
The Hideous Name †

Rob Pike
P.J. Weinberger

AT&T Bell Laboratories
Murray Hill, New Jersey 07974

ABSTRACT

The principles of good naming in computing have been known for decades. The
invention of new facilities in computing systems can be guided by these principles. For
example, the introduction of networking need not require any change to the majority of
system utilities, because objects such as files on remote machines can be given syntacti-
cally familiar names within the local machine’s name space. Indeed, the implementers of
networks often do well by these standards by striving to make remote files essentially
indistinguishable from local ones. Unfortunately, the situation with internetwork mail
addresses is not as satisfactory. The practitioners of internetworking would profit by
understanding the benefits of simple, uniform syntax.

research!ucbvax!@cmu-cs-pt.arpa:@CMU-ITC-LINUS:dave%CMU-ITC-LINUS@CMU-CS-PT

- Carnegie-Mellon University mailer

I cannot tell what the dickens his name is.
- Shakespeare,Merry Wives of Windsor, II. ii. 20.

Introduction

Any object relevant to computation— file, process, user, computer, network or whatever— needs a
name. The name determines the access: it is by interpreting the name, within thename spaceit inhabits,
that a program or person is given access to the object. The manner in which names are constructed affects
not only how objects are named but also how they are used.

The form of names and name spaces is the subject of this essay. We will use file names from several
operating systems as examples to illustrate criteria for distinguishing good names from bad. The same cri-
teria may be applied to network mail names, pointing out some of the shortcomings of the currentad hoc
systems for internetworking.

The criteria are not new, and seem to be generally accepted, but are not applied in practice. This
paper is an attempt to re-establish their use.

Principles of Names and Name Spaces

What’s in a name? A string of characters, encoded by some convention (ASCII or EBCDIC), that
identifies an object. If the function of a name stopped there, this definition would be sufficient. In IBM’s
MVS, for example, a file name is an at most 44-character string, largely uninterpreted by system software.
The name space is ‘flat,‘ or linear.

Systems designed more recently use names to helporganize as well as identify. For instance,
although in MVS the disk containing the file is specified separately from the name, in MS-DOS part of the

† An earlier version of this appeared in Summer 1985 Usenix Conference Proceedings, Salt Lake City, Utah.

- 2 -

name of a file is a string that identifies the disk drive holding the file. Syntax separates these components
of the name; MS-DOS uses a colon following the disk name, a single character:

A:FILE

is a file on disk driveA, while

B:FILE

is a file on disk driveB.

The advantage of putting such information in names is that software need not know about disks to
manipulate files. Internally, of course, system software must use the syntax of the name to locate the file,
but this is largely transparent to applications software, and users.

The MVS system uses independent information (stored in a catalog) to find a file given its name,
while MS-DOS exposes location information in the name. MS-DOS users may put related files on the
same disk, thus using a distinguished piece of the name to help organize their world. MVS users must
instead adaptad hocstrategies (conventions for the syntax of names) to the same end. Thus each system
does both more and less for the user: MVS provides no help in organization and a naming independent of
the physical location of the file, while MS-DOS provides the opposite. Instead, if names had multiple
components (that is, syntax), where the components did not necessarily correspond to physical devices, the
name space would have the advantages of that of both MVS and MS-DOS, with the disadvantages of
neither. Such a name space exists.

A good example: UNIX®

UNIX file name space is a tree, with file names that specify a path from one node to another. The
representation of the name is a simple ASCII string, with slashes/ separating node identifiers. The name

/usr/rob/bin/cat-v

is a path from the root of the tree (denoted by the leading slash), through nodes calledusr , rob andbin ,
to a file calledcat-v . Nodes intermediate in the tree are calleddirectories. The system uses the compo-
nents to find the file, which the user can use as syntax to organize sets of files. For example, although on
mostUNIX systems, the string/usr specifies a separate disk drive, this is irrelevant to both software and
users; it is merely a string that identifies the directory beneath which users’ files may be found.

