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What this talk is about

● New OS interfaces that help applications 
scale with the number of cores.

● Target applications: Web servers, MapReduce, 
mail servers, ...



  

Many applications spend time in 
the kernel

● Serving static web pages
– Directory lookups and TCP processing

● Even applications implemented with multicore 
MapReduce spend time in the kernel
– 30% of execution time spent growing address 

space on 16 cores

● Fraction of time in OS increases with the 
number of cores
– OS becomes a bottleneck



  

The bottleneck is shared OS data 
structures

● Contention on shared data structures is costly:
– serialization
– moving data between caches

● Why does the OS need shared data 
structures?
– OS semantics requires it
– Simplifies resource management



  

Current practice for scaling the OS

● Redesign and reimplement kernel subsystems
– Fine grained locking, RCU, etc.

● Lots of work: continuous redesign to increase 
concurrency
– Linux changes: page cache, scheduler, RCU, 

memory management, ...

● Existing interfaces constrain designers
– Even a small amount of shared kernel data limits 

performance with many cores



  

Our solution: change OS interface

● Applications don't always need to share all the 
data structures that existing interfaces share

● Allow applications to control how cores share 
kernel data structures
– Avoid contention over kernel data structures

● We propose three interface changes
– shares, address ranges, kernel cores

● Implemented in Corey OS
– Partially implemented in Linux



  

New OS interfaces

● Shares control the kernel data used to 
resolve application references.

● Address ranges control page tables and the 
kernel data used to manage them.

● Kernel cores allow applications to dedicate 
cores to running particular kernel functions.

● Improve scalability of some applications by 
avoiding kernel bottlenecks



  

Idea #1: Shares



  

Object naming in an OS

● Kernel must map an application-visible 
reference into address of kernel object
– Typically via per-process or global tables
– Cores contend for shared data



  

Motivating example: file descriptors

● Shared kernel data structure: file descriptor 
table

● Measure the cost of using FD table
– Threads dup-and-close a per-thread FD
– 16 core AMD Opteron running a Linux 2.6.27



  

Ideal FD performance graph

● Expect throughput to scale linearly
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Actual FD performance

● Notice two things:
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Actual FD performance

● Notice two things:
– Drop in throughput.
– No improvement in throughput.

Drop in 
throughput.
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Actual FD performance

● Notice two things:
– Drop in throughput.
– No improvement in throughput.

No 
improvement



  

fd_alloc(void) {
    lock(fd_table);
    fd = get_free_fd();
    set_fd_used(fd);
    fix_smallest_fd()
    unlock(fd_table);
}

Why throughput drops?

● Load fd_table data from L1 in 3 cycles.

core

L1



  

fd_alloc(void) {
    lock(fd_table);
    fd = get_free_fd();
    set_fd_used(fd);
    fix_smallest_fd()
    unlock(fd_table);
}

Why throughput drops?

● Load fd_table data from L1 in 3 cycles.
● Now it takes 121 cycles!

core

L1

L2

L3

core

L1

L2



  

fd_alloc(void) {
    lock(fd_table);
    fd = get_free_fd();
    set_fd_used(fd);
    fix_smallest_fd()
    unlock(fd_table);
}

Why no improvement?

● Shared FD table is a bottleneck
– A lock serializes updates to fd_table



  

Can the performance be better?

● For some applications the OS shares kernel 
data structures unnecessarily
– Should be able to improve performance

● Challenge: how should the OS figure out when 
to share and when not to?
– More difficult is application has a mixture



  

Our solution: shares

● Shares allow applications to control how 
cores share the kernel data structures used to 
do lookups

● Applications specify when they need sharing, 
for example: 
– shared FDs allocated in shared table
– private FDs allocated in private table

● Corey kernel uses shares for all lookup tables



  

Adding shares to Linux

● With minimal changes can add a share-like 
interface for FDs.

● FD system calls (sys_open, sys_dup, ...) take 
an optional shareid/fdtableid argument.



