion, the benchmark
modifies a variable number of shared cache lines, which is
meant to represent updates to metadata that take place in real
workloads. The microbenchmark uses cmsg to update the
linked list, by invoking cmsg with the address of the spin
lock protecting the linked list and the PC of the addition or
removal function. Since a thread always updates the linked list
and metadata after acquiring the spin lock, it is likely that all
data will be held in the same cache.

Figure 12(b) presents the results for the linked list mi-
crobenchmark. The x-axis shows the number of extra cache
lines that the benchmark modifies while performing a list
operation. The y-axis shows the average latency for executing
a list operation. The results indicate that, even when modifying
no extra cache lines, using cmsg decreases latency by about
22%. As the number of extra cache lines increases, the cost of
performing a list operation increases in both cases. However,
the cost without cmsg increases much faster because every
additional cache line modification incurs a cache miss, whereas
the extra cache lines are quite likely to be present in the
destination core’s L1 cache when using cmsg.

Experiments, such as the ones described above, are usually
carried out on software simulators which architects often mod-
ify in either C or some high-level language, such as Python.
Without the timing and resource constraints of hardware, archi-
tects may implement overly simplistic or completely unrealistic
designs. In our case, the use of a fast and accurate model
allowed us to gauge the complexity of making architectural
changes to a real multicore processor implementation. It also
enabled us to swiftly determine the impact of these changes on
performance and resource consumption.

VI. RELATED WORK

Many software-based multicore simulators have been de-
veloped in recent years. Rsim [15] is a discrete event-driven
simulator written in C++ and C, and provides detailed models
of out-of-order superscalar processors connected via coherent
shared memory. It does not run an operating system and only
models user-level activity of applications. Simics [16] is a
popular commercial functional simulator which, on the other
hand, can boot an operating system and run applications on
top of it. Simics can be coupled with detailed execution-
driven performance models like Gems [17], and M5 [18]. Gems
and M5 provide accurate models of the memory hierarchy
and the on-chip network for a multi-core system allowing
detailed evaluation of these components. Garnet [19] is one
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Fig. 12. Results for the data movement control microbenchmarks. Model parameters: 1 tile, 2 in-order 10-stage cores, 64 KB 4-way associative L1, 512 KB
4-way associative L2, 1GB DRAM

such accurate model of the on-chip network which uses the
Gems framework. COTSon [20] is another multicore simulator
framework based on AMD’s SimNow [21] which is a JIT-based
dynamically-translating emulator. COTSon runs an operating
system and applications on top of it. The MPARM SystemC
framework [22] is a complete system-level simulator, and
includes cycle-accurate cores, complex memory hierarchies
and bus-based interconnection mechanisms. A linux port for
MPARM is underway. BigSim [23] is another multi-core sim-
ulator which simulates a distributed memory as opposed to
the shared memory model that we simulate. All of the above
simulators are at least an order of magnitude slower than the
FPGA-based Arete.

A recent multicore processor simulator called Graphite [24]
targets systems with thousands of cores. It relaxes cycle-
accuracy to attain a higher simulation speed ranging in tens
of MIPS. Unlike Arete, Graphite is not a full system simulator,
and it does not run an operating system.

In the past few years FPGAs have gained popularity as a
promising platform for multicore architectural research, and
many efforts have been made to take advantage of the higher
simulation speeds that they offer. In the RAMP GOLD [4]
effort, Tan et. al have demonstrated a 64-core shared-memory
target architecture. They have built a detailed memory model
which does not include cache-coherence. They have a perfect
core model which only stalls due to cache misses, and their
network model comprises of a magic crossbar. Pellauer et. al
[25] have recently developed a multicore simulator on FPGAs
with detailed core and network models. Making use of time
multiplexing, the largest system that they have demonstrated on
a single FPGA chip comprises of 16 cores, but the architecture
lacks support for cache coherence. Pellauer’s technique uses
what are called A-Ports [7], which are FIFOs connecting
modules. Their methodology is similar to LI-BDNs, but they do
not enforce the conditions needed to avoid deadlocks the way
the LI-BDNs do. Chiou’s FAST simulator [3] is split between
a QEMU-based [26] functional emulator and an FPGA-based
accurate timing model. They have also developed a multi-
core simulator using a functional-timing split [27]. Many other

efforts in this domain [28]–[32] make use of either an off-the-
shelf MicroBlaze or MIPS soft core, or the PowerPC hard core
found in FPGAs to build large multicore systems with detailed
memory and network models.

Arete differs from earlier FPGA-based simulators, such
as HAsim, in that Arete was developed using a cycle-level
specification of the target processor design. This specification
was transformed into FPGA-optimized RTL using the LI-BDN
technique which makes Arete cycle-accurate by construction.
Moreover, we maintain a clear distinction between target
simplifications and implementation refinements described in
Section II.

VII. CONCLUSION

We have presented a fast and cycle-accurate simulator for
a multicore PowerPC architecture. The simulator accurately
models a shared memory subsystem which includes a cache-
coherence engine. We are able to run off-the-shelf SMP Linux
along with several applications. We have also ported the simu-
lator to several FPGA platforms with both single and multiple
FPGAs. The simulator is highly parameterized and modular,
and we have demonstrated its flexibility by performing two
significant architectural explorations with little effort.

We employed several novel ideas to provide a user-friendly
simulation infrastructure, which others may want to adopt.

(I) A distributed debugging environment using the LI-BDN
technique enables us to independently freeze any module
in any model cycle.

(II) The use of standardized interfaces makes it possible
to port Arete to multiple FPGA platforms without any
modifications.

(III) Functionally-identical partitions and a distributed proto-
col for assigning identifiers makes it possible to use one
configuration file for all the FPGAs in a multi-FPGA
platform.

FPGA-based modeling has a come a long way in the past few
years. Although it offers substantially higher simulation speed
than software, a few key issues have prevented its widespread
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adoption for architectural research. We have addressed these
issues in the design and development of Arete.

(I) Programmability: FPGAs are typically programmed in
low-level RTL languages like Verilog or VHDL. Design-
ing a large and complex system in RTL requires a tremen-
dous effort. Moreover, these designs are very inflexible
for architectural exploration. These issues are mitigated
by the use of a high-level specification language and
BSV.

(II) Resource management: Unlike software simulators,
FPGA-based simulators have hard resource constraints.
To meet these constraints, one has to either time-
multiplex the limited resources or map the system to
multiple FPGAs. Both approaches can result in a loss
of efficiency if the cycle-by-cycle timing behavior of
the implemented design has to be preserved. The LI-
BDN technique provides a much more efficient solution
because it decouples implementation from specification,
and only preserves the timing behavior of the specifica-
tion.

(III) Interfacing with off-chip memory or host PC: These in-
terfaces tend to be quite complicated and ill-documented.
We have minimized this problem by wrapping these
low-level interfaces with split-transaction (send/receive)
interfaces. We have done this to port Arete to the
three FPGA boards that are being commonly used for
academic research.

Moving forward, we are developing a new high-level hard-
ware description language that allows architects to conveniently
specify the cycle-by-cycle behavior of a target design. One of
the goals of this work is to generate efficient synthesizable RTL
from these specifications. Another goal is to develop a tool that
will automatically transform these specification into LI-BDNs.

We also plan to augment Arete with a detailed model of
the network architecture that will allow us to experiment with
various network topologies as well as routing algorithms. We
are also extending Arete to facilitate research on hardware-
software co-design. One of the key challenges in this area
of research is to figure out the optimal hardware-software
partitioning of algorithms for performance and power. Due to its
modularity Arete can readily accommodate algorithm-specific
hardware accelerators for exploring many such partitions.
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