The structure of the name space (a directory tree) is reflected in the style of the name (a path through
the tree). Were the file system arranged differently, say as a flat array, the form and interpretation of file
names would also be different; for example,UNIX processes are named by small integers.

Properties of Name Spaces

Name spaces have some general properties. First, names within the space may be absolute or rela-
tive. Absolute names specify an object by position with respect to a single fixed point, such as the root of
theUNIX file system (named/); relative names, with respect to a local point (the ‘current working direc-
tory’ in UNIX , named. (dot)). Also, an operating system typically has operators to manipulate its name
space, such as system calls to create and remove files.UNIX also provides a system call (namedmount) to
join together two name spaces by attaching the root of one space, resident on a separate disk drive, to a leaf
of another.

Finally, a name space has syntax— how a name is constructed— and semantics— the nature of the
object a name identifies.

A UNIX file name, for example, is a sequence of slash-separated strings that identifies a formatless
byte stream. External conventions may provide further semantics: theUNIX file system contains objects
that are not ordinary files. Simply by having ordinary file names, though, these objects have ordinary file
properties such as protection. Some examples from our research version ofUNIX , called the Ninth Edition:

Device files. With names conventionally prefixed (that is, residing in the directory)/dev , these files pro-
vide direct access to devices. The name/dev/mt , for example, identifies a magnetic tape drive.

Processes. The directory/proc contains files with names that are process numbers. Opening such a file

- 3 -

provides access to processes for purposes such as interactive debugging. Although processes have
integers that identify them, it is convenient to provide names for them in the file system as well. For
example, listing the directory containing the process files is a simple way to identify running pro-
cesses.

Databases. Some databases are conveniently represented as name-value pairs in a hierarchy, and such data-
bases may be mapped into the file system name space. For example, the directory/n/face con-
tains a hierarchically-structured database that associates digitized images of people’s faces with the
people’s electronic mail addresses.

Other files. UNIX has the notion ofstandard input: the input connected to a (typically) interactive program.
The name/dev/stdin identifies a file that, when opened, connects to the standard input of the
program. This allows files that demand a file name (such as the file comparison program) to be given
input directly from the interactive terminal or from a pipe.

Because these unusual objects have regular names, existing tools can treat them as files, so standard soft-
ware can provide services for them that would otherwise require special handling.

Some of the Ninth Edition examples above have different names in otherUNIX systems.
/dev/stdin is often represented by the single character- , as an argument to commands, but this con-
vention is capriciously followed. Because it must be provided explicitly by each program, it is only avail-
able in some programs. By providing/dev/stdin in the global name space, it is available uniformly for
all programs, always. As another example, processes are represented by an integer process identifier, which
is only meaningful to a few process-specific system calls. These calls implement their own protection
mechanism, although the protection provided by the file system suits perfectly (these system calls predate
the process file system). Finally, virtual terminals implemented using the multiplexed files of the Seventh
Edition (an earlier research version of the system) have no external name, so it is impossible to open one for
I/O. The Ninth Edition provides a name in the file system that is available, without prearrangement or spe-
cial protocol, to any program.

Connecting Name Spaces

When machines are connected together, their name spaces may be joined to facilitate the sharing of
files. If the name spaces have the same clean structure, that structure can be extended simply to describe
the larger space. The Newcastle Connection names a file on another machine, sayucbvax , as
/../ucbvax/usr/rob/bin/cat-v ; the Ninth Edition notation is
/n/ucbvax/usr/rob/bin/cat-v . In the former the name space has been extended by making it a
subspace of a larger space, in the latter a new name subspace has been grafted on usingmount , but in nei-
ther case has thesyntaxof names been changed; any program that understands a file name will understand a
network file name without change, and relative names for files (those that don’t begin with/) are
unchanged. As a spectacular example, we might see on which machines userwnj has a login by searching
(using a program calledgrep) through the system administration files (called/etc/passwd) on all the
machines:

grep wnj /n/*/etc/passwd

The file name ‘wild card’ character* matches all files within a directory. Here, it happens to match all
machines reachable from the local machine, althoughgrep is oblivious of this distinction. We could even
investigate those machines connected toucbvax by

grep wnj /n/ucbvax/n/*/etc/passwd

The file system that is the union of these name spaces might have no global root, so the meaning of
an absolute name may become ambiguous because of the presence of multiple reference points. In fact,
there might be no single point to which all names can be fixed. In practice, though, this ambiguity is unim-
portant.