  

Linux FD share example

core fdtable 0 core



  

Linux FD share example

core fdtable 0

FD goo

core

fd2 = open(“goo”);



  

Linux FD share example

core fdtable 0

FD goo

core

fd2 = open(“goo”); write(fd2, buf, 128);



  

Linux FD share example

core

fdtable 1

fdtable 0

FD goo

core

fd2 = open(“goo”);
fdtable1 = share_alloc();

write(fd2, buf, 128);



  

Linux FD share example

core

fdtable 1

FD foo

fdtable 0

FD goo

core

fd2 = open(“goo”);
fdtable1 = share_alloc();
fd0 = open(“foo”, share1);

write(fd2, buf, 128);



  

Linux FD share example

core

fdtable 1

FD foo

fdtable 0

FD goo

core

fd2 = open(“goo”);
fdtable1 = share_alloc();
fd0 = open(“foo”, share1);
write(fd0, buf, 128, share1);

write(fd2, buf, 128);



  

Linux FD share example

core

fdtable 1

FD foo

fdtable 0

FD goo

core

fd2 = open(“goo”);
fdtable1 = share_alloc();
fd0 = open(“foo”, share1);
write(fd0, buf, 128, share1);

write(fd2, buf, 128);

● Cores manipulate FDs without contending for 
kernel data structures



  

Performance is now ideal

● Avoid contention on shared FD table:
– No drop in throughput (no L1 misses)
– Scales linearly (no serialization)
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Benefit of shares

● Able to avoid unnecessary contention on 
kernel data structures
– For example when application threads do not 

share FDs

● Applications can control how cores share 
internal kernel data structures

● Few kernel and application modifications to 
get scalability



  

Idea #2: Address ranges



  

Two options for multiprocessor 
shared-memory application

● Shared address space
– Implemented with multiple threads

● Private address spaces
– Implemented with multiple processes
– Share memory with mmap(MAP_SHARED)



  

Cost of two options

core 0 core 1

mm_struct

stack 0 stack 1array

core 0 core 1

mm_struct

stack 0 stack 1array

mm_struct

shared address space private address spaces
Kernel data structure 
for managing address 
spaces.



  

Cost of two options

core 0 core 1

mm_struct

stack 0 stack 1array

core 0 core 1

mm_struct

stack 0 stack 1array

mm_struct

shared address space private address spaces

● Contend on mm_struct: 
locks, counters, lists...

Contend on 
mm_struct, even for 
private mappings...



  

Cost of two options

core 0 core 1

mm_struct

stack 0 stack 1array

core 0 core 1

mm_struct

stack 0 stack 1array

mm_struct

shared address space private address spaces
...for example when 
both cores go to grow 
their stacks.

● Contend on mm_struct: 
locks, counters, lists...



  

Cost of two options

core 0 core 1

mm_struct

stack 0 stack 1array

core 0 core 1

mm_struct

stack 0 stack 1array

mm_struct

shared address space private address spaces

● Contend on mm_struct: 
locks, counters, lists...

● No contention on mm_struct



  

More costs: soft page faults

● Linux lazily instantiates page tables

core 0 core 1

mm_struct

stack 0 stack 1array

core 0 core 1

mm_struct

stack 0 stack 1array

mm_struct

shared address space private address spaces

pgtable pgtable pgtable

● Contend on mm_struct: 
locks, counters, lists...

● No contention on mm_struct



  

More costs: soft page faults

● Linux lazily instantiates page tables

core 0 core 1

mm_struct

stack 0 stack 1array

core 0 core 1

mm_struct

stack 0 stack 1array

mm_struct

shared address space private address spaces

pgtable pgtable pgtable

● Contend on mm_struct: 
locks, counters, lists...

● No contention on mm_struct

Hardware page table 
associated with the 
mm_struct of the same color.



  

More costs: soft page faults

● Linux lazily instantiates page tables

core 0 core 1

mm_struct

stack 0 stack 1array

core 0 core 1

mm_struct

stack 0 stack 1array

mm_struct

shared address space private address spaces

pgtable pgtable pgtable

When an application allocates 
memory the OS doesn't actually 

fill in the PTEs.

● No contention on mm_struct● Contend on mm_struct: 
locks, counters, lists...



  

More costs: soft page faults

● Linux lazily instantiates page tables

core 0 core 1

mm_struct

stack 0 stack 1array

core 0 core 1

mm_struct

stack 0 stack 1array

mm_struct

shared address space private address spaces

pgtable pgtable pgtable

The first time a page is touched 
the core will signal a memory 

fault...

