

Corey: An Operating System for
Many Cores

Silas Boyd-Wickizer (MIT),
Haibo Chen, Rong Chen, Yandong Mao (Fudan University),

Frans Kaashoek, Robert Morris, Aleksey Pesterev (MIT),
Lex Stein, Ming Wu (Microsoft Research Asia),

Yuehua Dai (Xi'an Jiaotong University), Yang Zhang (MIT),
Zheng Zhang (Microsoft Research Asia)

What this talk is about

● New OS interfaces that help applications
scale with the number of cores.

● Target applications: Web servers, MapReduce,
mail servers, ...

Many applications spend time in
the kernel

● Serving static web pages
– Directory lookups and TCP processing

● Even applications implemented with multicore
MapReduce spend time in the kernel
– 30% of execution time spent growing address

space on 16 cores

● Fraction of time in OS increases with the
number of cores
– OS becomes a bottleneck

The bottleneck is shared OS data
structures

● Contention on shared data structures is costly:
– serialization
– moving data between caches

● Why does the OS need shared data
structures?
– OS semantics requires it
– Simplifies resource management

Current practice for scaling the OS

● Redesign and reimplement kernel subsystems
– Fine grained locking, RCU, etc.

● Lots of work: continuous redesign to increase
concurrency
– Linux changes: page cache, scheduler, RCU,

memory management, ...

● Existing interfaces constrain designers
– Even a small amount of shared kernel data limits

performance with many cores

Our solution: change OS interface

● Applications don't always need to share all the
data structures that existing interfaces share

● Allow applications to control how cores share
kernel data structures
– Avoid contention over kernel data structures

● We propose three interface changes
– shares, address ranges, kernel cores

● Implemented in Corey OS
– Partially implemented in Linux

New OS interfaces

● Shares control the kernel data used to
resolve application references.

● Address ranges control page tables and the
kernel data used to manage them.

● Kernel cores allow applications to dedicate
cores to running particular kernel functions.

● Improve scalability of some applications by
avoiding kernel bottlenecks

Idea #1: Shares

Object naming in an OS

● Kernel must map an application-visible
reference into address of kernel object
– Typically via per-process or global tables
– Cores contend for shared data

Motivating example: file descriptors

● Shared kernel data structure: file descriptor
table

● Measure the cost of using FD table
– Threads dup-and-close a per-thread FD
– 16 core AMD Opteron running a Linux 2.6.27

Ideal FD performance graph

● Expect throughput to scale linearly

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

cores

du
p/

cl
os

e
pe

r
se

co
nd

Actual FD performance

● Notice two things:

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
0

250
500
750

1000
1250
1500
1750
2000
2250
2500
2750
3000
3250

cores

10
00

s
du

p/
clo

se
 p

er
 s

ec
on

d

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
0

250
500
750

1000
1250
1500
1750
2000
2250
2500
2750
3000
3250

cores

10
00

s
du

p/
clo

se
 p

er
 s

ec
on

d

Actual FD performance

● Notice two things:
– Drop in throughput.
– No improvement in throughput.

Drop in
throughput.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
0

250
500
750

1000
1250
1500
1750
2000
2250
2500
2750
3000
3250

cores

10
00

s
du

p/
clo

se
 p

er
 s

ec
on

d

Actual FD performance

● Notice two things:
– Drop in throughput.
– No improvement in throughput.

No
improvement

fd_alloc(void) {
 lock(fd_table);
 fd = get_free_fd();
 set_fd_used(fd);
 fix_smallest_fd()
 unlock(fd_table);
}

Why throughput drops?

● Load fd_table data from L1 in 3 cycles.

core

L1

fd_alloc(void) {
 lock(fd_table);
 fd = get_free_fd();
 set_fd_used(fd);
 fix_smallest_fd()
 unlock(fd_table);
}

Why throughput drops?

● Load fd_table data from L1 in 3 cycles.
● Now it takes 121 cycles!

core

L1

L2

L3

core

L1

L2

fd_alloc(void) {
 lock(fd_table);
 fd = get_free_fd();
 set_fd_used(fd);
 fix_smallest_fd()
 unlock(fd_table);
}

Why no improvement?

● Shared FD table is a bottleneck
– A lock serializes updates to fd_table

Can the performance be better?