- 4 -

A bad example: VAX/VMS

Unfortunately, not everyone chooses naming conventions in accord with these guidelines. On
VAX/VMS our canonical file might be calledUCBVAX::SYS$DISK:[ROB.BIN]CAT_V.EXE;13 .
The VMS file naming scheme provides a distinct syntax for each level in the name:UCBVAX:: is a
machine; SYS$DISK: is a disk (actually a macro that expands to a disk name such asDUA0:);
[ROB.BIN] is a directory;CAT_Vis a file ‘base’ name;.EXE is a file ‘type’; and;13 is a version num-
ber.

Although this syntax may seem unnecessarily cumbersome, it has a precedent: it is analogous to
expressions in programming languages. Consider a C expression such as
*structure[index].field->ptr . If * were postfix and/ the only dereferencing operator, the
expression might be written structure/index/field/ptr/ . Functionally-minded programmers
might use the notationcontents(ptr(field(index(structure)))) . (A single character can-
not be used in C because it could not distinguishX[Y] andX->Y , with X a structure pointer andY an inte-
ger or structure element respectively, but this ambiguity could be eliminated in a different language.) C and
VMS use syntax to distinguish the types of the components of a name. Instead, theUNIX file system delib-
erately hides the distinctions. Aside from the obvious advantages such as simplicity of syntax and the
usurping of only a single character, the uniformity also makes the name space easier to manipulate: the
mount system call aliases a disk and a directory.

VMS has no true name space manipulation operator. Although one could be constructed, it would be
limited in scope: how could a disk be mounted atop SYS$DISK:[ROB.BIN] when disks are always
before directories in the name? Instead, VMS has macros such asSYS$DISK to hide the manner in which
the space is assembled, and even to provide the concept of a local name by automatically inserting an
expanded macro before an unqualified name.

The problems with dynamic evaluation of macros are well known. For example, the VMS service to
set the reference point for local names (the equivalent ofUNIX chdir) sets the default prefix for file
names, but the prefix will only be evaluated and so checked for validity, when a file name is interpreted,
which may be arbitrarily and confusingly long after the prefix was set. In fact, the default prefix macro is
handled in a special way, because directories are not constructed by simple concatenation; subdirectory
[.BIN] in directory[ROB] is named[ROB.BIN] . Also, these local names are not really local at all; the
prefix implicitly binds them to a root of the name space. This implies that all names are always attached to
some root, and therefore if the root changes, the name must also change, invisibly.

Another problem with VMS names is that one cannot do the equivalent of searching the VMS pass-
word files (SYSUAF.LIS) on various machines with*::SYS$SYSTEM:SYSUAF.LIS ; the * operator
doesn’t apply to that portion of a name. This is an example of the general problem that whenever the name
syntax is changed all programs that interpret names must be modified. More subtly, although if the
machine ucbvax were a gateway we could access files on a distant machine as
UCBVAX::KREMVAX::file , it is only because the semantics of:: explicitly permit such access. The
:: operator is implemented by passing the string after it to the remote machine, but first checking its syn-
tax, so the file name parser must have special code for multiple:: ’s.

A Quibble about Cedar

The Cedar file system has a uniform naming syntax, just likeUNIX , except that files have version
numbers, separated from the file name by an exclamation mark! . The implementers thought that version
numbers are fundamentally different components of file names and therefore deserved different syntax. But
the change in syntax requires new rules to define the meaning of file names. A good test of naming
schemes is whether arbitrary names constructed by the syntactic rules make sense within the rules of the
system or whether their interpretation requires new semantic rules. In Cedar file,
/usr/rob/bin/cat-v!3 is clearly version 3 ofcat-v , but what is/usr/rob!3/bin/cat-v ?