● No contention on mm_struct● Contend on mm_struct: 
locks, counters, lists...



  

More costs: soft page faults

● Linux lazily instantiates page tables

core 0 core 1

mm_struct

stack 0 stack 1array

core 0 core 1

mm_struct

stack 0 stack 1array

mm_struct

shared address space private address spaces

pgtable pgtable pgtable

...and the OS allocates a 
physical page and adds and 
adds a PTE to the pgtable.

● No contention on mm_struct● Contend on mm_struct: 
locks, counters, lists...

● One soft page fault per page



  

More costs: soft page faults

● Linux lazily instantiates page tables

core 0 core 1

mm_struct

stack 0 stack 1array

core 0 core 1

mm_struct

stack 0 stack 1array

mm_struct

shared address space private address spaces

pgtable pgtable pgtable

● No contention on mm_struct

● Each core soft page faults 
on each page

● Contend on mm_struct: 
locks, counters, lists...

● One page fault per page

Each mm_struct has a different 
pgtable, so each core soft page 

faults on each page.



  

The problem

● Neither option accurately represents how the 
application is using kernel data structures:
– shared address spaces – the mm_struct is global

● contention
● unnecessary for private memory

– private address spaces – the mm_struct is private
● extra soft page faults, because no PTE sharing



  

Our solution: address ranges

● Address ranges provide benefits of both 
shared and private address spaces:
– avoid contention for private memory
– share PTEs for shared memory



  

Address ranges: avoid contention

core 0

ar_struct

stack 0

Cores have a private 
“root” address 

range



  

Address ranges: avoid contention

core 0

ar_struct

stack 0

that maps private 
memory



  

Address ranges: avoid contention

core 0 core 1

ar_struct

stack 0 stack 1

ar_struct

Start another core 
with a private root 

address range



  

Address ranges: avoid contention

core 0 core 1

ar_struct

stack 0 stack 1

ar_struct

ar_struct

A core allocates 
another address 

range



  

Address ranges: avoid contention

core 0 core 1

ar_struct

stack 0 stack 1

ar_struct

ar_struct

and the other core 
maps it into its root 

address range



  

Address ranges: avoid contention

core 0 core 1

ar_struct

stack 0 stack 1array

ar_struct

ar_struct

cores map shared 
memory into the 
address range



  

Address ranges: avoid contention

core 0 core 1

ar_struct

stack 0 stack 1array

ar_struct

ar_struct

No contention when 
manipulating root 
address ranges



  

Address ranges: avoid contention

core 0 core 1

ar_struct

stack 0 stack 1array

ar_struct

ar_struct

Only contend both cores 
try to manipulate shared 

address ranges



  

Address ranges: share PTEs

core 0 core 1

ar_struct

stack 0 stack 1array

ar_struct

pglevel1 pglevel1

ar_struct

pglevel0



  

Address ranges: share PTEs

core 0 core 1

ar_struct

stack 0 stack 1array

ar_struct

pglevel1 pglevel1

ar_struct

pglevel0

When one core 
faults on a shared 

page...



  

Address ranges: share PTEs

core 0 core 1

ar_struct

stack 0 stack 1array

ar_struct

pglevel1 pglevel1

ar_struct

pglevel0

...and fills in the 
PTE...



  

Address ranges: share PTEs

core 0 core 1

ar_struct

stack 0 stack 1array

ar_struct

pglevel1 pglevel1

ar_struct

pglevel0

...the PTE is part 
of the other core's 

page table.



  

Address ranges good for complex 
memory sharing patterns

● Typical applications have more complex 
memory sharing patterns
– Not just global or private
– Example: MapReduce library designed for 

multicore



  

Inverted index with MapReduce

core 0 core 1

... banana ...Apple ...

Map

....

....



  

Inverted index with MapReduce

core 0 core 1

apple, 0
... ... ...

banana, 50
... ... ...

... banana ...Apple ...

Map

<key, val>
buckets

....

....

....



  

Inverted index with MapReduce

core 0 core 1

apple, 0
... ... ...

banana, 50
... ... ...

... banana ...Apple ...

core 0 core 1

Map

<key, val>
buckets

Reduce

....

....

....

....