● For some applications the OS shares kernel
data structures unnecessarily
– Should be able to improve performance

● Challenge: how should the OS figure out when
to share and when not to?
– More difficult is application has a mixture

Our solution: shares

● Shares allow applications to control how
cores share the kernel data structures used to
do lookups

● Applications specify when they need sharing,
for example:
– shared FDs allocated in shared table
– private FDs allocated in private table

● Corey kernel uses shares for all lookup tables

Adding shares to Linux

● With minimal changes can add a share-like
interface for FDs.

● FD system calls (sys_open, sys_dup, ...) take
an optional shareid/fdtableid argument.

Linux FD share example

core fdtable 0 core

Linux FD share example

core fdtable 0

FD goo

core

fd2 = open(“goo”);

Linux FD share example

core fdtable 0

FD goo

core

fd2 = open(“goo”); write(fd2, buf, 128);

Linux FD share example

core

fdtable 1

fdtable 0

FD goo

core

fd2 = open(“goo”);
fdtable1 = share_alloc();

write(fd2, buf, 128);

Linux FD share example

core

fdtable 1

FD foo

fdtable 0

FD goo

core

fd2 = open(“goo”);
fdtable1 = share_alloc();
fd0 = open(“foo”, share1);

write(fd2, buf, 128);

Linux FD share example

core

fdtable 1

FD foo

fdtable 0

FD goo

core

fd2 = open(“goo”);
fdtable1 = share_alloc();
fd0 = open(“foo”, share1);
write(fd0, buf, 128, share1);

write(fd2, buf, 128);

Linux FD share example

core

fdtable 1

FD foo

fdtable 0

FD goo

core

fd2 = open(“goo”);
fdtable1 = share_alloc();
fd0 = open(“foo”, share1);
write(fd0, buf, 128, share1);

write(fd2, buf, 128);

● Cores manipulate FDs without contending for
kernel data structures

Performance is now ideal

● Avoid contention on shared FD table:
– No drop in throughput (no L1 misses)
– Scales linearly (no serialization)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
0

5000

10000

15000

20000

25000

30000

35000

40000

45000

50000

Linux Shares
Linux

cores

10
00

s
du

p/
cl

os
e

pe
r s

ec
on

d

Benefit of shares

● Able to avoid unnecessary contention on
kernel data structures
– For example when application threads do not

share FDs

● Applications can control how cores share
internal kernel data structures

● Few kernel and application modifications to
get scalability

Idea #2: Address ranges

Two options for multiprocessor
shared-memory application

● Shared address space
– Implemented with multiple threads

● Private address spaces
– Implemented with multiple processes
– Share memory with mmap(MAP_SHARED)

Cost of two options

core 0 core 1

mm_struct

stack 0 stack 1array

core 0 core 1

mm_struct

stack 0 stack 1array

mm_struct

shared address space private address spaces
Kernel data structure
for managing address
spaces.

Cost of two options

core 0 core 1

mm_struct

stack 0 stack 1array

core 0 core 1

mm_struct

stack 0 stack 1array

mm_struct

shared address space private address spaces

● Contend on mm_struct:
locks, counters, lists...

Contend on
mm_struct, even for
private mappings...

Cost of two options

core 0 core 1

mm_struct

stack 0 stack 1array

core 0 core 1

mm_struct

stack 0 stack 1array

mm_struct

shared address space private address spaces
...for example when
both cores go to grow
their stacks.

● Contend on mm_struct:
locks, counters, lists...

Cost of two options

core 0 core 1

mm_struct

stack 0 stack 1array

core 0 core 1

mm_struct

stack 0 stack 1array

mm_struct

shared address space private address spaces

● Contend on mm_struct:
locks, counters, lists...

● No contention on mm_struct

More costs: soft page faults

● Linux lazily instantiates page tables

core 0 core 1

mm_struct

stack 0 stack 1array

core 0 core 1

mm_struct

stack 0 stack 1array

mm_struct

shared address space private address spaces

pgtable pgtable pgtable

● Contend on mm_struct:
locks, counters, lists...

● No contention on mm_struct

More costs: soft page faults

● Linux lazily instantiates page tables

core 0 core 1

mm_struct

stack 0 stack 1array

core 0 core 1

mm_struct

stack 0 stack 1array

mm_struct

shared address space private address spaces

pgtable pgtable pgtable

● Contend on mm_struct:
locks, counters, lists...

● No contention on mm_struct

Hardware page table
associated with the
mm_struct of the same color.