- 5 -

Connecting to other machine’s file systems

The IBIS remote file system onUNIX 4.2BSD names a remote file asucbvax:file . Many pro-
grams don’t understand this syntax; the shell (command interpreter) must be modified to make*:file
behave as we expect, because the shell expects a slash to separate name components. Worse, by changing
the syntax, the implicit semantics of the original naming scheme is lost. In the Ninth Edition name
/n/ucbvax/file it is obvious whatfile refers to: a file in the root directory ofucbvax. But what
is it in ucbvax:file ? It mightbe a file in the root, but it isn’t. It is a file in theinitial working directory
on thedestinationmachine (ucbvax) of the user invoking the name on the source machine (unless it
begins with/); its meaning depends on who is asking. The extra semantics of: complicate attempts to
patch the syntactic problems. We might try creating a connection (called a symbolic link in UNIX) from the
name/n/ucbvax to the nameucbvax: , but /n/ucbvax/file would then still point to a file in
someone’s home directory, and /n/ucbvax/usr/wnj/file would refer to
/usr/wnj/usr/wnj/file . If the link evaluates toucbvax:/ , things work as expected, but the
slash-less form of IBIS naming is made unavailable.

Part of the problem in the IBIS file system is that it is implemented outside the name space. By using
a variant of the standard system callmount, the Ninth Edition remote file system guarantees that the syn-
tax and semantics of names are free of surprises. For example, it is clear what
/n/ucbvax/n/kremvax/file refers to, but what about the IBIS nameucbvax:kremvax:file ?
Where doeskremvax:file get interpreted?

There are other ways to interpret file names likeucbvax:file . When using theUNIX program
uucp to copy a local file to a remote machine, the nameucbvax!file refers to the file onucbvax
whose name isfile prefixed by the current directory on thesourcemachine. The prize goes to DECNET,
however:ucbvax::file refers tofile in the home directory of the ‘default network user’ on the desti-
nation machine, anducbvax"wnj password"::file refers tofile in wnj ’s home directory. It is
inexcusable that the password is in the file name, let alone that it is in clear text.

The story so far

In summary, there are some guidelines for constructing naming conventions, particularly for objects
in a network. There should be both relative names and absolute names. Relative names are more important
because, among other reasons, the root of the name space may be unknown or non-unique. The syntax
should be clean and uniform; every new syntactic rule requires at least one, and usually many, semantic
rules to resolve peculiarities introduced by the new syntax. If the name space is a tree or any other kind of
graph, a single character should be used to separate nodes in a name.

If these guidelines are followed, names of objects in a network of machines will be easy to construct
and interpret; difficult problems of networking will be completely hidden to the users and programs access-
ing objects in the network. If they are ignored, both users and programs must be aware of and understand
the details of naming locally, globally and everywhere in between.

Principles of mail names

Now consider the other common name space, mail names. Mail names are more complex than file
names, for both syntactic and semantic reasons. There are conflicting syntactic traditions, the most familiar
two being theUNIX tradition and the ARPANET tradition. Also, mail names are interpreted by user pro-
grams only, with no operating system to enforce semantics. Thus, the interpretation of the name space is
subject to arbitrary hackery.

Even a trivial case like the namepjw in the command

mail pjw

has no clear meaning. When electronic mail was invented, the namepjw referred to a mailbox on the local
machine —the only machine to which mail could be sent. The local space of mailbox names was a small
flat space. Later, when systems were connected together, there were two ways to generalize. If the com-
puters were closely connected (that is, sharing administration), one could extend the flat name space over
the whole set of machines, so that sayingmail pjw on any of the machines getspjw ’s mailbox onpjw ’s

- 6 -

home machine. If the machines were instead loosely connected, a more attractive scheme would be to use
machine names to qualify the local mailbox names:pjw@system in the ARPANET tradition, or
system!pjw in the UNIX tradition. The two methods differ only in the naming and how the software
decides to find the destination. In the first alternative, it looks uppjw in a database, while in the second it
looks upsystem . In both cases, the software on the machines involved must also have a protocol for
delivering mail, but that’s irrelevant here. Note that neither naming scheme has anything to do with routing
the message.