  

Inverted index with MapReduce

core 0 core 1

apple, 0
... ... ...

banana, 50
... ... ...

... banana ...Apple ...

core 0 core 1

Map

<key, val>
buckets

Reduce

apple: 0, ... ...banana: 50, ...

....

....

....

....



  

MapReduce sharing goals for kernel 
data structures

● No contention when growing the address 
space during Map
– No contention in the mm_struct/ar_struct

● Share PTEs between Map and Reduce



  

Address ranges meet the goals

core 0 core 1

ar_struct ar_struct

pglevel1 pglevel1

ar_struct

pglevel0

ar_struct

pglevel0



  

Avoids contention when growing 
the address space during Map

Map 0 Map 1

ar_struct ar_struct

pglevel1 pglevel1

ar_struct

pglevel0

 

ar_struct

pglevel0

 

Each Map task's 
bucket array is 
mapped by a 

different 
ar_struct.



  

Avoids contention when growing 
the address space during Map

Map 0 Map 1

ar_struct ar_struct

pglevel1 pglevel1

ar_struct

pglevel0

 apple

ar_struct

pglevel0

 banana

No contention 
while growing 
bucket array.



  

Avoids contention when growing 
the address space during Map

Map 0 Map 1

ar_struct ar_struct

pglevel1 pglevel1

ar_struct

pglevel0

 apple

ar_struct

pglevel0

 ...  banana  ...

No contention 
while growing 
bucket array.



  

Avoids contention when growing 
the address space during Map

Map 0 Map 1

ar_struct ar_struct

pglevel1 pglevel1

ar_struct

pglevel0

 apple

ar_struct

pglevel0

 ...  ...  banana  ...  ...

No contention 
while growing 
bucket array.



  

During Reduce PTEs are shared

Red. 0 Red. 1

ar_struct ar_struct

pglevel1 pglevel1

ar_struct

pglevel0

 apple

ar_struct

pglevel0

 ...  ...  banana  ...  ...



  

During Reduce PTEs are shared

Red. 0 Red. 1

ar_struct ar_struct

pglevel1 pglevel1

ar_struct

pglevel0

 apple

ar_struct

pglevel0

 ...  ...  banana  ...  ...

When Reduce on 
core 0 processes 
results from the 

Map tasks...



  

During Reduce PTEs are shared

Red. 0 Red. 1

ar_struct ar_struct

pglevel1 pglevel1

ar_struct

pglevel0

 apple

ar_struct

pglevel0

 ...  ...  banana  ...  ...

the Map results 
associated PTEs 
will already be 

filled in.



  

During Reduce PTEs are shared

Red. 0 Red. 1

ar_struct ar_struct

pglevel1 pglevel1

ar_struct

pglevel0

 apple

ar_struct

pglevel0

 ...  ...  banana  ...  ... apple: 0 banana: 50 ...



  

Address ranges in Corey

● Corey is a small experimental OS
● Low-level kernel interface for mapping 

memory and address ranges
● MapReduce uses Corey's user-level malloc



  

MapReduce application

● Word inverted index
● Measured the time to build the index of a 

1Gbyte file
● For Linux, shared address space is faster than 

private address spaces
– Fewer soft page faults



  

MapReduce reverse index results

● For Linux cores contend on mm_struct
– Linux page fault handler is faster than Corey's

● With address ranges there is no contention
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Benefit of address ranges

● Able to avoid contention, but able to share 
what is necessary

● Applications control how cores share internal 
OS data structures

● Few application modifications to improve 
scalability



  

Related work

● Research on NUMA operating systems.
– K42 and Tornado: clustered objects
– Disco and Cellular Disco on Flash: “distributed 

kernel”

● Research on multicore:
– Linux performance studies
– McRT
– Barrelfish
– Thread clustering, constructive caching

● KeyKOS segments



  

Future work

● Finish Linux interface changes
– Other interface changes
– Bigger workloads
– How much does OS interface need to change?

● Use caches better
– Reduce cost of manipulating shared data
– Large aggregate cache, small per-core caches
– Kernel cores help



  

Summary

● New OS interfaces that help applications scale 
with the number of cores

● Allow applications to control how cores share 
kernel data structures
– Avoid contention from unnecessary sharing
– Share state when its beneficial



  