More costs: soft page faults

● Linux lazily instantiates page tables

core 0 core 1

mm_struct

stack 0 stack 1array

core 0 core 1

mm_struct

stack 0 stack 1array

mm_struct

shared address space private address spaces

pgtable pgtable pgtable

When an application allocates
memory the OS doesn't actually

fill in the PTEs.

● No contention on mm_struct● Contend on mm_struct:
locks, counters, lists...

More costs: soft page faults

● Linux lazily instantiates page tables

core 0 core 1

mm_struct

stack 0 stack 1array

core 0 core 1

mm_struct

stack 0 stack 1array

mm_struct

shared address space private address spaces

pgtable pgtable pgtable

The first time a page is touched
the core will signal a memory

fault...

● No contention on mm_struct● Contend on mm_struct:
locks, counters, lists...

More costs: soft page faults

● Linux lazily instantiates page tables

core 0 core 1

mm_struct

stack 0 stack 1array

core 0 core 1

mm_struct

stack 0 stack 1array

mm_struct

shared address space private address spaces

pgtable pgtable pgtable

...and the OS allocates a
physical page and adds and
adds a PTE to the pgtable.

● No contention on mm_struct● Contend on mm_struct:
locks, counters, lists...

● One soft page fault per page

More costs: soft page faults

● Linux lazily instantiates page tables

core 0 core 1

mm_struct

stack 0 stack 1array

core 0 core 1

mm_struct

stack 0 stack 1array

mm_struct

shared address space private address spaces

pgtable pgtable pgtable

● No contention on mm_struct

● Each core soft page faults
on each page

● Contend on mm_struct:
locks, counters, lists...

● One page fault per page

Each mm_struct has a different
pgtable, so each core soft page

faults on each page.

The problem

● Neither option accurately represents how the
application is using kernel data structures:
– shared address spaces – the mm_struct is global

● contention
● unnecessary for private memory

– private address spaces – the mm_struct is private
● extra soft page faults, because no PTE sharing

Our solution: address ranges

● Address ranges provide benefits of both
shared and private address spaces:
– avoid contention for private memory
– share PTEs for shared memory

Address ranges: avoid contention

core 0

ar_struct

stack 0

Cores have a private
“root” address

range

Address ranges: avoid contention

core 0

ar_struct

stack 0

that maps private
memory

Address ranges: avoid contention

core 0 core 1

ar_struct

stack 0 stack 1

ar_struct

Start another core
with a private root

address range

Address ranges: avoid contention

core 0 core 1

ar_struct

stack 0 stack 1

ar_struct

ar_struct

A core allocates
another address

range

Address ranges: avoid contention

core 0 core 1

ar_struct

stack 0 stack 1

ar_struct

ar_struct

and the other core
maps it into its root

address range

Address ranges: avoid contention

core 0 core 1

ar_struct

stack 0 stack 1array

ar_struct

ar_struct

cores map shared
memory into the
address range

Address ranges: avoid contention

core 0 core 1

ar_struct

stack 0 stack 1array

ar_struct

ar_struct

No contention when
manipulating root
address ranges

Address ranges: avoid contention

core 0 core 1

ar_struct

stack 0 stack 1array

ar_struct

ar_struct

Only contend both cores
try to manipulate shared

address ranges

Address ranges: share PTEs

core 0 core 1

ar_struct

stack 0 stack 1array

ar_struct

pglevel1 pglevel1

ar_struct

pglevel0

Address ranges: share PTEs

core 0 core 1

ar_struct

stack 0 stack 1array

ar_struct

pglevel1 pglevel1

ar_struct

pglevel0

When one core
faults on a shared

page...

Address ranges: share PTEs

core 0 core 1

ar_struct

stack 0 stack 1array

ar_struct

pglevel1 pglevel1

ar_struct

pglevel0

...and fills in the
PTE...

Address ranges: share PTEs

core 0 core 1

ar_struct

stack 0 stack 1array

ar_struct

pglevel1 pglevel1

ar_struct

pglevel0

...the PTE is part
of the other core's

page table.

Address ranges good for complex
memory sharing patterns

● Typical applications have more complex
memory sharing patterns
– Not just global or private
– Example: MapReduce library designed for

multicore

Inverted index with MapReduce

core 0 core 1

... banana ...Apple ...

Map

....

....

Inverted index with MapReduce

core 0 core 1

apple, 0
...

banana, 50
...