At this level, either of these two schemes is fairly convenient. But when we try to connect lots of
systems with these flat name spaces, names must either conflict or be decorated artificially to disambiguate
them. We should apply the principles of good naming to find a better solution.

Mail names specify paths within a large name space populated by systems and mailboxes rather than
files, but the basic idea is the same. The question is what a path denotes. The answer depends on how the
software determines what to do with the mail.

Imagine we are on machineucbvax and want to send mail topjw@system . There are two meth-
ods to negotiate the transaction. The first method, used byUNIX , viewssystem as the name of an author-
ity that the mail and mail address are passed to. That is, sending the mail involves a message tosystem of
the form, ‘‘I am machineucbvax , here is mail forpjw .’’ The second, that of the ARPANET, interprets
system as the name of an authority that will say where to send the mail, as in, ‘‘I am machineucbvax ,
where do I send mail forpjw ?’’ The destination of these messages is found by looking upsystem in a
database. (The details of sending the message are outside this discussion.) All naming schemes for mail
follow some combination of these alternatives. The UNIX method uses the same mechanism to resolve
names and to transmit mail; the ARPANET method resolves the names with one mechanism and uses some
other, not associated with the name at all, to send the mail.

Given these two models, how do we generalize mail delivery in larger networks? For ARPANET, a
mail addressuser@world3.world2.world1 is interpreted by looking upworld1 and then asking it
where to send mail forworld3.world2 . ForUNIX , a mail addressworld1!world2!world3!user
is interpreted by looking upworld1 and then sending the mail andworld2!world3!user to it.
Although the two forms sound similar, they have different problems. (And, why does ARPA use two char-
acters when one is sufficient?)

The most common interpretation of theUNIX name is as a route, but it need have nothing to do with
a route. Once the name is handed off toworld1 , it can be rewritten to correspond to the syntax of
world1 ’s name space; in fact, UNIX mailers rewrite names freely. Because ARPANET names are han-
dled differently, they cannot be rewritten: the answer to the routing question must produce the four-byte
binary network address of the destination mailbox. (At least in principle, this defect may be circumvented.
The response to the routing question might be a little program: ‘‘Send the mail to A and tell it to use proto-
col P to send it to B’’ and so forth. However, that’s not how it’s done in practice.)

Consider again the relation between mail names and file names. When the operating system inter-
prets the name/n/ucbvax/n/kremvax/file it discovers that the directory/n/ucbvax refers to a
remote machine, finds the server on that machine, and sends it the name/n/kremvax/file expecting
back a handle to use the file. It does not care what the server does with the name. It does not expect to get
back instructions for finding the file. It is asking for file service, not name service. Indeed wereucbvax a
VMS machine, the server might invisibly translate /n/kremvax/file immediately into
KREMVAX::SYS$DISK:[NETUSER]file to discover it on its local system. Remote file access would
be harder to implement using the ARPANET scheme.

Name servers† considered speculative

Name servers don’t scale well, for precisely the reason that the ARPANET name scheme doesn’t scale
well: the name server must understand all possible name syntaxes. When a system with a different naming
convention is connected, the name server must suddenly interpret all the different syntaxes, instead of

† ‘‘Name server’’ is a noun phrase that is ambiguous. You hand a name server a name, it hands you connection informa-
tion. Thus it serves connections, not names. Consider the difference between air pollution and noise pollution.

- 7 -

leaving the job to the new system itself. Worse, how do you connect two networks, each with its own name
server? Even if the servers use the same data formats and algorithms, they might use unique identifiers that
become non-unique when they are joined.