... banana ...Apple ...

Map

<key, val>
buckets

....

....

....

Inverted index with MapReduce

core 0 core 1

apple, 0
...

banana, 50
...

... banana ...Apple ...

core 0 core 1

Map

<key, val>
buckets

Reduce

....

....

....

....

Inverted index with MapReduce

core 0 core 1

apple, 0
...

banana, 50
...

... banana ...Apple ...

core 0 core 1

Map

<key, val>
buckets

Reduce

apple: 0,banana: 50, ...

....

....

....

....

MapReduce sharing goals for kernel
data structures

● No contention when growing the address
space during Map
– No contention in the mm_struct/ar_struct

● Share PTEs between Map and Reduce

Address ranges meet the goals

core 0 core 1

ar_struct ar_struct

pglevel1 pglevel1

ar_struct

pglevel0

ar_struct

pglevel0

Avoids contention when growing
the address space during Map

Map 0 Map 1

ar_struct ar_struct

pglevel1 pglevel1

ar_struct

pglevel0

ar_struct

pglevel0

Each Map task's
bucket array is
mapped by a

different
ar_struct.

Avoids contention when growing
the address space during Map

Map 0 Map 1

ar_struct ar_struct

pglevel1 pglevel1

ar_struct

pglevel0

 apple

ar_struct

pglevel0

 banana

No contention
while growing
bucket array.

Avoids contention when growing
the address space during Map

Map 0 Map 1

ar_struct ar_struct

pglevel1 pglevel1

ar_struct

pglevel0

 apple

ar_struct

pglevel0

 ... banana ...

No contention
while growing
bucket array.

Avoids contention when growing
the address space during Map

Map 0 Map 1

ar_struct ar_struct

pglevel1 pglevel1

ar_struct

pglevel0

 apple

ar_struct

pglevel0

 banana

No contention
while growing
bucket array.

During Reduce PTEs are shared

Red. 0 Red. 1

ar_struct ar_struct

pglevel1 pglevel1

ar_struct

pglevel0

 apple

ar_struct

pglevel0

 banana

During Reduce PTEs are shared

Red. 0 Red. 1

ar_struct ar_struct

pglevel1 pglevel1

ar_struct

pglevel0

 apple

ar_struct

pglevel0

 banana

When Reduce on
core 0 processes
results from the

Map tasks...

During Reduce PTEs are shared

Red. 0 Red. 1

ar_struct ar_struct

pglevel1 pglevel1

ar_struct

pglevel0

 apple

ar_struct

pglevel0

 banana

the Map results
associated PTEs
will already be

filled in.

During Reduce PTEs are shared

Red. 0 Red. 1

ar_struct ar_struct

pglevel1 pglevel1

ar_struct

pglevel0

 apple

ar_struct

pglevel0

 banana apple: 0 banana: 50 ...

Address ranges in Corey

● Corey is a small experimental OS
● Low-level kernel interface for mapping

memory and address ranges
● MapReduce uses Corey's user-level malloc

MapReduce application

● Word inverted index
● Measured the time to build the index of a

1Gbyte file
● For Linux, shared address space is faster than

private address spaces
– Fewer soft page faults

MapReduce reverse index results

● For Linux cores contend on mm_struct
– Linux page fault handler is faster than Corey's

● With address ranges there is no contention

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
0

20000

40000

60000

80000

100000

120000

140000

160000

180000

200000

Corey

Linux

cores

th
ro

ug
hp

ut
 (

M
by

te
s

pe
r

se
co

nd
)

Benefit of address ranges

● Able to avoid contention, but able to share
what is necessary

● Applications control how cores share internal
OS data structures

● Few application modifications to improve
scalability

Related work

● Research on NUMA operating systems.
– K42 and Tornado: clustered objects
– Disco and Cellular Disco on Flash: “distributed

kernel”

● Research on multicore:
– Linux performance studies
– McRT
– Barrelfish
– Thread clustering, constructive caching

● KeyKOS segments

Future work

● Finish Linux interface changes
– Other interface changes
– Bigger workloads
– How much does OS interface need to change?

● Use caches better
– Reduce cost of manipulating shared data
– Large aggregate cache, small per-core caches
– Kernel cores help

Summary

● New OS interfaces that help applications scale
with the number of cores

● Allow applications to control how cores share
kernel data structures
– Avoid contention from unnecessary sharing
– Share state when its beneficial