Name servers have problems on other levels, too. Who administers a name server’s database? If the
database is not audited frequently much of the data will be obsolete, while if the controls are too onerous,
people won’t bother keeping the database current. What does the database contain? Most name servers
produce network addresses, but no single network reaches everywhere.

Why are mail names such a mess?

Because people keep gluing name spaces together without smoothing the syntactic differences. The
result is the mail name equivalent of bastardized file names like
/n/ucbvax/UCBVAX::KREMVAX:/rob/bin/A:dos-file where different conventions are mixed
in a single string.

Relative names are important

The ARPANET people define their names to have the form

local-part@domain

where bothlocal-part anddomainare dot-separated lists of words. Domains are the generalization of what
we have been calling systems; the local part is anything understood by the leftmost domain name. Accord-
ing to RFC 882 (‘‘Domain Names– Concepts and Facilities’’), the domains are all absolute. The dot signi-
fying the root of the hierarchy is implicit at the right of the list of names, which makes it impossible to con-
nect disjoint name spaces since all interpreters of names must know all names at the top level of the hierar-
chy. Also, for backwards compatibility, RFC 822 (‘‘Standard for the Format of ARPA Internet Text Mes-
sages’’) allows all but the leftmost of the domain names to be elided, since ‘‘specification of a fully quali-
fied address can become inconvenient.’’

What happens in practice?

As long as software continues to deliver mail, people are unwilling to improve the state of affairs.
Mailers just butt together names with their own rewriting rules, producing names like:

IJQ3SRA%UCLAMVS.BITNET%SU-LINDY@SU-CSLI.ARPA

This is the name of userIJQ3SRA on machineUCLAMVS, accessible through BITNET from machine
SU-LINDY , which is known toSU-CSLI on the ARPANET. Each program that touched this name
rewrote it by its own rules, although the domains proposal is intended to prevent this.

There are two domains in this name (although the syntax is wrong):BITNET andARPA. However,
BITNET is not a registered name, so the gateway service between BITNET and ARPANET must be made
explicit in the name, requiring the invention of a new syntax character (%) which is translated to@at the
gateway, because ARPANET names can only contain a single@. Despite the words in the standard about
hierarchy, the domain space is nearly flat, so the local parts of the names carry source routing and domain
transitions explicitly. To worsen matters, machines that advertise adherence to the standard in fact do not;
instead the name translations that occur at gateways (such as converting@to %and rearranging the compo-
nents) are at bestad hoc. By legislating away bad names, ARPANET has reduced the problem of
networking to a still-unsolved problem. But the mailers plod resolutely on.

Standards?

It is clear that standards are necessary for electronic mail to be delivered reliably across network
boundaries. What needs to be standardized is the interpretation of names, especially at network boundaries.
Until such a standard exists; is syntactically and semantically clean; distributes the interpretation of names
across the systems that understand them; and is adhered to, the network mail situation will not improve.

- 8 -

Conclusions

Doug McIlroy has observed that

... bad notations can stifle progress. Roman numerals hobbled mathematics for a millennium but
were propagated by custom and by natural deference to authority. Today we no longer meekly accept
individual authority. Instead, we have ‘‘standards,’’ impersonal imprimaturs on convention. Some
standards are sound and indispensable; some simply celebrate bureaucratic littleness of mind. A har-
vest of gimmicks to save appearances within the standard has grown up, then gimmicks to save the
appearances within the appearances. You know how each one got there: an overnight hack to paste
another tumor onto a wild cancerous growth. The concern was with method, regardless of results.
The result is extravagantly worse than Roman numerals: you can’t read the notation right to left or
left to right. As an amalgam of languages, it can’t be deciphered by a native speaker of any one of
them, much as if we were to switch at random places in a number between Roman and Arabic signs
and between big-endian and little-endian order. But now that it all ‘‘works’’ — at least for the strong
of stomach— the tumors themselves are being standardized.

I fled, and cry’d out ‘‘Death’’;
Hell trembled at the hideous name, and sigh’d
From all her caves, and back resounded, ‘‘Death.’’

- Milton, Paradise Lost

